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Abstract

I present my literature work on and own investigations into the continuous dynami-
cal phase transition displayed by random organization and other closely related mod-
els. These systems are constituted by spatially extended grains initially placed at ran-
domly, uniformly and independently distributed locations; they are then subjected to
iterative protocols trying to eliminate overlaps. In random organization, in each iter-
ation, every grain overlapping with other grains is shifted by a small, random step in
space. This protocol displays two regimes of behaviour, depending on its packing den-
sity Φ, separated by a dynamical phase transition at some critical packing density Φc:
the absorbing phaseΦ < Φc, where after some finite time the system finds an overlap-
free state such that all motion ceases, and an active phase Φ > Φc, where the system
fails to find overlap-free configurations and grains move around indefinitely. My lit-
erature work is on continuous transitions far from equilibrium in general and two
universality in particular: (non-conserved) directed percolation (DP), which I mostly
use to illustrate the concepts and methods in the study of critical dynamical systems,
and theManna or conserved directed percolation (CDP) class, to which the absorbing
state transition in random organization probably belongs. I conclude that analytical
studies into the universal critical behaviour of CDP are dominated by field-theories
of the associated order parameter, the density 𝜌𝐴(𝒓, 𝑡) of active grains. This is be-
cause large-scale field-theories boast methods geared towards understanding univer-
sal behaviour. They are not, however, immediately suitable for finding precise (highly
model-dependent) critical densities. The latter task has been left to simulation stud-
ies. My own investigations explore and try to assess possible pathways to analytical
theories for predicting critical densities. To the end of calculating Φc on paper, I sug-
gest a reaction system, whose analysis is ongoing, that respects spatial correlations
beyond mean-field by formulating it in the operator formalism introduced by Masao
Doi in two papers from 1976 that are seminal for theoretical non-equilibriumphysics.
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1 Introduction

From the reference frame of Newtonian dynamics, which is deterministic and time-
reversible, physics on scales much larger than that of atoms, such as the scale of hu-
mans, has peculiar features: apparent randomness and irreversibility. These features,
loosely speaking, emerge from the fact that no experimenter could possibly express the
motions of, for example, 1023 constantly colliding molecules in a glass of water, much
less track or predict them - any model of the fluid’s behaviour must, by this simple
argument, necessarily be ignorant to the vast majority of information about it. Yet, a
lot of phenomena still admit useful descriptions, where the ignorance is respected, on
some level, by introducing randomness, often resulting in time-irreversibility.

Explanations for the power of this approach regularly invoke chaos, meant in a
technical sense, as in behaviours “[...] whose variations are not random but look ran-
dom [...] ones that appear to proceed according to chance even though their behavior
[sic] is in fact determined by precise laws” (Lorenz 1995, p. 2). Note that this is unre-
lated to having many constituent parts, as is made evident by the famous double pen-
dulum (which has only two degrees of freedom) whose long termmotion can be dras-
tically different even for barely distinguishable but distinct initial conditions. While
detrimental to the ability of finding exact solutions on paper or even numerical ones
spanning any substantial amount of time, chaotic systems are not unapproachable.
Indeed, aspects of their qualitative behaviour may be captured by random processes.

An example from the theory of gases is the Stoßzahlansatz1 (Ehrenfest and Ehren-
fest 1911), which has as a consequence that within any infinitesimally short time pe-
riod [𝑡, 𝑡 + d𝑡] the pair density2 of colliding molecules 𝐹(𝒗1, 𝒗2) factorizes into the
product 𝑓(𝒗1)𝑓(𝒗2), where 𝑓(𝒗) is the number of particles per unit volume that have
velocity 𝒗. The latter amounts to assuming, that velocities are both random and un-
correlated3 (Brown, Myrvold, and Uffink 2009, eq. 1, p. 3). We quantify the degree of
ignorance about the exact state of the gas by (information-theoretical) entropy

𝐻[𝑓(𝒗, 𝑡)] ≔ −∫ d3𝑣 𝑓(𝒗, 𝑡) log(𝑓(𝒗, 𝑡))

Famously, when evolving a probability distribution on phase space in classical Hamil-
tonian mechanics (with the Liouville-equation), 𝐻 will remain unchanged (no ig-
norance incurred, reversibility given), while with the Stoßzahlenansatz in place, the

1found in the (in the past very controversial) discussions on Boltzmann’s𝐻-theorem
2The number of pairs per unit volume with velocities 𝒗1 and 𝒗2 respectively that will collide during

the time span [𝑡, 𝑡 + d𝑡]
3and also ignores any particle interactions beyond pair collisions, effectively limiting this line of

thinking to dilute gases
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Boltzmann 𝐻-Theorem reveals that 𝐻 increases over time. So while the closure with
𝐹(𝒗1, 𝒗2) ≈ 𝑓(𝒗1)𝑓(𝒗2) yields a tractable model for something with as many degrees
of freedom as a gas, it comes at the cost of reversibility.

Another example is Brownian motion, which refers to jittery movement of very
light particles suspended in a fluid, which they are subject to because molecules from
the fluid scatter off them. This motion is well described by random, mutually sta-
tistically independent paths with independent increments. The concentration pro-
file 𝜌(𝒓, 𝑡) of an entire suspension of such particles evolves according to the diffusion
equation

𝜕𝜌(𝒓, 𝑡)
𝜕𝑡 = 𝐷∇2𝜌(𝒓, 𝑡)

where 𝐷 is called the diffusion constant and reflects the jitter motion’s magnitude.
The independence of particle paths reflects that they do not interact, so the overall
concentration profile 𝜌(𝒓, 𝑡) is proportional to the probability density for the location
of any given particle 𝑃(𝒓, 𝑡) ∼ 𝜌(𝒓, 𝑡). These dynamics are also irreversible by virtue of
any given increment 𝒓(𝑡+d𝑡)−𝒓(𝑡) of any given particle’s position 𝒓 being statistically
independent of the history of its previous locations {𝒓(𝑡′)}𝑡≥𝑡′≥0. The irreversibility here
also expresses itself in the growth of entropy 𝐻[𝑃(𝒓, 𝑡)] = − ∫ d𝑑𝑟 𝑃(𝒓, 𝑡) log(𝑃(𝒓, 𝑡))
over time, since

𝜕𝐻
𝜕𝑡 = 𝐷 ∫ d𝑑𝑟 (∇𝑃(𝒓, 𝑡))

2

𝑃(𝒓, 𝑡)
∇𝑃≢0
> 0

is always increasing4 (where𝑑 is the number of spatial dimensions, that the suspended
particles move in).

Tracing the way in which irreversibility manifests on the macroscopic scale is a
paradigmatic task to statistical physics. An interesting contribution to this endeavour
is being discussed in Pine et al. (2005) who report a system that can, depending on
system parameters, display both reversible and irreversible behaviour. The setup is
as follows: extended particles (with some packing density Φ) are suspended in a very
viscous fluid. They have the weight and size necessary for being suspended, but are
too heavy to be subject to Brownian motion. To the authors discuss what happens
when the suspension is periodically sheared with strain 𝛾(𝑡) = 𝛾0 sin(𝜔𝑡) and strain
amplitude 𝛾0 and shearing frequency 𝜔. To accomplish that, the fluid is poured in-
between two concentric cylinders that can be rotated against each other (see fig. 1.1), a
setup commonly employed in rheology. At low enough Reynolds numbers (basically
when the shearing is done slowly enough) the fluid is in Stokes-flow (or creeping flow),
described by the equation5

𝜂∇2𝒖 = ∇𝑝

where ∇𝑝 is the gradient of pressure and 𝜂 is viscosity. Under this regime non-linear
flow behaviour like turbulence, caused by the (now neglected) advection-term (𝒖 ⋅
∇)𝒖, are absent. Under the no-slip boundary conditions that apply here, right at the

4unless 𝑃(𝒓, 𝑡) is perfectly uniformly distributed in space (∇𝑃(𝒓, 𝑡) ≡ 0), in which case there is no
concentration imbalance to diffuse anyway

5For all intents and purposes, the suspending fluid is incompressible and Newtonian, so neglecting
inertia by 𝜌(𝐷𝒖∕𝐷𝑡) ≈ 0 indeed reduces to 𝜂∇2𝒖 = ∇𝑝,
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Figure 1.1: Illustration from Taylor (1923) of what is now usually called the Taylor-
Couette geometry

cylinder wall the fluid velocity 𝒖 will be exactly the same as cylinder velocity, hand-
ing experimenters control over the boundary conditions for 𝒖. Under these circum-
stances, the shearing of the fluid is reversible, as in: every fluid element deformed and
displaced by rotating the cylinders against each other by an angle 𝜃 can be replaced
and their shape reverted by rotating back by the angle−𝜃. This may be demonstrated
by suspending dye in such a fluid and shearing, which will apparently mix the colour
after some number of rotations; however, turning the cylinder back the exact same
number of rotations will reassemble the supposedly scrambled colour droplet.

Mediated by the fluid, the suspended particles can influence each others’ veloci-
ties (in both direction andmagnitude) appreciably if they are sufficiently close. When
packing densityΦ and strain amplitude 𝛾0 are low, the particles will, after some num-
ber of shear cycles 𝜏, arrange themselves into a configuration in which any given par-
ticle will be undisturbed enough to remain on the same spot after each cycle, just like
the aforementioned dye droplet can be sheared back into its original shape. However,
beyond a (Φ dependent) critical strain amplitude 𝛾c0 particles do not return to their
starting points, which the authors attribute to the chaos6 in three-body or higher inter-
actions. The suspension’s behaviour transitions from reversible 𝛾0 < 𝛾c0 to irreversible
for 𝛾0 > 𝛾c0.

A simple interpretation of this goes as follows7: shearing the suspensionwill move
particles around and hence provoke chaotic interactions that, given both the uncer-
tainty and high sensitivity on initial conditions, will displace them in an effectively

6Pine et al. (2005) argues away the possibility of inertia, grain roughness and the like playing a role
7Taking strong inspiration from the introductory explanations from Corté et al. (2008), which I will

lead over to immediately after
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(a) Random organization update rules: spherical particles (depicted
as disks) in (i) are sheared with strain amplitude 𝛾0. Any particles that
come in contact in the process (ii) are given randomdisplacements (iii)

(b) Beneath each frame can be found the number of performed shear
cycles. Black disks are active particles, the remaining white ones inac-
tive. One can see that activity decays over time (to some steady-state
value)

Figure 1.2: Depictions figures 1 (fig. 1.2a) and 2a (fig. 1.2b) from Corté et al. (2008, fig.
1), illustrating random organization.

random way. However, after a few cycles of provoking collisions, particles already in
a spot avoiding all others during the shear cycle stay put, while those who are not
will be repeatedly moved by subsequent interactions until they find such a vacant
avoidance-spot. That one would see a transition in behaviour depending on 𝛾0 be-
comes clear by considering that if the particles are barely moved, they will not even
meet, while a very high strain amplitude will provide many chances for encounters.
The packing density dependence of 𝛾c0 is also not surprising: if Φ was very high, it
should not be possible to avoid collisions, say if they are spheres and already arranged
in a configuration close to an FCC crystal, while at very low densities particles should
not even encounter each other, no matter how far the shearing makes them travel.
Pine et al. (2005) additionally simulated the system with Stokesian Dynamics8 and
found the same behaviour. They also found that in the regime 𝛾0 > 𝛾c0 where particle
displacements never cease, also referred to9 as the active regime, the new positions of
displaced particles after every shear cycle perform random walks.

Understanding the most important mechanisms in the transition has been done
with a simpler model of this behaviour, called random organization (RO), introduced
in Corté et al. (2008) and realized as a simulation10: starting from randomly and inde-
pendently placed spheres or disks, every time step the system is periodically sheared
with strain amplitude 𝛾0 at some packing density Φ. Any particles that overlap in

8Numerically integrating the creeping flow equations, akin to molecular dynamics, where one nu-
merically integrates Newton’s equations (Pine et al. 2005)

9In the lingo of Corté et al. (2008)
10One can find animations of random organization under https://physics.nyu.edu/pine/

random_organization.html (last visited on 14.11.2025 at 09:41)

https://physics.nyu.edu/pine/random_organization.html
https://physics.nyu.edu/pine/random_organization.html
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(a) Corté et al. (snapshot from 2008,
fig. 2), where the solid line is a fit to
the power law 𝑓∞𝑎 ∼ |𝛾0 − 𝛾c0|

𝛽

(b) Lubeck (subfigure of 2004, fig. 1),
where the thick line is for zero exter-
nal field ℎ = 0 (and the slight lines
for |ℎ| > 0)

Figure 1.3: Side by side comparison of the steady-state activity of randomorganization
𝑓∞𝑎 as a function of shear amplitude and the magnetization 𝑚 of a ferromagnet as a
function of temperature. The images would be muchmore similar if𝑚 was plotted as
a function of inverse temperature 1∕𝑇

the process of this are given small random displacements (see fig. 1.2a), mimick-
ing that the suspended particles from the Taylor-Couette geometry perform random
walks beyond the critical packing density (Pine et al. 2005). Particles in motion due
to collision are referred to as active particles11, not to be confused with the micro-
scopic constituents of active matter. The observed behaviour is that, indeed, (for any
given strain amplitude) there is again a critical 𝛾c0(Φ) that separates the system be-
haviour into two possible regimes: if 𝛾0 > 𝛾c0 particle displacements never cease and
the (emsemble-averaged) fraction 𝑓𝑎(𝑡) of particles that are being displaced at any
given step 𝑡 plateaus as 𝑡 → ∞ to some stationary value 𝑓∞𝑎 ≔ lim𝑡→∞ 𝑓𝑎(𝑡); on the
other hand, if 𝛾0 < 𝛾c0 particle overlaps and hence displacements eventually cease (or
in other words: 𝑓∞𝑎 = 0), where the characteristic12 number of steps 𝜏 necessary to
find the overlap free configuration diverges to∞ with a power law 𝜏 ∼ |𝛾0 − 𝛾c0|−𝜈 as
the critical amplitude is approached from below 𝛾 ↑ 𝛾c0.

This behaviour is interesting from a statistical physics point of view because it is
akin to phase transitions. Note that this is not a phase transition asMaxwell or Ehren-
fest would have understood them, with firm roots in the study of thermal equilibrium
systems. The just described reversibility-irreversibility transition reported by Pine et
al. (2005) or the analogous absorbing-state transition (AST) of random organization,
indeed, do not admit equilibrium descriptions at all (Corté et al. 2008; Chatterjee,
Das, and Pradhan 2018). Yet, the similarities to a continuous (second order or higher)
phase transition13, like the transition of e.g. slabs of iron or cobalt from permanent-
to para-magnets beyond the curie temperature 𝑇c, are unmistakable: the qualitative

11or active grains in works discussing a class of similar nodels called stochastic sandpiles, e.g. Wiese
(2016)

12The decay of 𝑓𝑎(𝑡) to its plateau value can be successfully fit by 𝑓𝑎(𝑡) = 𝑓∞𝑎 +(𝑒−𝑡∕𝜏∕𝑡𝛿)
(
𝑓𝑎(0) − 𝑓∞𝑎

)

for some characteristic time 𝜏 and exponent 𝛿, a formula that contains the possibility of power-law
behaviour in the limit 𝜏 → ∞ (Corté et al. 2008)

13See chapter 2 for a brief recapitulation of these concepts
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behaviour experiences a change (𝑓∞𝑎 = 0 to 𝑓∞𝑎 > 0) as some control parameter, the
strain amplitude 𝛾0, crosses some critical threshold 𝛾c0. Random organization even
displays power law behaviour 𝑓∞𝑎 ∼ |𝛾0 − 𝛾c0|𝛽 near the transition , which is famil-
iar from the power law behaviour of spontaneous magnetization in the permanent-
magnetic (i.e. 𝑇 < 𝑇c) phase 𝑚 ∼ |𝑇 − 𝑇c|𝛽𝑚 as (all other things being equal) 𝑇
approaches the Curie temperature 𝑇c (Wilson 1974, sec. 2.1, eq. 2.1). And similarities
are far from stopping here: the time 𝜏 necessary for a random organization system
with some pending collisions to find a configuration free of particle path overlaps is,
in a sense, a susceptibility: imagine manually disturbing the random organization
model by relocating a particle to a position where it will experience collision in the
next shear cycle or inserting a new particle on top of an already existing one; then
small 𝜏 means the system reverts back to an overlap-free configuration very quickly
after being disturbed, while very large 𝜏 means that the system retains activity for a
substantial duration ; in thefirst case, the systemhas low susceptibility to perturbation
(quick die-down of inserted activity), while in the second it is highly susceptible (rel-
atively long-lasting activity). This makes the external forcing of an overlap analogous
to an external magnetic field𝐻 on the aforementionedmagnetizable slab, incurring a
magnetization response𝑚 = 𝜒𝐻 with magnetic susceptibility 𝜒. With the backdrop
of this similarity, it is perhaps less surprising than it would be otherwise to realize the
likeness between 𝜏 ∼ |𝛾0−𝛾c0|−𝜈 asmeasured by Corté et al. (2008) and themuchmore
well known divergence of magnetic susceptibility with the power law 𝜒 ∼ |𝑇 − 𝑇c|−𝛾
as the system approaches the Curie temperature from the paramagnetic side 𝑇 > 𝑇c
(Wilson 1974, sec. 2.1, eq. 2.7).

As I will discuss in chapter 2, the similarities between thermal equilibrium phase
transitions and transitions in the dynamical behaviour of, in the present case, ran-
dom organization do not end even there. Amongst other things, they can be theo-
retically studied with similar tools. Literature thus confidently refers to such non-
equilibrium phenomena as dynamical phase transitions. Far from being the only one,
the reversibility-irreversibility transition of random organization can be grouped with
other continuous dynamical phase transitions into universality classes. The latter are
classes of transitions that turn out to have a common theoretical description, includ-
ing the same critical critical exponents, which is how literature refers to the exponents
from the power law behaviour of various quantities near the transition, such as the
just mentioned 𝛽 and 𝜈.

At the outset of the thesis, I sought to relate random organization to similar mod-
els, like instances of directed percolation (DP) and the related Manna or conserved
directed percolation (CDP) universality class. The literature work necessary to get a
reasonably good impression of what research into the topic has already yielded, how-
ever, turned out to be a particularly interesting, non-negligible effort. Hence I will re-
count parts of my literature research into universality and criticality in chapter 2 and
my research into random organization and other related models in chapter 3. These
chapters provide further relevant context for the final chapter 4, where I presentmy at-
tempts at formulating analytical models geared towards determiningΦc at zero strain
amplitude 𝛾0 = 0.



2 Continuous Phase Transitions

The purpose of this section is to provide background on the study of phase transitions,
such that subsequent sections have less friction while reading: renormalization flow
techniques, simulation studies, etc. were not mandatory parts of my physics educa-
tion, giving me no reason to expect my target group to have any familiarity with them
either. Reading into these topics constituted an integral part of my literature work,
since the formulation and study of analytical models of dynamical phase transitions
are both phrased in this language and take it for granted. The concepts and lingo of
dynamical, non-equilibrium phase transitions are based on results secured for sys-
tems in thermodynamic equilibrium (Hinrichsen 2000; Ódor 2004, respective intro-
ductions), so I deem it helpful to discuss introduced concepts in terms of the latter
before delving into the non-equilibrium approaches to dynamical phase transitions
found in literature.

2.1 Order Parameters

2.1.1 First- andSecond-OrderTransitions inEquilibriumPhysics

A paradigmatic system for classifying phase transitions of systems in thermodynamic
equilibrium is the so called Ehrenfest scheme, in which discontinuities in the 𝑛-th
derivative of Gibbs free energy𝐺 are defined as so called phase transitions of 𝑛-th order
(Reichl 2016, ch. 4, sec. 3). In a fluid, Gibbs free energy𝐺(fluid) is given by temperature
𝑇, pressure 𝑝 and molecule number 𝑁. First derivatives with respect to any of these
renders entropy 𝑆, volume 𝑉 and chemical potential 𝜇

𝑆 = −(𝜕𝐺
(fluid)

𝜕𝑇 )
𝑝,𝑁

𝑉 = −(𝜕𝐺
(fluid)

𝜕𝑝 )
𝑇,𝑁

𝜇 = (𝜕𝐺
(fluid)

𝜕𝑁 )
𝑝,𝑇

(2.1)

Second derivatives of thermodynamic potentials are susceptibilities, like (isobaric)
heat capacity in fluids

𝐶𝑝
𝑇 = (𝜕𝑆𝜕𝑇)𝑝,𝑁

= −(𝜕
2𝐺(fluid)

𝜕𝑇2 )
𝑝,𝑁

(2.2)

Now, for example the liquid-vapour transition comes (at fixed 𝑁) with a jump in vol-
ume (a first derivative of 𝐺(fluid)) and hence is a first-order transition. In the Ising
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model1 𝐺(Ising) depends on temperature 𝑇, the number of constituents 𝑁 and the ex-
ternally applied field 𝐻 (which plays a role analogous to pressure 𝑝 in fluids). Mag-
netization𝑚 is given by

𝑚 = −(𝜕𝐺
(Ising)

𝜕𝐻 )
𝑇,𝑁

(2.3)

Magnetic susceptibility 𝜒 is the response of 𝑚 to a change in the externally applied
field𝐻 and hence a second derivative of Gibbs free energy

𝜒 = (𝜕𝑚𝜕𝐻)
𝑇,𝑁

= −(𝜕
2𝐺(Ising)

𝜕𝐻2 )
𝑇,𝑁

(2.4)

Around the Curie point 𝑇c magnetization is continuous (recall fig. 1.3b), but 𝜒 is not.
Hence in this case the transition is second-order in the Ehrenfest scheme. Second
order (or higher) transitions are also referred to as continuous, as opposed to the dis-
continuous (in first-order quantities) first-order transitions. Ehrenfest originally en-
visioned these discontinuities to not have any divergences, but discoveries like the
theoretically determined divergence (as 𝑇 approaches 𝑇c) of the heat capacity of the
Ising model on a (two-dimensional) square lattice, found by Onsager (1944), necessi-
tated the extension of the scheme or the adaption of different frameworks altogether
(Jaeger 1998; Reichl 2016, ch. 4, sec. 3).

The later developed approach of Landau-Ginzburg theory seeks to describe the
qualitative features of second-order phase transitions by constructing phenomeno-
logical, large-scale models in the form of field theories for a quantity in which the
phase transition is evident, a so called order-parameter (Reichl 2016, ch. 4, sec. 8;
Tong 2017, sec. 1.2; Cheung 2023, sec. 2.1). In the context of the order-disorder
transition in the Ising model, such a quantity would be 𝑚(𝒓) (because 𝑚 = 0 above
𝑇c while 𝑚 ≠ 0 below 𝑇c ), denoting the magnetization

∑
𝑠𝑖 around some location

𝒓 on scales where the sites of individual spins are not resolved and locations on the
lattice may be considered effectively continuous. Such a large-scale description is re-
ferred to as coarse-grained. In the Landau-Ginzburg ansatz the magnitude |𝑚(𝒓)| of
the order-parameter of choice (as well as the magnitude of any of its physically rele-
vant derivatives, say |∇𝑚(𝒓)|) should be small in the regime of interest (Tong 2017,
sec. 1.2), in order to approximate the so called Landau-Ginzburg free energy 𝐸 as a
(local2) functional expanded in powers of 𝑚(𝒓), ∇𝑚(𝒓), etc. which obey symmetries

1A simplifiedmodel of magnetic materials, where the magnet is assumed to be made up of spatially
separated sites 𝑖 which can have two states of magnetization, up 𝑠𝑖 = +1 and down 𝑠𝑖 = −1, mimicking
the two-valuedness of quantum mechanical spin (leading to 𝑠𝑖 being referred to as spins); note that it
has a non-quantum formulation, where energy 𝐸 is given by a spin-spin-coupling 𝐽𝑖𝑗 , which may in
principle couple any two spins, and an external field 𝐻 which may in principle vary from site to site.
Usually one places the spins on lattices, connects nearest neighbours with some coupling constant
𝐽 > 0 and applies a spatially uniform field, such that 𝐸 = −

∑
⟨𝑖,𝑗⟩ 𝐽𝑠𝑖𝑠𝑗 +

∑
𝑖 𝐻𝑠𝑖 where

∑
⟨𝑖,𝑗⟩ denotes

the sum over unique pairs {𝑖, 𝑗} of nearest neighbours on the lattice
2as in: 𝐸[𝑚(𝒓)] = ∫ d𝑑𝑟 𝜑(𝑚(𝒓), ∇𝑚(𝒓), (∇⊗∇)𝑚(𝒓), … )) for some free-energy density 𝜑 depending

on𝑚(𝒓) and its derivatives
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that are known to hold3

𝐸[𝑚(𝒓)] = ∫ d𝑑𝑟 (
𝑐2(𝑇)
2 𝑚(𝒓)2 +

𝑐4(𝑇)
4 𝑚(𝒓)4 +

𝑣2(𝑇)
2 (∇𝑚(𝒓))2 +⋯) (2.5)

Landau-Ginzburg free energy relates to the partition function 𝑍 by

𝑍 = ∫ 𝒟𝑚 exp(−𝐸[𝑚(𝒓)]𝑘B𝑇
) (2.6)

where ∫ 𝒟𝑚 denotes the path-integral over all possible realizations of𝑚(𝒓), perhaps
familiar from quantum field theory. Note that the Landau-Ginzburg free energy can
neither be interpreted as aHamiltonian as onewould be accustomed to from statistical
mechanics (because the coefficients have arbitrary temperature dependence instead
of just division by 𝑘B𝑇), nor does it play the role of a free energy 𝐹 in the sense of
a thermodynamic potential, which would be given by 𝐹 = −𝑘B𝑇 log(𝑍). Instead, 𝐸
should be thought of as reflecting the weight

𝑃[𝑚(𝒓)] ≕ 1
𝑍 ⋅ exp(−𝐸[𝑚(𝒓)]𝑘B𝑇

) (2.7)

with which the magnetization field𝑚(𝒓) configuration should contribute to the path-
integrals for the determination of averaged quantities

⟨𝒜⟩ = ∫ 𝒟𝑚𝒜[𝑚(𝒓)] 𝑃[𝑚(𝒓)] (2.8)

where one should imagine 𝑃[𝑚(𝒓)] as arising from a previous coarse-graining of the
fully resolved system; in practice the form of 𝐸 is chosen by phenomenological argu-
ments (compare sec. 1.3 Tong 2017; sec. 2.2 Cheung 2023).

The descriptive power of this approach is easily showcased by invoking the saddle-
point approximation 𝑍 ≈ ∫ 𝒟𝑚s exp(−𝐸[𝑚s(𝒓)]∕𝑘B𝑇) where ∫ 𝒟𝑚s (⋯) is a dra-
matically restricted path integral including only the minima of 𝐸[𝑚]. Candidates
for the minima are found by checking where Landau-Ginzburg free energy is ex-
tremal 𝛿𝐸[𝑚s] = 0. The saddle-point approximation is valid whenever the parti-
tion function is dominated by contributions of magnetization fields 𝑚(𝒓) similar to
any of the minima 𝑚s(𝒓). The justification for this is that the Boltzmann weights
exp(−𝐸[𝑚s(𝒓)]∕𝑘B𝑇) are the largest there (an argument very similar to the typical
reasoning for how the classical-mechanical principle of least action can emerge from
quantum path-integrals). Keeping only the first two terms

𝐸[𝑚(𝒓)] = ∫ d𝑑𝑟 (
𝑐2
2 𝑚(𝒓)

2 +
𝑐4
4 𝑚(𝒓)

4) ≕ ∫ d𝑑𝑟 𝜀(𝑚(𝒓)) (2.9)

(where the coefficients have a 𝑇 dependence, which I drop to reduce visual clutter)
and assuming a homogeneousmagnetization𝑚(𝒓) ≡ 𝑚 turns the variation of𝐸[𝑚(𝒓)]
with respect to𝑚(𝒓) into a derivative of 𝜀(𝑚) with respect to𝑚

0 = 𝜕𝜀(𝑚)
𝜕𝑚 = 𝑐2𝑚 + 𝑐4𝑚3 = 𝑚(𝑐2 + 𝑐4𝑚2) (2.10)

3such as switching the definition of 𝑠 = ±1 leading to𝑚(𝒓) ↦→ (−𝑚(𝒓)) being a symmetry transfor-
mation, or isotropy allowing only rotationally invariant expressions in vectorial quantities (or higher
rank, tensorial quantities), say dot products like ∇𝑚(𝒓) ⋅ ∇𝑚(𝒓)
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with solutions 𝑚 = 0 and 𝑚2 = −𝑐2∕𝑐4. Given that the magnetization 𝑚 is real-
valued, the non-zero value for𝑚 is only a valid solution if 𝑐2∕𝑐4 < 0, in which case we
define −𝑚2

0 = 𝑐2∕𝑐4 and see that
𝑚 = ±𝑚0

are indeedminima of 𝜀(𝑚) and global ones at that, as curve sketching4 quickly demon-
strates. Additionally retaining the term (1∕2)𝑣2(∇𝑚(𝒓))2

𝜀(𝑚(𝒓), ∇𝑚(𝒓)) =
𝑐2
2 𝑚(𝒓)

2 +
𝑐4
4 𝑚(𝒓)

4 +
𝑣2
2 (∇𝑚(𝒓))

2 (2.11)

after integration by parts in the variation 𝛿𝐸 results in

0 = 𝛿𝐸
𝛿𝑚(𝒓)

= −𝑣2∇2𝑚(𝒓) + 𝑐2𝑚(𝒓) + 𝑐4𝑚(𝒓)3 (2.12)

which again has trivial solution 𝑚 = 0; furthermore, when −𝑚2
0 = 𝑐2∕𝑐4 < 0 and

−𝑤2 ≔ 2𝑣2∕𝑐2 < 0 then
𝑚(𝑧)
𝑚0

= tanh
( 𝑧
𝑤
)

(2.13)

where 𝑧 is a coordinate along an arbitrarily chosen axis with an arbitrarily chosen ori-
gin. The latter solution can be interpreted as aWeiss domain wall (see plot in fig. 2.1),
because tanh(𝜉) has the limits lim𝜉→±∞ tanh(𝜉) = ±1 and the transition around 𝜉 = 0
between those two limit values has an extension of characteristic size 𝑤 (compare
Tong 2017, sec 1.2.1 and sec. 1.3.2)5 . These two calculations show how already at the
two lowest orders in 𝑚2 and (∇𝑚)2 the behaviour of the model includes a transition
from 𝑚 = 0 to spontaneously magnetized 𝑚 ≠ 0 and domain walls separating two
regions.

Another example application of the Landau-Ginzburg approach is superconduc-
tivity (Reichl 2016, sec. 4.8.3.3), which in Bardeen-Cooper-Schrieffer theory occurs
due to electrons experiencing a phonon-mediated effective attraction, with respect to
which electron-pairs have a ground state in which they propagate jointly as a boson
(Bardeen, Cooper, and Schrieffer 1957), nowadays referred to as a Cooper-pair. To
model this situation in a minimalist fashion a Landau-Ginzburg free-energy is de-
fined, expressed in terms of a complex order parameter 𝜓(𝒓) encoding both the occu-
pation and phase of the ground state. While discussing the form of Landau-Ginzburg
free energy density in the same detail as magnetization would bring little benefit to
getting an idea of this method, it is helpful to note that it involves only the 𝑈(1)-
invariant canonical momentum (−𝑖∇ + 𝑞𝑨), where 𝑞 is Cooper-pair charge and 𝑨 is

4that also reveals we want 𝑐4 > 0 lest 𝜀 not be bounded from below
5and indeed, the domain wall, given it is a valid solution, indeed has lower Landau-Ginzburg free

energy: inserting back into 𝜀, we find by |∇𝑚(𝑧)| = 𝑚0(1∕𝑤)(1 − tanh2(𝑧∕𝑤)) that lim𝑧→±∞(∇𝑚(𝑧))2 =
(𝑚0∕𝑤)2(1 − (±1)2) = 0 while on the other hand we find that 𝑚(𝑧) plateaus in either direction to
lim𝑧→±∞𝑚(𝑧)2 = 𝑚2

0 and similarly lim𝑧→±∞𝑚(𝑧)4 = 𝑚4
0 such that (omitting the ∇𝑚(𝑧) depen-

dence that drops out) Landau-Ginzburg free energy density plateaus to lim𝑧→±∞ 𝜀(𝑧) = (𝑐2∕2)(−𝑐2∕𝑐4)+
(𝑐4∕4)(−𝑐2∕𝑐4)2 = −(𝑐22∕2𝑐4) + (𝑐22∕4𝑐4) = −(𝑐22∕4𝑐4) ≔ −𝜀∞ which is negative because of the condition for
the domain wall solution being 𝑐2∕𝑐4 < 0 which by 𝑐4 > 0 means 𝑐2 < 2 and hence 𝑐22∕𝑐4 > 0; the
small region around the domain wall where 𝜀 differs from this plateau value is negligible when inte-
grating over the whole system, making 𝐸[𝑚(𝑧)] ≈ −𝜀∞𝑉 < 0 (lower than 𝐸[0] = 0 of the trivial𝑚 = 0
solution), where 𝑉 is the system volume.
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Figure 2.1: Illustration of the saddle-point approximation eq. (2.13) to the Weiss-
domain wall. The arrows are supposed to represent magnetization.

the electromagnetic vector potential, and otherwise contains powers of |𝜓(𝒓)|2 in or-
der to make the model 𝑈(1)-gauge-invariant6. Below a critical 𝑇c the system ceases
to be gauge-invariant, instead spontaneously taking on one gauge 𝑒𝑖𝜃∗(𝒓) in particu-
lar (compare The Royal Swedish Academy of Sciences 2003). This is analogous to
the previously described magnet spontaneously preferring one magnetization direc-
tion, where in the superconductor case an interpretation is that the system transitions
to an overwhelming fraction of electrons occupying the ground state as Cooper-pairs,
whose phase is thendetectablemacroscopically and corresponds precisely to the spon-
taneously preferred 𝑒𝑖𝜃∗(𝒓).

I should stress that being able to apply concepts from field theory (for example the
saddle-point approximation) to the study of phase transitions is a particularly relevant
benefit of this coarse-grained statistical field approach. This opens up the possibility
of renormalization flow or perturbation theory empowered by diagrammatic tech-
niques. Besides that, the reductionist modelling deliberately ignores details on small
scales, which turn out to not be relevant to the qualitative behaviour of the transi-
tion. I will substantiate the latter claim in section 2.2 with appropriate references and
arguments. I may already foreshadow, that reductionism entails abstractness, such
that the same field theory will capture behaviour which a broad class of models have
in common. All this also turns out to apply to dynamical phase transitions (see sec-
tion 2.2).

6symmetric under redefining phase 𝜓(𝒓) ↦→ 𝜓(𝒓) 𝑒𝑖𝜃(𝒓) and accordingly vector potential 𝑞𝑨 ↦→
𝑞𝑨 − ∇𝜃(𝒓)
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2.1.2 Reversibility-Irreversibility and Directed Percolation
As mentioned in the introduction, the transition in random organization cannot be
described as a theromdynamic equilibrium model. There I have also already men-
tioned, that it is also referred to as an absorbing state transition, for the following rea-
son: any system state 𝑠 of a Markov chain is referred to as absorbing if the probability
𝑃 (𝑠 → 𝑠′) of transitioning from 𝑠 to any other system state 𝑠′ ≠ 𝑠 is zero. Random
organization states in which no particle pair will collide in the next shear cycle are
absorbing, because they will not be displaced in the next or any subsequent time, re-
maining put indefinitely. The presence of the absorbing states, in fact, is what rules
out the possibility of a (near) equilibrium description of this type of transition, since
this bars the system from reaching the detailed balance characteristic of equilibrium
(Lubeck 2004, sec. 2.1).

While equilibriumsystems are an important reference point, non-equilibrium tran-
sitions, like random organization or the reversibility-irreversibility transition from
Pine et al. (2005) are fundamentally different in nature: the probability distribution
on the states is rarely known a-priori (not even for the long term steady-state, if ex-
istent), in contrast to thermal equilibrium, where the probability to be in some state
𝑠 is governed by some variation (depending on the ensemble) of the Boltzmann-Gibbs-
distribution𝑃 (𝑠) ∼ exp (−𝐸(𝑠)∕𝑘B𝑇). Instead, these systems are described by a stochas-
tic time-evolution rule (Hinrichsen 2000, introduction), such as stochastic differential
equations (see Wiese (2016) for example), update rules for cellular automata (see di-
rected percolation as introduced by Broadbent and Hammersley (1957) or the sand-
pile lattice model of Manna (1991) for example) or partial differential equations (see
Chatterjee, Das, and Pradhan (2018) for example).

For those frameworks, not described by equilibrium concepts such as free energy,
Ehrenfest classification (or any of its extensions) cannot apply in its original sense.
The idea of order parameters (and with respect to those, the concept of first-order,
second-order, etc. transitions), however carries over: in the case of random organiza-
tion, for example, that would be the steady-state fraction of active grains 𝑓∞𝑎 (which
I will also call steady-state activity): in the inactive phase 𝛾0 < 𝛾c0 the steady state
activity 𝑓∞𝑎 is zero with the system eventually falling into one of uncountably many
absorbing state configurations, while in the active phase 𝛾0 > 𝛾c0 the steady state activ-
ity is positive 𝑓∞𝑎 > 0, as the system establishes a balance between the rate with which
grains are inactivating by finding vacant, collision-free spots, and the rate at which the
active grains in their random walk find and activate inactive ones. Because there is
no jump in 𝑓∞𝑎 (Corté et al. 2008), the transition can be called continuous or second-
order in analogy to equilibrium systems. As hinted at already in section 2.1.1 and
further discussed in section 2.2.2, dynamical phase transitions are regularly modelled
by field theories of an order-parameter varying both in space and time (as opposed to
only space, like in equilibrium), which are analysed with tools familiar from Landau-
Ginzburg and quantum field theory.

At this point it is obligatory to identify the order parameter in a class of mod-
els with many qualitative similarities to random organization: directed percolation7.
Corté et al. (2008) honour directed percolation as the “Isingmodel of non-equilibrium
phase transitions”, a sentiment echoed in the introduction of Hinrichsen (2000), by

7lat. percolare, engl. to filter, to sift
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virtue of how broadly studied it is and how it serves as a reference problem for de-
scribing and understanding others. Directed percolation is a specific instance of the
more general class of percolation problems (see Broadbent and Hammersley 1957;
Obukhov 1980), who all study under what circumstances local, small-scale random
connectivity is likely to make large graphs globally connected. The problem state-
ment reads as follows: Imagine copies of a 𝑑-dimensional regular lattice being stacked

Figure 2.2: Visualization from Hinrichsen
(2000, fig. 10) of (1 + 1)-dimensional di-
rected percolation, with every site in any
given time-slice being activated by two
sites from the previous slice and activating
two sites in the subsequent one.

ad infinitum into parallel layers (which I
will also call slices) in (𝑑+1)-dimensional
space. We label these layers with some
index 𝑡 = 0, 1, 2, 3, … with 𝑡 = 0 be-
ing some arbitrary starting layer. Then,
proximate sites from subsequent layers
𝑡 and 𝑡 + 1 shall be connected with di-
rected bonds pointing from 𝑡 to 𝑡 + 1.
Next, we randomly and independently
make bonds passable with some proba-
bility 𝑝, which serves as the control pa-
rameter of the problem. As an example,
see fig. 2.2, which depicts the case when
the regular lattice is a line of points, and
the connections are with the two near-
est neighbours in the subsequent layer.
One nowasks for the probability𝑃∞ that,
starting from 𝑡 = 0 one can pass arbitrar-
ily far along open bonds. This prescrip-
tion can be interpreted as a system un-
dergoing stochastic, Markovian, dynam-
ics with the directed dimension playing the role of time (which is why I chose to call
the layer-index 𝑡, as is customary for times) and the transverse directions the role of
space (Cardy and Sugar 1980, introduction), which I choose to index with 𝒙. Indeed
Obukhov (1980) likened directed percolation to the spread of disease or forest fire in
space as time passes. With this view in mind, one may write down dynamical equa-
tions, say by translating the logic, for whether a bond is connected to the 𝑡 = 0 layer,
into an expression

1 −𝒲(𝒙, 𝑡 + 1)
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
“site 𝒙 is not wet”

=
∏

𝒙′
(1 − 𝒞(𝒙, 𝒙′, 𝑡)𝒲(𝒙′, 𝑡))

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
“all previous sites 𝒙′ with directed bond to 𝒙

are not both wet and open ”

(2.14)

of indicator8 functions𝒲(𝒙, 𝑡) of the event that site (𝒙, 𝑡) is connected to 𝑡 = 0, where
for any given 𝑡 = 0 site 𝒙we have𝒲(𝒙, 0) ∈ {0, 1} lest the indicators𝒲(𝒙, 𝑡) in subse-
quent slices 𝑡 > 0 not take values in {0, 1}. 𝒞(𝒙, 𝒙′, 𝑡) = 0 in case there cannot even in
principle be a direct bond 𝒙 ⇝ 𝒙′ and otherwise takes on the value of 1with probabil-
ity 𝑝 and 0with probability (1 − 𝑝), where𝒞(𝒙, 𝒙′, 𝑡) and𝒞(𝒚, 𝒚′, 𝑠) are independent

8Indicators are 0 if the statement they describe is false and 1 otherwise. They are often denoted
𝟏{⋯}, so e.g. here𝒲(𝒙, 𝑡) = 𝟏{site (𝒙, 𝑡) is connected to 𝑡 = 0}
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of each other for distinct bonds (𝒙, 𝒙′, 𝑡) ≠ (𝒚, 𝒚′, 𝑠). Because directed percolation
has also been seen as a model for fluid permeating a porous medium, sites (𝒙, 𝑡) with
𝒲(𝒙, 𝑡) = 1 have been referred to as wet sites, while the comparison to the spread
of disease has incurred them the name infected sites (though I will stick to the name
wet sites). One can observe in numerical realizations of directed percolation, that the
fraction of wet sites 𝑓𝑤(𝑡), given by

𝑓𝑤(𝑡) ≔
⟨∑

𝒙𝒲(𝒙, 𝑡)
∑

𝒙 1

⟩
(2.15)

decays, after some characteristic number of layers 𝜏, to a steady-state value

𝑓∞𝑤 ≔ lim
𝑡→∞

𝑓𝑤(𝑡) (2.16)

that depends on the bond probability𝑝. At𝑝 = 0no bonds are open (𝑓∞𝑤 = 0), at𝑝 = 1
every bond is open (𝑓∞𝑤 = 1). For all 𝑝 in between we can, at this abstract stage, only
say that enlarging 𝑝 will never reduce the chance for one site wetting another, hence
𝑓∞𝑤 can, if changed at all, only increasewith growing𝑝: 𝑝1 < 𝑝2 ⇐⇒ 𝑓∞𝑤 (𝑝1) ≤ 𝑓∞𝑤 (𝑝2)
or similarly 𝑃∞(𝑝1) ≤ 𝑃∞(𝑝2). Both 𝑓∞𝑤 and 𝑃∞ can serve as order parameters, with
𝑓∞𝑤 = 0 meaning that at some time 𝑇 the system enters the (unique) absorbing state
𝒲(𝒙, 𝑇) ≡ 0while 𝑓∞𝑤 > 0means wet sites propagate indefinitely in time; in the latter
phase one calls the system percolating. As with the random organization transition
(see introduction for more details and references), the order parameter of directed
percolation follows a power law (compare Jensen 1999, eq. 3; Adzhemyan et al. 2023,
eq. 7)

𝑓∞𝑤 ∼ |𝑝 − 𝑝c|𝛽DP (2.17)
as 𝑝 approaches the critical bond probability9 𝑝c.

2.2 Critical Behaviour and Universality

2.2.1 Phenomenology of Critical Systems
In the introduction and section 2.1.2, I mentioned many instances of power law be-
haviour near the so called critical point (such as critical strain amplitude 𝛾c0, Curie
temperature 𝑇c or critical bond probability 𝑝c) of a continuous transition: the Curie
point with𝑚 ∼ |𝑇−𝑇c|𝛽m and𝜒 ∼ |𝑇−𝑇c|−𝛾, the reversibility-irreversibility transition
with𝑓∞𝑎 ∼ |𝛾0−𝛾c0|𝛽 and 𝜏 ∼ |𝛾0−𝛾c0|−𝜈, the onset of superconductivity𝜓 ∼ |𝑇−𝑇SC|𝛽SC
or the transition inDP fromfinite penetration depth to percolation in𝑓∞𝑤 ∼ |𝑝−𝑝c|𝛽DP .
These are an expression of behaviour that literature refers to as scaling.

Correlators Talking about the phenomenology of scaling (and then subsequently
characterizing it) requires introducing the concept of correlators first, in particular
two-point correlators. Generally speaking, one calls an object a correlator if it con-
tains averages of products of a spatially resolved order parameter 𝑓(𝒓), for example

9For the (1 + 1)-dimensional lattice depicted in fig. 2.2 and fig. 2.3 𝑝c = 64.4700185(5)% according
to numerics presented in Jensen (1999)
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(a) 𝑝 = 62% (b) 𝑝 = 𝑝c ≈ 64.47% (c) 𝑝 = 66%

Figure 2.3: Visualization of different regimes of directed percolation, with black rep-
resenting wet sites. Bonds are open with probability 𝑝 and the system has periodic
boundary conditions, i.e. the last and first site along the 𝒙-line are considered nearest
neighbours.In the subcritical 𝑝 = 62% (fig. 2.3a) the survival time of wetness expe-
riences exponential dampening, leading to a visible cut-off length. Critical directed
percolation 𝑝 = 𝑝c (fig. 2.3b) has columns of wet sites terminating at all kinds of
lengths with the system looking qualitatively the same across scales. At the supercrit-
ical 𝑝 = 66% (fig. 2.3c) columns tend to not terminate at all, instead mostly splitting,
proliferating and then combining again with the parent or another column.

⟨𝑓(𝒓1)𝑓(𝒓2)⟩ or ⟨𝑓(𝒓1)𝑓(𝒓2)𝑓(𝒓3)⟩. Correlators quantify how related, alike or statisti-
cally dependent (in short: correlated) the behaviour of 𝑓(𝒓) is to itself at two different
locations. A certain correlator is especially suited to this task: to get it, one mean-
centres (𝑓(𝒓) − ⟨𝑓(𝒓)⟩) the order parameter at distinct locations 𝒓1 and 𝒓2. One then
computes the ensemble-average of the product of these two deviations from mean to
get the (connected) two-point correlation function or two-point cumulant

⟨𝑓(𝒓1) 𝑓(𝒓2)⟩c ≔
⟨ (
𝑓(𝒓1) − ⟨𝑓(𝒓1)⟩

)
⋅
(
𝑓(𝒓2) − ⟨𝑓(𝒓2)⟩

) ⟩

= ⟨𝑓(𝒓1) 𝑓(𝒓2)⟩ − ⟨𝑓(𝒓1)⟩ ⟨𝑓(𝒓2)⟩
(2.18)

For dynamical transitions, where the order parameter 𝑓(𝒓, 𝑡) is also resolved in time,
events (𝒓, 𝑡) take the role of mere positions.

In thermal equilibrium, correlators are related to thermodynamic observables.
Take as an example the Landau-Ginzburg theory of the Curie point introduced in
section 2.1.1. To state the obvious first, the one-point correlator is mean magnetiza-
tion at point 𝒓 and can be generated by variation of free energy with respect to the
externally applied magnetic field𝐻(𝒓)

⟨𝑚(𝒓)⟩ = ∫ 𝒟𝑚 1
𝑍 exp (−

𝐸[𝑚] − ∫ d𝑑𝑟 𝐻(𝒓)𝑚(𝒓)
𝑘B𝑇

) ⋅ 𝑚(𝒓)

= −(−𝑘B𝑇)
𝛿

𝛿𝐻(𝒓)
log(∫ 𝒟𝑚 exp (−

𝐸[𝑚] − ∫ d𝑑𝑟 𝐻(𝒓)𝑚(𝒓)
𝑘B𝑇

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=𝑍

)

= − 𝛿𝐹
𝛿𝐻(𝒓)

(2.19)
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More interestingly, magnetic susceptibility, ordinarily defined by the derivative 𝜒 =
𝜕𝑚∕𝜕𝐻 to a change to the externally applied magnetic field, has two position depen-
dences when working with a spatially resolved magnetization

𝜒(𝒓1, 𝒓2) = −
𝛿𝑚(𝒓1)
𝛿𝐻(𝒓2)

= 𝛿2𝐹
𝛿𝐻(𝒓1) 𝛿𝐻(𝒓2)

= 𝑘B𝑇
𝛿2 log(𝑍)

𝛿𝐻(𝒓1) 𝛿𝐻(𝒓2)

= 𝑘B𝑇 (
1
𝑍

𝛿2𝑍
𝛿𝐻(𝒓1) 𝛿𝐻(𝒓2)

− 1
𝑍2

𝛿𝑍
𝛿𝐻(𝒓1)

𝛿𝑍
𝛿𝐻(𝒓2)

)

= 1
𝑘B𝑇

⋅
(
⟨𝑚(𝒓1)𝑚(𝒓2)⟩ − ⟨𝑚(𝒓1)⟩ ⟨𝑚(𝒓2)⟩

)

(2.20)

where it was inserted, that

1
𝑍

𝛿𝑛𝑍
𝛿𝐻(𝒓1)⋯𝛿𝐻(𝒓𝑛)

= 1
𝑍

𝛿𝑛

𝛿𝐻(𝒓1)⋯𝛿𝐻(𝒓𝑛)
∫ 𝒟𝑚 exp (−

𝐸[𝑚] − ∫ d𝑑𝑟 𝐻(𝒓)𝑚(𝒓)
𝑘B𝑇

)

= ( 1
𝑘B𝑇

)
𝑛

∫ 𝒟𝑚 1
𝑍 exp (−

𝐸[𝑚] + ∫ d𝑑𝑟 𝐻(𝒓)𝑚(𝒓)
𝑘B𝑇

) ⋅ 𝑚(𝒓1)⋯𝑚(𝒓𝑛)

= ( 1
𝑘B𝑇

)
𝑛

⋅ ⟨𝑚(𝒓1)⋯𝑚(𝒓𝑛)⟩

(2.21)

On the very right hand side of eq. (2.20) one can recognize the two-point correlator of
magnetization, rendering

𝑘B𝑇 𝜒(𝒓1, 𝒓2) = ⟨𝑚(𝒓1)𝑚(𝒓2)⟩c (2.22)

Generally, susceptibilities associatedwith an order parameter reflect its two-point cor-
relations (Tong 2017, sec. 2.2). This state of affairs does not change in dynamical
phase transitions, except that the presence of timemakes these theories richer, involv-
ing additional features like causality. The characteristic time for random organization
to reach a steady- or absorbing state, for example is related amongst other things to
⟨𝑓𝑎(𝑡′)𝑓𝑎(𝑡)⟩c where the angled brackets average over the ensemble of all possible re-
alizations of the time evolution of 𝑓𝑎(𝑡).

Critical Scale Invariance In thedisordered phase10 of a continuous transition, where
the order parameter vanishes 𝑓 = 0, qualitatively speaking the correlation functions
⟨𝑓(𝒓)𝑓(𝒓′)⟩c decay with growing |𝒓′−𝒓|with some characteristic length scale 𝜉, the so

10The names ordered and disordered comes from the observation that continuous phase transitions
often come with spontaneous symmetry breaking, referring to the possibility that a microscopically re-
spected symmetry may not apply to the macroscopic state of the system. Examples: the invariance
of the Ising model to replacing 𝑚 → −𝑚 is broken by the spontaneous choice of either of the mag-
netizations ±𝑚0 below 𝑇c. Similarly, in the Landau-Ginzburg theory of superconductivity the order
parameter 𝜓(𝒓) spontaneously chooses a gauge 𝑒𝑖𝜃∗ in the superconducting phase, despite the corre-
sponding free energy being gauge-invariant
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Figure 2.4: Plot fromMilz and Schmiedeberg 2013, fig. 3 of diverging relaxation times
𝜏 (which strictly grows with the correlation time 𝜉∥) as the critical packing density
Φ(3D)
RO is approached in 𝛾0 = 0 three-dimensional random organization

called correlation length. Again, this transfers to the far-from-equilibrium case, where
additionally to the correlation length 𝜉⟂, there is also a fall-off in timewith a character-
istic correlation-time 𝜉∥ (Cheung 2023, sec. B); note the subscripts differentiating the
two. Back in equilibrium, 𝜉 is the characteristic size over which the order parameter
𝑓(𝒓) varies. Importantly, the behaviour of the system, while affected quantitatively, is
not qualitatively affected by processes on length scales much shorter than the corre-
lation length (Lubeck 2004, sec 1.1, Tong 2017, sec. 2.2.3), basically by definition. Far
from equilibrium, the correlation-time 𝜉∥ in addition analogously marks the smallest
timescale over which qualitatively important processes happen.

Continuous phase transitions are characterized by the divergence of correlation
lengths (and, in dynamical transitions, the correlation times, see for example random
organization in fig. 2.4) as the critical point is approached from the disordered phase.
Tomakemore tangiblewhat thismeans, take as a first example the Isingmodel: above
the Curie point 𝑇 > 𝑇c the system is in a disordered phase, where the magnetization
𝑚(𝒓) and𝑚(𝒓′) of near-by sites |𝒓′−𝒓| ≪ 𝜉 will reliably be aligned, while distant sites
|𝒓′ − 𝒓| ≫ 𝜉 will have no correlation ⟨𝑚(𝒓)𝑚(𝒓′)⟩c = 0. In this sense, the correla-
tion length quantifies the characteristic size of patches of similar magnetization. As
the system is cooled towards 𝑇c (making the lower energy of aligned spins ever more
dominant over the entropy of thermal noise), there will be increasingly larger patches
that overwhelmingly have the same magnetization. In the magnetized phase 𝑇 < 𝑇c
the entire material has the same magnetization, which one may read as the size of
patches having diverged 𝜉 → ∞ (Tong 2017, sec. 2.2.3).

As an example for far-from equilibrium, take directed percolation problems as in-
troduced in section 2.1.2: the critical point 𝑝 = 𝑝c divides their behaviour into a phase
where an externally forced, isolated wet site would eventually die out (fig. 2.5a) and
a phase where wetness propagates indefinitely (fig. 2.5c). In the dying out phase, the
correlator ⟨𝑤(𝒓′, 𝑡′)𝑤(𝒓, 𝑡)⟩c of the (coarse-grained) density of wet sites 𝑤(𝒓, 𝑡) decays
exponentially fast with both |𝑡′ − 𝑡| and |𝒓′ − 𝒓|. In the subcritical absorbing phase
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(a) 𝑝 = 62% (b) 𝑝 = 𝑝c ≈ 64.47% (c) 𝑝 = 66%

Figure 2.5: Directed percolation (bonds are open with probability 𝑝) in different
phases with a single wet site at 𝑡 = 0, in order to visualize how far in time and space a
single externally forced wet site can influence system behaviour, as quantified by the
correlation time 𝜉∥ and correlation length 𝜉⟂ (grey or black representing wet sites):
below the critical bond probability (fig. 2.5a) the reach of the original wet site’s influ-
ence is finite. At 𝑝 = 𝑝c (fig. 2.5b) the correlation length is infinite, but the wet sites
barely manage to proliferate. At 𝑝 > 𝑝c (fig. 2.5c) the 𝑡 = 0 wet site’s influence has
arbitrarily far reach in both time and space, spreading in a causal-conewhose opening
angle, quantifying the speed at which influence propagates in space, is given by the
ratio of 𝜉⟂ and 𝜉∥ (Lubeck 2004, sec. 3.3)

𝑝 < 𝑝c, the reach in time of a cone of wet sites, initiated by an isolatedwet site, is finite
(see fig. 2.5a), with 𝜉⟂ being its characteristic length by definition; this is analogous
to patches of magnetization having finite characteristic extension. In the supercritical
phase𝑝 > 𝑝c in contrast, wetness persists indefinitely. As the critical bond probability
is approached, the characteristic reach of wet sites will grow, as depicted in fig. 2.6,
and eventually diverge 𝜉∥ → ∞ as 𝑝 ↑ 𝑝c. (Hinrichsen 2000, introduction, Lubeck
2004, sec. 1.1).

That the correlation lengths diverge at criticality has a very important consequence:
right at the critical point, the system has no characteristic scale (which would have
been given by 𝜉 or 𝜉⟂ and 𝜉∥). This manifests itself with scale-invariance (also referred
to as conformal symmetry). More concretely: let 𝛼 (for the scope of this paragraph) de-
note the distance of the control parameter to its critical point, for example 𝛼 = |𝑝−𝑝c|
for DP. Then, beyond a certain length scale that is much larger than the characteristic
scale of microscopic interaction, rescaling

• the difference of the control parameter to its critical value by 𝛼 → 𝜆𝛼

• all times with 𝑡 → 𝜆−𝜈∥𝑡

• all lengths by 𝑟 → 𝜆−𝜈⟂𝑟

• and the order parameter with 𝑓 → 𝜆𝛽𝑓

where 𝜆 > 1 is a scaling factor, leaves the physics unchanged (see fig. 2.9). Note
that this is not strictly speaking a symmetry (like translational-, rotational- or guage-
symmetry are) as one cannot zoom-in all the way to themicroscopic scale while keep-
ing the qualitative behaviour. Hence (under the appropriate precise definition of what
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Figure 2.6: Depiction of a few (1+1)-dimensionalDP realizations, showing the growth
of the reach of wetness in subcritical DP as 𝑝 ↑ 𝑝c: the lighter the shading, the closer
𝑝 is to 𝑝c. One cannot deny the likeness to a scary alien forest

it means for the physics to be qualitatively the same) these rescaling operations, while
not constituting a group, are a semi-group, thanks to factoring

(𝜆1𝜆2)(⋯) = 𝜆(⋯)
1 𝜆(⋯)

2 (2.23)

of power laws. 𝜈∥, 𝜈⟂ and 𝛽 are not by accident named like the exponents of the power
laws listed at the beginning of section 2.2.1; they are the same quantities and referred
to as critical exponents (Janssen and Täuber 2005, sec. 2.3).

At criticality, not only the fundamental dimensions of time and space or control-
and order-parameter, but all kinds observables scale. Their exponents can, by dimensional-
analysis-like arguments, be linked to a set of fundamental exponents; thermal equi-
librium transitions, for example, come with only two independent exponents 𝛽 and 𝜈
(Cheung 2023, sec. 3.1) and absorbing state transitions, for example, only come with
four independent exponents 𝛽, 𝛽′, 𝜈⟂, and 𝜈∥ (Lubeck 2004, A.2 Scaling); 𝛽′ has not
appeared in this text before: it is associated with the causal response of the critical
absorbing state system to perturbation (like manually provoking overlaps in random
organization or artificially placing a wet site in directed percolation).

Any list of examples I could give would not do the ubiquity of critical behaviour
justice. Percolation foreshadows the relevance of this body of theory to various phe-
nomena involving large networks (Coupette 2023). Directed percolation is built on a
directed network; to give at least one example for percolation on an undirected net-
work, I want to mention isotropic percolation (IP). While I am more frequently refer-
encing directed percolation (because of its similarities to random organization) IP is
actually the typical example for a percolation problem on a lattice. As the name sug-
gests, bonds have no directedness in IP. Bonds to nearest neighbours are randomly
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and independently passable (and hence connected) or impassable with some prob-
ability 𝑝. The challenge now consists of working out for what probabilities 𝑝 there
will be a large-scale (infinitely extended) connected component and how the system
behaves. While this formulation of the problem does not immediately reveal this con-
nection, isotropic percolation can be mapped to a limit of an equilibrium system, the
so called Potts-model, that generalizes Ising model (Obukhov 1980), though this is of
no further importance here besides clarifying that this problem is approachable with
equilibrium physics, in contrast to directed percolation (Jensen 1999). Some aspects
of its behaviour are quickly deduced, very similarly to directed percolation: it is clear,
that at 𝑝 = 0 there will not even be a local connection, while at 𝑝 = 1 all bonds
are open, making the system one single connected component. It is also clear that
increasing 𝑝 will only open up more bonds on average and hence can only increase
the probability 𝑃∞ for one infinitely extended connected component. The system is
also trivially solved in a one-dimensional lattice (i.e. a line), because, starting from
any arbitrary origin, the probability for connection to a site that is 𝑛 bonds away is
just 𝑝𝑛, which vanishes for all 𝑝 < 1 as we go to infinite extension 𝑛 → ∞, making
the behaviour uninterestingly 𝑃∞ = 0 for 𝑝 < 1 and 𝑃∞ = 1 for 𝑝 = 1. Dimen-
sion 𝑑 = 2 is the first interesting 𝑑 for isotropic percolation on a square/(hyper-)cubic
lattice ℤ𝑑 where, in contrast to 𝑑 = 1, there are arbitrarily many paths connecting
any two lattice sites, with paths partly coinciding and paths of size 𝑛 being passable
with probability 𝑝𝑛 (exponentially less likely to be open the longer the path); this in-
terplay between dampening of path probability with length and the ubiquity of paths
results in a non-trivial critical bond probability 0 < 𝑝c < 1 below which 𝑃∞ = 0 and
above which 𝑃∞ > 0, monotonically increasing with 𝑝. The probability 𝑃∞ serves
as the order-parameter of the IP transition and goes to zero as 𝑝 ↓ 𝑝c with a power
law 𝑃∞ ∼ |𝑝 − 𝑝c|𝛽IP . Furthermore, the expected diameter of connected patches of
the lattice serves as a correlation length and diverges with a power law 𝜉 ∼ |𝑝 − 𝑝c|𝜈
towards the critical point, beyond which one may reasonably expect infinitely large
connected components (see fig. 2.7), leaving the system scale-invariant at the critical
point 𝑝 = 𝑝c (a familiar sounding motif at this point in the text).

Universality Classes Scale invariance has a dramatic consequence for systems dis-
playing these transitions: the microscopic details of the dynamics/energetics, which
happen on scales far below the (diverging) correlation lengths, are not relevant to the
qualitative behaviour of the system. Instead, very unspecific properties of the physi-
cal problems in question, like the existence of absorbing states in directed percolation
problems and random organization or the symmetries of the problem in question,
play a role. With this little dependence onmicroscopic details, problems fall into only
a handful of classes, the so called universality-classes, which unify into a common
theory at the critical point. Thanks to the description by a free energy function(al),
thermal equilibrium systems can, in principle, be analysed with generally applicable,
established theoreticalmethods (Hinrichsen 2000, introduction) and one can satisfac-
torily define what constitutes “the same qualitative behaviour” and hence unambigu-
ously discern what universality class a system belongs to: at criticality, free energy is
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(a) 𝑝 = 45% (b) 𝑝 = 50% (c) 𝑝 = 55%

Figure 2.7: Visualization of different regimes of isotropic percolation on a square
lattice ℤ2. Bonds are open with probability 𝑝. Open walls correspond to open
bonds, closed walls to closed bonds and connected components have the same colour.
𝑝 = 45% and 𝑝 = 55% have a characteristic size (related to the correlation length
𝜉) for connected regions and disconnected regions respectively, while 𝑝 = 50% is
critical and hence scale invariant; the system will (on larger scales) have no char-
acteristic lengthscale, making it look qualitatively the same across scales, with con-
nected components of all sizes appearing with reasonable likelihood. Visualizations
are courtesy of Chandan Relekar, created with their online tool found under https:
//visualize-it.github.io/bernoulli_percolation/simulation.html (last vis-
ited on 01.11.2025 at 21:16)

dominated by a singular, homogeneous11 contribution, which, by the circumstance of
how little freedom this leaves to the closed form of the contribution, is (up to rescal-
ing of physical quantities) universal to the entire universality class. Derivatives of
homogeneous functions are again homogeneous and also (up to rescaling of quanti-
ties) universal, aptly called universal scaling functions (Lubeck 2004, sec. 1.2); fig. 2.8
depicts two examples for those.

Far-from-equilibrium problems do not have such a general framework. And in-
deed, what does or does not constitute a universality class far from equilibrium is not
yet established (Lubeck 2004, introduction, Hinrichsen 2000, introduction). Authors
judge mainly by the critical exponents. Field theorists in particular tend to also go by
symmetry arguments andmethods like the analysis of fixed points of renormalization-
flow also known as the renormalization (semi)-group procedure (which I briefly sketch
in section 2.2.4), however also often to the end of computing critical exponents. In-
terestingly, the scale invariance of far-from-equilibrium continuous transitions also
appears to lead to the existence of universal scaling functions; Lubeck (2004) calls for
the determination and comparison of these when trying to determine a transition’s
universality class. Hence, it is, pedantically speaking, still questionable whether far-
from-equilibrium phenomena should group into universality classes.

In percolation on directed lattices, random organization and many other systems,

11A function 𝑓(𝑥1, … , 𝑥𝑛) is called homogeneous, if for any 𝜆 > 0 scaling it has the effect of scaling
all arguments by some power of 𝜆, mathematically expressed by 𝜆 ⋅ 𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝜆𝑝1𝑥1, … , 𝜆𝑝𝑛𝑥𝑛)
(compare Lubeck 2004, eq. 1.12). Simple example are multinomials like 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦𝑧4 or more
generally power-laws, say 𝑓(𝑥, 𝑦, 𝑧) = 𝑥−1.23𝑦3.44𝑧−4.52

https://visualize-it.github.io/bernoulli_percolation/simulation.html
https://visualize-it.github.io/bernoulli_percolation/simulation.html
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(a) Plot from Lubeck (2004, fig. 4) depict-
ing the dependence of magnetization on tem-
perature for various magnetic materials of the
“three-dimensional Heisenberg” universality
class)

(b) Plot from Lubeck (2004, fig. 24) depicting
the dependence of the (steady-state) order pa-
rameter on the control parameter of various
dynamical phase transitions in the DP univer-
sality class (𝐷 denoting dimensionality)

Figure 2.8: Example depictions of universal scaling functions, both in (fig. 2.8a) and
far from equilibrium (fig. 2.8b)

however, literature is satisfied with the assumption that scaling applies (which is then
referred to as assuming scaling or the scaling hypothesis) and for good reason: both em-
pirical evidence and successful theoretical frameworks point towards the applicability
of the concept and both critical exponents and universal scaling functions (fig. 2.8b
shows as an example from theuniversality classDP, intowhich percolation on directed
lattices falls). They have been determined for many far from equilibrium transitions
by assuming the scaling hypothesis holds.

As a closing remark: universality classes can group together models with wildly
different physical backgrounds. For example, directed percolation problems can be
found in same universality class as a certain pre-quark-model theory for the scattering
of hadrons (Reggeon field theory) at high-energy and low-momentum-transfer with
the (square root of the) total scattering cross section

√
𝜎tot as the order parameter and

the so called Pomeron intercept 𝛼𝑃 (a constant of the theory) as (one possible) control
parameter (Grassberger and Sundermeyer 1978; Cardy and Sugar 1980). The DP class
also encompasses the onset of turbulence in pipe-flow, where the steady-state density
of turbulent puffs 𝜌∞ is the order-parameter and Reynolds-number Re the control
parameter. Although the list of DP transitions is long, it is believed that the phase
transition in random organization is not amongst them (see section 3.2.2 for the likely
reasons and references).

2.2.2 Large-Scale Field Theories for Dynamical Transitions
As explained in section 2.1.1, Landau-Ginzburg Theory is an important means by
which critical behaviour is studied without troubling oneself with the very intricate
details of any given system displaying the transition under study. It relies on defining
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(a) 10 spatial sites (b) about 100 spatial sites

(c) about 1000 spatial sites (d) about 5000 spatial sites

Figure 2.9: Snapshots of critical directed percolation across scales. Except for the full
microscopic zoom-in fig. 2.9a, they are hard to even tell apart (probably only with the
hint that these are different scales). The largest-scale snapshots fig. 2.9c and fig. 2.9d
make it challenging to tell that there are lattice sites at all: the boundaries of the
spreadingwetness, while looking rough, seem to be fractal curves in continuous space
and time.
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a suitable Landau-Ginzburg free energy functional of the order parameter and under-
standing its singular, scale-invariant contribution at the critical point (Lubeck 2004,
sec. 1.2)

One may now ask, whether a similar approach is available for random organiza-
tion, percolation on directed lattices and other systems with dynamical phase transi-
tions. After all, the idea of focusing only on large-scale processes could reasonably be
expected to apply to them too, as they evidently also experience scaling, including the
divergence in correlation lengths/times. As mentioned in section 2.1.2, systems far
from equilibrium are not describable by Boltzmann-Gibbs distributions. However, it
does not sound far-fetched to claim, that one can in principle consider the ensemble
of all possible realizations {𝑅(𝑡)} of, say, a random organization or directed percola-
tion problem, approximate the weight 𝑃[𝑅(𝑡)] with which any given realization 𝑅(𝑡)
contributes (say, by counting all micro-scale time-evolutions giving rise to 𝑅(𝑡)) and
then normalizing by something not unlike a partition function 𝑍 = ∫ 𝒟𝑅 𝑃[𝑅(𝑡)] to
compute averages ⟨𝒜⟩ = (1∕𝑍) ∫ 𝒟𝑅𝒜[𝑅(𝑡)] 𝑃[𝑅(𝑡)].

The problem with this idea is, that we have no immediate means like the Gibbs-
distribution and Ginzbuzrg-Landau free energy at hand. It is easy to find systems
displaying a dynamical transition with hardly any rigorous treatments available, let
alone a comprehensive solution, directed percolation and random organization being
amongst them.

Recall however (section 2.2.1) that around the critical point a lot of smaller scale
detail can be safely ignored in understanding the essential, universal physics of the
transition. In fact, it turns out that literature has been proposing (nominally) coarse-
grained stochastic continuum theories of the order-parameters of various transitions
and has been successfully subjecting them to the same sort of treatment as Landau-
Ginzburg- or quantum field theories, drawing from expertise in both fields of study
(Hinrichsen 2000; Lubeck 2004; Ódor 2004; Janssen and Täuber 2005).

Coarse-Graining Example Tomake understandable at least oneway that onemay
arrive at such a continuum theory before presenting random-organization-adjacent
theories in chapter 3, I want to present a line of thought heavily leaning on Janssen
and Täuber (2005, sec. 2.1) on how to arrive at one for DP while only incorporating
very general properties of the model; on top of recounting the argument, I try to di-
rectly incorporate the spatial dependences, which the source material does not do for
simplicity; for a waterproof account, I refer the reader to Janssen and Täuber (2005,
sec. 2.1).

As noted in section 2.1.2, directed percolation can be understood as a Markov
chain, where𝒲(𝒓, 𝑡 + d𝑡) (see eq. (2.14)) one time-step d𝑡 into the future are deter-
mined by an equation of the form

𝒲(𝒓, 𝑡 + d𝑡) −𝒲(𝒓, 𝑡) = 𝒱[𝒲(𝒙, 𝑡)](𝒓) d𝑡 d𝑑𝑟 (2.24)

where d𝑑𝑟 is an arbitrarily chosen but very small volume of a lattice site (needed for
the continuum limit later) and where𝒱[𝑓(𝒙)] is a random functional of the spatial
dependence of𝒲(𝒓, 𝑡), encoding how the number of wet sites changes from one layer
𝑡 to the next (𝑡 + d𝑡). The notation here already anticipates a later formal continuum
limit d𝑡 → 0 (note that (𝑡 + 1) from eq. (2.14) has been replaced by (𝑡 + d𝑡)). The
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distribution of its values is in principle given by the structure of the lattice and the
bond probability 𝑝 via eq. (2.14), but we will never specify its exact form. That𝒱 is a
functional of the𝒲(𝒓, 𝑡) only and not of the entire spatio-temporal course of𝒲(𝒓, 𝑡)
is necessary to not violate that percolation on directed lattices can be understood as a
Markov chain. We clarify this further in notation by introducing the shorthand

𝒱(𝒓, 𝑡) ≔ 𝒱[𝒲(𝒙, 𝑡)](𝒓) ≔ 𝒱[𝑓(𝒙)](𝒓)||||𝑓(𝒙)≡𝒲(𝒙,𝑡)
(2.25)

The Markov chain interpretation also makes it necessary that 𝒱(𝒓, 𝑡) and 𝒱(𝒓′, 𝑡′)
must be statistically independent if 𝑡 ≠ 𝑡′. We now seek to neglect a lot of detail about
𝒱[𝒲(𝒙, 𝑡)] that is not essential to the critical behaviour of the model12.

Imagine now an ensemble of all mathematically possible values 𝑊(𝒓, 𝑡) for the
random variable 𝒲(𝒓, 𝑡), in the sense of all possible combinations of declaring the
sites (𝒓, 𝑡) wet and not wet, no matter whether it constitutes a valid evolution of per-
colation on a directed lattice as dictated by eq. (2.14). The weight with which any of
these realizations 𝑊(𝒓, 𝑡) contributes to the ensemble of realizations is obtained by
turning eq. (2.24) into a constraint

𝑃[𝑊(𝒓, 𝑡)] ∼
∏

𝒓,𝑡

∑

𝑉𝑡

𝛿(𝑊(𝒓, 𝑡 + d𝑡) −𝑊(𝒓, 𝑡) − 𝑉𝑡[𝑊(𝒙, 𝑡)](𝒓) d𝑡 d𝑑𝑟) (2.26)

where a variable𝑉𝑡 has taken the role of the previous randomvariable𝒱 and, for every
time 𝑡, runs over all possible combinations of open and closed bonds. It should be
read as counting, by means of a product of Dirac-deltas, all realization of 𝑉𝑡 in which
eq. (2.24) holds true for𝑊(𝒓, 𝑡). To get this in a form resembling the expression for
the weight of a Landau-Ginzburg order parameter (see eq. (2.7)), we use the Fourier-
transform a identity

𝛿(𝑥) = ∫
+∞

−∞
d𝑓 𝑒2𝜋𝑖𝑓𝑥 = ∫

+𝑖∞

−𝑖∞

d𝑠
2𝜋𝑖 exp (𝑠𝑥) (2.27)

replacing every factor in the product over all (𝒓, 𝑡) by such a Fourier integral
𝑃[𝑊(𝒓, 𝑡)]

∼
∏

𝒓,𝑡

∑

𝑉𝑡

∫
+𝑖∞

−𝑖∞

d𝑤̃(𝒓, 𝑡)
2𝜋𝑖 exp(𝑤̃(𝒓, 𝑡)

(
𝑊(𝒓, 𝑡 + d𝑡) −𝑊(𝒓, 𝑡) − 𝑉𝑡[𝑊(𝒙, 𝑡)](𝒓) d𝑡 d𝑑𝑟

)
)

= ∫ 𝒟𝑤̃𝒟𝑉 exp(−
∑

𝒓,𝑡
𝑤̃(𝒓, 𝑡) 𝑉𝑡[𝑊(𝒙, 𝑡)](𝒓) d𝑡 d𝑑𝑟)

× exp(
∑

𝒓,𝑡
𝑤̃(𝒓, 𝑡)

(
𝑊(𝒓, 𝑡 + d𝑡) −𝑊(𝒓, 𝑡)

)
)

(2.28)
where 𝑤̃(𝒓, 𝑡) labels all the integration dummy variables from inserting eq. (2.26) and
the notation ∫ 𝒟𝑉 stands for

∫ 𝒟𝑉 (⋯) =
∏

𝑡

∑

𝑉𝑡

(⋯) (2.29)

12I will briefly mention how one could judge the relevance of terms to critical behaviour in sec-
tion 2.2.4, but these reasons are of no importance to getting accustomed to the idea of using field-theory
to model stochastic processes in space and time
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and

∫ 𝒟𝑤̃ (⋯) =
∏

𝒓,𝑡
∫

+𝑖∞

−𝑖∞

d𝑤̃(𝒓, 𝑡)
2𝜋𝑖 (⋯) (2.30)

Literature refers to the 𝑤̃(𝒓, 𝑡) as response fields. Because their introduction is at-
tributed to Martin, Siggia, and Rose (1973), they are regularly called MSR response
fields. We now average out the rapid degrees of freedom by (1) implicitly choosing
a continuum-coarse graining 𝑤(𝒓, 𝑡) d𝑑𝑟 for 𝑊(𝒓, 𝑡) and (2) integrating out 𝑉𝑡. We
obtain a weight for the coarse-grained wet-site field 𝑤(𝒓, 𝑡)

𝑃[𝑤(𝒓, 𝑡)]
= ⟨𝑃[𝑊(𝒓, 𝑡)]⟩rapid

∼ ∫ 𝒟𝑤̃
⟨
exp(−

∑

𝒓,𝑡
𝑤̃(𝒓, 𝑡) ⋅ 𝑉𝑡[𝑊(𝒙, 𝑡)](𝒓) d𝑡 d𝑑𝑟)

× exp(
∑

𝒓,𝑡
𝑤̃(𝒓, 𝑡)

(
𝑊(𝒓, 𝑡 + d𝑡) −𝑊(𝒓, 𝑡)

)
)
⟩

rapid

= ∫ 𝒟𝑤̃
∏

𝒓,𝑡

⟨
exp(−𝑤̃(𝒓, 𝑡) ⋅ 𝑉𝑡[𝑊(𝒙, 𝑡)](𝒓) d𝑡 d𝑑𝑟)

⟩

rapid

×
⟨
exp(

∑

𝒓,𝑡
𝑤̃(𝒓, 𝑡)

(
𝑊(𝒓, 𝑡 + d𝑡) −𝑊(𝒓, 𝑡)

)
)
⟩

rapid

(2.31)

where the last two equal signs implicitly defines how the coarse-graining of 𝑊(𝒓, 𝑡)
to 𝑤(𝒓, 𝑡) d𝑑𝑟 works exactly, that is, conveniently so that we could (a) factorize the
rapid-degree-of-freedom average ⟨⋯⟩rapid as seen in eq. (2.31) and (b) replace𝑊(𝒓, 𝑡)
by 𝑤(𝒓, 𝑡) d𝑑𝑟 in the exponentials, amounting to

exp(
∑

𝒓,𝑡
d𝑑𝑟 𝑤̃(𝒓, 𝑡)

(
𝑤(𝒓, 𝑡 + d𝑡) − 𝑤(𝒓, 𝑡)

)
)

!
≔
⟨
exp(

∑

𝒓,𝑡
𝑤̃(𝒓, 𝑡)

(
𝑊(𝒓, 𝑡 + d𝑡) −𝑊(𝒓, 𝑡)

)
)
⟩

rapid

(2.32)

We make use of the concept of a cumulant distribution function13

exp(−
∞∑

𝑛=1

1
𝑛!𝐾𝑛[𝑤(𝒙, 𝑡)] d𝑡 ⋅ 𝑤̃(𝒓, 𝑡)𝑛)

!
≔
⟨
exp(−𝑤̃(𝒓, 𝑡) ⋅ 𝑉𝑡[𝑊(𝒙, 𝑡)](𝒓) d𝑡 d𝑑𝑟)

⟩

rapid

(2.33)

where𝐾𝑛[𝑤(𝒙, 𝑡)] are the cumulants of𝑉𝑡[𝑊(𝒙, 𝒕)]with respect to the rapid degrees of
freedom (still depending on the large-scale degrees of freedom𝑤(𝒙, 𝑡)), now resulting

13Reminder from statistics: the cumulants 𝐾𝑛 of a random variable 𝒳 are related to its moments
⟨𝒳𝑛⟩: the first cumulant is the mean 𝐾1 = ⟨𝒳⟩ while the second cumulant is the variance 𝐾2 = ⟨(𝒳 −
⟨𝒳⟩)2⟩; all higher cumulants are comprised of factors of centred moments (𝒳−⟨𝒳⟩)𝑘. They are gener-
ated by log⟨exp (𝑠𝒳)⟩ in the sense that they are its Taylor-coefficients log⟨exp

(
𝑠𝒳

)
⟩ =

∑∞
𝑛=1(𝐾𝑛∕𝑛!) 𝑠

𝑛
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in
𝑃[𝑤(𝒓, 𝑡)]

∼ ∫ 𝒟𝑤̃ exp(
∑

𝒓,𝑡
d𝑑𝑟 𝑤̃(𝒓, 𝑡) (𝑤(𝒓, 𝑡 + d𝑡) − 𝑤(𝒓, 𝑡) −

∞∑

𝑛=1

1
𝑛!𝐾𝑛[𝑤(𝒙, 𝑡)] d𝑡 𝑤̃(𝒓, 𝑡)𝑛)

(2.34)

Next, d𝑑𝑟 and d𝑡 are very small compared to physically relevant scales at criticality,
justifying the continuum limits

𝑤(𝒓, 𝑡 + d𝑡) − 𝑤(𝒓, 𝑡) ≈ 𝜕𝑤(𝒓, 𝑡)
𝜕𝑡 d𝑡

∑

𝒓,𝑡
d𝑑𝑟 d𝑡 (⋯) ≈ ∫ d𝑑𝑟 d𝑡 (⋯)

(2.35)

This leads to an expression of the weight of 𝑤(𝒓, 𝑡), now understood as an order pa-
rameter depending continuously on space and time
𝑃[𝑤(𝒓, 𝑡)] ∼

∫ 𝒟𝑤̃ exp (∫ d𝑑𝑟 d𝑡 ( 𝑤̃(𝒓, 𝑡) 𝜕𝜕𝑡𝑤(𝒓, 𝑡) −
∞∑

𝑛=1

1
𝑛!𝐾𝑛[𝑤(𝒙, 𝑡)] ⋅ 𝑤̃(𝒓, 𝑡)𝑛))

(2.36)

where ∫ 𝒟𝑤̃ is now to be understood as the path integral over all possible spatio-
temporal evolutions of the response field. We may invoke the locality of interactions
at criticality again to assume that the cumulants are local functionals 𝐾𝑛[𝑤(𝒙, 𝑡)] =
∫ d𝑑𝑥 𝜅𝑛(𝑤(𝒙, 𝑡), ∇𝑤(𝒙, 𝑡), … ). Since DP is a continuous transition, towards critical-
ity (from above 𝑝 ↓ 𝑝c) the values taken up by the order parameter 𝑤(𝒓, 𝑡) are very
small and one may expand in it. This expansion is informed by the fact that DP has
an absorbing state: at 𝑤(𝒓) ≡ 0, all cumulants need to vanish 𝐾𝑛[0] = 0, since
non-vanishing cumulants means non-vanishing fluctuations, which would cause 𝑤
fluctuate out of 𝑤 ≡ 0 and thus contradict the assertion that 𝑤 ≡ 0 is absorbing;
hence 𝐾𝑛[𝑤] = 𝒪(𝑤). Neglecting irrelevant (in a renormalization-flow sense, see sec-
tion 2.2.4 for an explanation of the term) higher order terms leaves

𝑃[𝑤(𝒓, 𝑡)] = 1
𝑍 ∫ 𝒟𝑤̃ exp

(
𝑆[𝑤, 𝑤̃]

)
(2.37)

with
𝑍 = ∫ 𝒟𝑤𝒟𝑤̃ exp

(
𝑆[𝑤, 𝑤̃]

)
(2.38)

and

𝑆[𝑤, 𝑤̃] = ∫ d𝑑𝑟 d𝑡 ( 𝑤̃ ( 𝜕𝜕𝑡 − 𝐷∇2 − 𝛼)𝑤
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
propagation and multiplication

of wet sites

+ 1
2𝑔

(
𝑤̃2𝑤 + 𝑤̃𝑤2)

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
reduction of sites by

dead-ends and merging

) (2.39)

(for this form, compare not only Janssen andTäuber (2005, sec 2.1), but also the earlier
Janssen, Kutbay, and Oerding (1999) and Adzhemyan et al. (2023)).
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(a) microscopically resolved
wet sites𝑊(𝒙, 𝑡)

(b) coarse grained continuous
field 𝑤(𝒙, 𝑡)

Figure 2.10: Conceptual depiction of coarse graining of a discrete set of wet sites, as
indicated by𝑊(𝒙, 𝑡), to a continuous field 𝑤(𝒙, 𝑡), loosely quantifying the density of
wet sites

Meaning of Response Fields The response field 𝑤̃(𝒓, 𝑡), while being introduced
as an auxiliary variable to rewrite the product of Dirac-deltas in eq. (2.26), can be
involved in correlators to produce very meaningful physical quantities. One differ-
entiates between the two-point function of the order parameter ⟨𝑤(𝒓, 𝑡)𝑤(𝒓′, 𝑡′)⟩c al-
ready familiar from Landau-Ginzburg theory and the response function or propagator
⟨𝑤(𝒓, 𝑡)𝑤̃(𝒓′, 𝑡′)⟩c. In equilibrium, the information contained in correlators of the or-
der parameter does not differentiate between cause and effect. Behaviour at 𝒓1 does
not “cause” behaviour at 𝒓2 et vice versa, they are just correlated. When time gets in-
volved, however, there is causality: the wet sites further down a cone of propagation
in DP (see fig. 2.6) are conditioned on the existence of the wet site that seeded it, but
not the other way around (compare Wiese 2020, sec. 3.4 MSR formalism).

Brief Summary Abrief summary is in order: starting out from stochastic dynamics
for percolation on directed lattices (which one may replace with other Markovian dy-
namics, such as randomorganization) one canmotivate a time- and space-continuous
theory of the behaviour around the critical point. This theory is given by a dynamic
functional that plays a role analogous to action in quantum field theory and Landau-
Ginzburg free energy. Novel compared to the latter is the introduction of response
fields, correlators of which encode the causal response of the system to perturbations;
in particular, the two-point correlator ⟨𝑤(𝒓, 𝑡)𝑤̃(𝒓′, 𝑡′)⟩c is analogous to the propagator
of a quantum field.

2.2.3 Mean Field Theory
Depending on what exactly one seeks to understand about a phase transition, it is
not always necessary to face the full complexity of a model. Take as an example the
saddle-point approximation of the Landau-Ginzburg theory of the Ising magnet pre-
sented in section 2.1.1, that could be analysed in barely a page of computation and still
displayed both a phase transition from vanishing to spontaneous magnetization and
even less obvious phenomena like domain walls. It turns out that there is a system to
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establishing such approximations.
To arrive at this system, it is best to revisit the interpretation of the saddle-point

approximation: given a Landau-Ginzuburg free energy 𝐸[𝑓] of some order parameter
𝑓(𝒓) and the associated partition function 𝑍 = ∫ 𝒟𝑓 exp(−𝐸[𝑓]∕𝑘B𝑇), the realiza-
tions 𝑓s(𝒓)minimizing 𝐸 are referred to as the saddle-points of the functional. When
one can assume that 𝐸[𝑓s(𝒓)] is so much lower than dissimilar configurations 𝑓(𝒓)
that other contributions can be neglected the saddle-point approximation is valid. An
important consequence of only looking at saddle-points is that one neglects all fluc-
tuations, since the noise around saddle-point behaviour 𝑓s comes precisely from the
variation of 𝑓(𝒓) in the realizations close to the 𝑓s which get neglected.

In field-theory, the saddle-point approximation, is used synonymously with the
term mean-field theory (Tong 2017, sec. 2.2), where the latter is usually character-
ized as an approximation where fluctuations in the order parameter can be neglected.
Whether or not fluctuations play a role at a macroscopic scale depends on dimen-
sionality 𝑑 of the system experiencing the phase transition in question, since volumes
will scale with 𝐿𝑑 (where 𝐿 the characteristic extension of a volume) while fluctua-
tions around the average value of the order parameter in said volume may very well
grow slower than that. This is loosely speaking the reason why transitions have a so
called upper critical dimension 𝑑c, above which fluctuations

⟨
𝑓2
⟩
≪ ⟨𝑓⟩2 are negligi-

ble on large scales and the mean-field theory of the transition yields correct critical
behaviour (Cheung 2023, sec. 2.8; Tong 2017, sec. 2.2.4). The existence of upper criti-
cal dimensions also paves the way for a method of obtaining mean-field theories that
may otherwise seem like a very exotic trick: taking the dimensionality of a model to
infinity 𝑑 → ∞ and expanding in (1∕𝑑) as a small parameter.

For completeness it should be mentioned that transitions can also exhibit lower
critical dimensions 𝑑l below which fluctuations destroy any long-range order. This is
for example the case when free energy has (sufficiently) short ranged interactions and
the order parameter has a continuous symmetry, that is when the transformations
that one may apply to 𝑓 (and still leave the physics unchanged) form a continuous
group (for example orthogonal transformations𝑂(𝑑)). These fall into the scope of the
famous Mermin-Wagner theorem, which rules out the existence of long-range order
for these theories in dimensions 𝑑 ≤ 2 (Tong 2017, sec. 4.2.1).

Mean Field DP To get back on track with absorbing state transitions, consider
the saddle-point approximation of DP by only considering the contribution of the
saddle-points 𝑤s(𝒓, 𝑡), 𝑤̃s(𝒓, 𝑡) to eq. (2.38). We determine 𝑤s(𝒓, 𝑡) by the variation
𝛿𝑆[𝑤, 𝑤̃] with respect to variations of the order parameter 𝛿𝑤(𝒓, 𝑡) and the response
field 𝛿𝑤̃(𝒓, 𝑡); those will only have a solution that is stable, spatially homogeneous
and stationary if the saddle-point response field vanishes 𝑤̃ ≡ 0 (compare Janssen
and Täuber 2005, eqs. 22a and 22b), at which point one gets

𝜕𝑤(𝒓, 𝑡)
𝜕𝑡 = 𝐷∇2𝑤(𝒓, 𝑡) + 𝛼 𝑤(𝒓, 𝑡) − 1

2𝑔 𝑤(𝒓, 𝑡)
2 (2.40)

(compare Adzhemyan et al. 2023, eq. 9), where one may refer to 𝑤(𝒓, 𝑡) as the mean-
field approximation to the density of wet sites. One can see that three crucial effects
are being respected: the diffusion of wetness in space over time with 𝐷∇2𝑤, as well
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Figure 2.11: Plot of the time evolution eq. (2.43) of the order parameter of the spa-
tially homogeneous mean-field theory of DP, as defined by eq. (2.40) with∇𝑤 ≡ 0, for
various values of the control parameter 𝛼. At 𝛼 = 0 the system is critical and asymp-
totically follows the power law 𝑤(𝑡) ∼ 𝑡−1, while plateauing to some 𝑤∞ > 0 at 𝛼 > 0
and decaying to zero for 𝛼 < 0

as the proliferation +𝛼𝑤 and decay −(1∕2)𝑔𝑤2 of wetness over time14.
To demonstrate the value of mean-field theory for understanding DP transitions15

I want to briefly elaborate the case of a spatially homogeneous system∇𝑤 ≡ 0. In this
case, eq. (2.40) simplifies to the ordinary differential equation

𝜕𝑤(𝑡)
𝜕𝑡 = 𝛼𝑤(𝑡) − 1

2𝑔 𝑤(𝑡)
2 (2.41)

which is trivially solved by separation of variables

∫
𝑤(𝑡)

𝑤(0)

d𝑤
𝛼𝑤 − (1∕2𝑔 𝑤2)

= ∫
𝑡

0
d𝑡′

𝑢≔𝑤−(𝑔∕𝑎)
⇐⇒ ∫

𝑤(𝑡)−(𝛼∕𝑔)

𝑤(0)−(𝛼∕𝑔)

d𝑢
(𝛼∕𝑔)2 − 𝑢2

=
𝑔
2𝑡

⇐⇒ ∫
𝑤(𝑡)−(𝛼∕𝑔)

𝑤(0)−(𝛼∕𝑔)
( d𝑢
1 + (𝑔∕𝛼)𝑢

+ d𝑢
1 − (𝑔∕𝛼)𝑢

) = 𝛼𝑡

(2.42)

which reveals that already at this level of approximation, the model reflects all ex-
pected regimes of behaviour:

14Onemay wonder why the decay is not modelled with just another linear term−𝑔𝑤. A good reason
is that this that squaring𝑤 tempers the otherwise exponential growth that the linear termwould yield;
this also necessitates 𝑔 > 0

15Recall that the saddle-point approximation (which can be used synonymously with mean-field
approximation) eq. (2.10) or eq. (2.12) for the previously mentioned Landau-Ginzburg theories of the
Curie point captured a wealth of qualitative features. This is also the case for DP.
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1. When 𝛼 ≠ 0we may look to the integration by parts form (last line) of the right
hand side of the equations in eq. (2.42), execute the integral and rearrange into

𝑤(𝑡) = (2𝛼𝑔 ) ⋅ 1

1 −
||||||
𝑤(0)−(2𝛼∕𝑔)

𝑤(0)

||||||
⋅ exp (−𝛼𝑡)

(2.43)

The expression is plotted for various 𝛼 in fig. 2.11. Depending the sign of 𝛼 there
are two distinct qualitative behaviours that this expression can have, which re-
flect the two phases of DP.

(a) When 𝛼 > 0, the exponential in the denominator converges to 0, such
that 𝑤(𝑡) overall decays to the positive steady state value 𝑤∞ = (2𝛼∕𝑔).
Interpreted in terms of percolation on directed lattices, this is the perco-
lating phase. Note that eq. (2.43) is the steady state value multiplied by
(1−𝑧)−1 = 1+𝑧+𝒪(𝑧2)with 𝑧 ∼ 𝑒−𝛼𝑡. At sufficiently large times 𝑒−𝛼𝑡 will
be arbitrarily small, such thatwemay terminate the geometric series at first
order. Hence, asymptotically speaking, the density of wet sites exponen-
tially decays into the steady state 𝑤(𝑡) ≈ 𝑤∞(1 + 𝑒−𝛼𝑡) with characteristic
time 𝜏 ∼ 𝛼−1

(b) When 𝛼 < 0, the exponential in the denominator diverges to +∞, making
𝑤(𝑡) decay to zero. This is the absorbing phase. At long times 𝑒−𝛼𝑡 ≫ 1,
such that asymptotically the decay is exponential 𝑤(𝑡) ∼ exp(−|𝛼|𝑡) with
characteristic time 𝜏 = |𝛼|−1. Note that this characteristic time diverges as
the critical point 𝛼 = 0 is approached, just as in the full DP theory (beyond
the mean-field approximation)

2. Since at 𝛼 > 0 the mean-field theory is percolating (𝑝 > 𝑝c), and for 𝛼 < 0
it is absorbing (𝑝 < 𝑝c), the point 𝛼 = 0 can be identified as the critical point
(𝑝 = 𝑝c). In this case the he indefinite integrals on the right hand sides of
eq. (2.42) evaluate to 1∕𝑤(𝑡) − 1∕𝑤(0) such that

𝑤(𝑡) = ( 1
𝑤(0)

+
𝑔
2𝑡)

−1

(2.44)

making𝑤(𝑡) ∼ 𝑡−1 asymptotically as 𝑡 → ∞ compared to (𝑔 𝑤(0) )−1. This power
law is reminiscent of the expected universal behaviour 𝑤(𝑡) ∼ 𝑡−𝜈∥

So, to recapitulate the results up to this point: the spatially homogeneous solution to
the mean-field theory eq. (2.40) reproduces the phase transition from percolating to
absorbing, the transient behaviour of the system as it relaxes to its steady state and the
scaling of the relaxation time 𝜏 ∼ |𝛼|−1 and the order parameter 𝑤∞ ∼ |𝛼|+1 (albeit
with inaccurate exponents)

In the following I am temporarily dropping the subscripts (⋯)DP for the critical
exponents of DP, which until now were used to avoid leaving the impression that
these were the same across universality classes. Invoking scale invariance at critical-
ity, more specifically 𝛼 > 0 close to 𝛼 = 0, one may find values and relations between
exponents by rescaling 𝛼 by some factor 𝜆 > 0, in response to which lengths 𝑥, times
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𝑡 and the order parameter 𝑤 will be rescaled by

𝛼 → 𝜆𝛼
𝑥 → 𝜆−𝜈⟂𝑥
𝑡 → 𝜆−𝜈∥,𝑡
𝑤 → 𝜆𝛽𝑤

(2.45)

with critical exponents 𝜈⟂, 𝜈∥ and 𝛽 (with minus signs being conventions, that make
the exponent values positive). Inserting into eq. (2.40) leads to

𝜆𝜈∥+𝛽 ⋅ 𝜕𝑤(𝒓, 𝑡)𝜕𝑡 = 𝜆2𝜈⟂+𝛽 ⋅ 𝐷∇2𝑤(𝒓, 𝑡) + 𝜆1+𝛽 ⋅ 𝛼 𝑤(𝒓, 𝑡) − 𝜆2𝛽 ⋅ 12𝑔 𝑤(𝒓, 𝑡)
2 (2.46)

To keep its form (and hence be invariant under scaling the order parameter), it is
necessary that all the powers of 𝜆 are the same. This is most easily seen by dividing
by 𝜆𝜈∥+𝛽 on both sides, which makes obvious that

0 = 2𝜈⟂ − 𝜈∥ 0 = 1 − 𝜈∥ 0 = 𝛽 − 𝜈∥ (2.47)

which may be resolved to find the DP mean-field exponents (compare Adzhemyan et
al. 2023, eq. 10)

𝛽(MF) = 1 𝜈(MF)∥ = 1 𝜈(MF)⟂ = 1∕2 (2.48)

which are accurate16 at and above the critical dimension 𝑑c = 4. For comparison
for the interested, in table 2.1 are empirically determined exponents. 𝑑 = 3, while
undoubtedly different, is not dramatically far off from mean-field.

𝑑 𝛽 𝜈⟂ 𝜈∥
1 0.276486(8) 1.096854(4) 1.733847(6)
2 0.5834 ± 0.0030 0.7333 ± 0.0075 1.2950 ± 0.0060
3 0.813 ± 0.009 0.584 ± 0.005 1.110 ± 0.010

mean field 1 1∕2 1

Table 2.1: Critical exponents of theDPuniversality class as found in (Hinrichsen 2000,
app. A.3.1, tab. 1)

PhenomenologicalMean-FieldTheoriesPlusNoise It is appropriate at this point
to mention a common way in which the universal behaviour of theories is written
down: first, a mean-field equation like eq. (2.40) is motivated on phenomenological
grounds and then turning it into a stochastic partial differential equation by extending
it with a noise term

( 𝜕𝜕𝑡 − 𝐷∇2)𝑤(𝒓, 𝑡) = +𝛼𝑤(𝒓, 𝑡) − 1
2𝑔 𝑤(𝒓, 𝑡)

2 + 𝜅
√
𝑤(𝒓, 𝑡) 𝜁(𝒓, 𝑡)

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
noise term

(2.49)

16Note that 𝛽 = 𝛽′ in DP (Hinrichsen 2000, app. A.3)
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where 𝜅matches up the dimensions with the other terms and 𝜁(𝒓, 𝑡) is a random field
with Gaussian white noise statistics

⟨
𝜁(𝒓, 𝑡)

⟩
noise = 0

⟨
𝜁(𝒓, 𝑡)𝜁(𝒓′, 𝑡′)

⟩
noise = 𝛿(𝒓′ − 𝒓) 𝛿(𝑡′ − 𝑡)

(2.50)

with all higher cumulants vanishing and ⟨⋯⟩noise denoting the average with respect
to the noise degrees-of-freedom only. The prefactor of 𝑤(𝒓, 𝑡)1∕2 has the effect that the
noise, as it couples into the equation, vanishes when 𝑤(𝒓, 𝑡) ≡ 0; if that was not the
case, the system could fluctuate out of the supposed absorbing state𝑤(𝒓, 𝑡) ≡ 0, which
would rob the absorbing state transitions in DP of their defining feature (compare
Janssen, Kutbay, and Oerding 1999, eqs. 2 - 4). Choosing 𝑤(𝒓, 𝑡)1∕2 instead of any
other strictly monotone positive function of𝑤 furthermore gives the influence noise’s
influence a semblance of Poissonian statistics, where the variance in the stochastic
field 𝑤(𝒓, 𝑡) due to noise is equal to the mean

⟨√
𝑤(𝒓, 𝑡)𝜁(𝒓, 𝑡) ⋅

√
𝑤(𝒓′, 𝑡′)𝜁(𝒓′, 𝑡′)

⟩
noise

= 𝑤(𝒓, 𝑡) ⋅ 𝛿(𝒓′ − 𝒓) 𝛿(𝑡′ − 𝑡) (2.51)

When describing percolation on directed lattices, this may be taken as reflecting that
the states are discrete (wet or not wet). The same is done for theories of the univer-
sality class of random organization (compare with reasoning in Wiese 2016, sec. VI).
Equations with a noise term like eq. (2.49) are also referred to as Langevin-Equations
(Hinrichsen 2000; Lubeck 2004; Janssen and Täuber 2005).

This noise term models fluctuations stemming from the smaller-scale degrees of
freedom, that are not relevant to the study of the critical point. It adds so much rich-
ness that the mean-field behaviour is broken and the model gets the correct universal
properties, from critical exponents to upper critical dimension. In fact, the Langevin-
equation eq. (2.49) can be mapped to a field theory with a similar procedure as the
derivation in section 2.2.2. It can be found in Hinrichsen (2000, app. B), which I will
try to outline briefly:

𝑃[𝑤(𝒓, 𝑡)] ∼ ∫ 𝒟𝜁 𝑃[𝜁]
∏

𝒓,𝑡
𝛿
(
(mean-field) − 𝜅

√
𝑤 ⋅ 𝜁(𝒓, 𝑡)

)

= ∫ 𝒟𝑤̃ ∫ 𝒟𝜁 𝑃[𝜁] exp (∫ d𝑑𝑟 d𝑡
(
𝑤̃ ⋅ (mean-field) − 𝑤̃ ⋅ 𝜅

√
𝑤 ⋅ 𝜁

)
)

= ∫ 𝒟𝑤̃ exp (∫ d𝑑𝑟 d𝑡 𝑤̃ ⋅ (mean-field))

× ∫ 𝒟𝜁 𝑃[𝜁] exp (− ∫ d𝑑𝑟 d𝑡 𝑤̃ ⋅ 𝜅
√
𝑤 ⋅ 𝜁)

(2.52)

with ∫ 𝒟𝑤̃ again given by eq. (2.30). Gaussian white noise now has a weight that
makes apparent why it contains the name “Gaussian”

𝑃[
√
𝑤̃2𝜅 𝑤𝜁] ∼ exp (−12 ∫ d𝑑𝑟 d𝑡

𝜁(𝒓, 𝑡)2

𝑤̃2𝜅𝑤(𝒓, 𝑡)
)

∼ exp (−𝜅2 ∫ d𝑑𝑟 d𝑡 𝑤 𝑤̃2)
(2.53)
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such that

𝑃[𝑤(𝒓, 𝑡)] ∼ ∫ 𝒟𝑤̃ 𝐽[𝑤, 𝑤̃] exp (∫ d𝑑𝑟 d𝑡 (𝑤̃ ( 𝜕𝜕𝑡 − 𝐷∇2 + 𝛼)𝑤 −
𝑔
2𝑤̃𝑤

2 − 𝜅
2𝑤𝑤̃

2))
(2.54)

where 𝐽[𝑤, 𝑤̃] emerged from the replacement 𝜁 →
√
𝑤̃2𝜅 𝑤𝜁 and is a path integral

object corresponds to a Jacobian in integrals over finitely many degrees of freedom.
Rescaling (without loss of generality) 𝑤, 𝑤̃ and 𝜅 can bring the exponent in eq. (2.54)
into the form eq. (2.39) derived earlier.

Brief Summary When neglecting fluctuations in the order-parameter of a continu-
ous transition one arrives at the mean-field theory, which is a perfectly valid physical
description of the system’s critical behaviour above the upper critical dimension 𝑑c.
It is synonymous with the saddle-point approximation in the context of field theory
and can be solved analytically for DP by simple means. Mean-field behaviour reflects
many essential features of the transition: an absorbing and a percolating phase, scal-
ing (albeit very primitive, only with mean-field exponents). Adding a properly engi-
neered noise term onto the mean-field equation retrieves an accurate field theory of
the transition again.

2.2.4 Sketch of Renormalization Flow Analysis

Figure 2.12: Depiction from Wilson (1974, fig. 2.7) of one coarse graining step in the
Kadanoff approach to renormalization analysis of the Ising model: in (a) one can see
a square lattice of Ising spins. (b) depicts their grouping into blocks, about which
we assume that they have only two magnetization states ±𝑚. In (c) the blocks are
replaced by crosses, symbolizing the new sites, interacting by new couplings

Thus far, I have not mentioned any methods of understanding statistical field theo-
ries of phase transitions beyond looking at the saddle-point approximation. It is not
obvious how to improve on the mean-field prediction for critical behaviour. As men-
tioned numerous times already, an important tool, both for equilibrium and far-from-
equilibrium continuous transitions, is renormalization flow, also known as the renor-
malization technique, renormalization group procedure, renormalization (semi-)group
(RG) and other remixes of these names.

Its basic idea is to make the ignoring of small-scale detail very literal (and more
well-defined) and observing how the theory of the problem changes as a consequence.
The ignoring-procedure must, for this approach to be fruitful, yield a theory of the
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same form as the original one, just with changed coupling constant, since otherwise
there is no way to iterate the procedure, which is necessary to formalize the large-
scale limit. The simplest first example for this is again the Ising model, whose energy
is given by

𝐸[{𝑠𝑖}] = −𝐽
∑

⟨𝑖,𝑗⟩
𝑠𝑖𝑠𝑗 +𝐻

∑

𝑖
𝑠𝑖 (2.55)

with 𝐽 > 0, 𝐻 an externally applied magnetic field and ⟨𝑖, 𝑗⟩ denoting the sum over
nearest-neighbours on the underlying lattice. As pioneered by Kadanoff (1966), we
want to take the diverging correlation lengths at criticality as justification to assume
that one may as well understand patches of commonly magnetized spins as being one
variable 𝑠′𝑖 , where 𝑖 enumerates patches of (roughly) common magnetization. It is
furthermore assumed, that it is a fair approximation that these 𝑠′𝑖 can be modelled
as a grouping of blocks of spins as depicted in fig. 2.12. To also retain the theory’s
form (in order to iterate) we seek a reduced set of degrees of freedom {𝑠′𝑘} (taking the
same values as the {𝑠𝑖}) and modified 𝐽′ and 𝐻′ such that one can reasonably assume
that for any pair of {𝑠𝑖} and their coarse-grained counterpart {𝑠′𝑘} the free energy is the
same. Note that for the 𝑠′𝑘 to also take values−1 and 1, we need to (1) assume that the
overall magnetization𝑚𝑘 of aligned patches takes only one of two values {−𝑚0, +𝑚0}
(2) assume that the patches interact with each other predominantly via an effective
patch-patch coupling constant (3) rescale 𝑠′𝑘 = 𝑚𝑘∕𝑚0 by absorbing a factor of𝑚2

0 into
said effective coupling constant, resulting in 𝐽′ (Wilson 1971a).

Suspending disbelief for the time being, it is plausible that this leads to a descrip-
tion of the critical point: given that our procedure is well defined, the determination
of 𝐽′ and𝐻′ is a map

(𝐽′, 𝐻′) ≕ 𝐶(𝐽,𝐻) (2.56)
from the two-dimensional space of theory parameters to itself. We will refer to 𝐶
as coarse-graining of the model. Now crucially, the critical system (𝐽∗, 𝐻∗), invariant
across scales, should be unaffected by the change of scales {𝑠𝑖} → {𝑠′𝑘} and hence be a
fixed point

(𝐽∗, 𝐻∗) = 𝐶(𝐽∗, 𝐻∗) (2.57)
The central insight is that it there is a good chance that this fixed point can be obtained
by direct iteration17 of the coarse-graining, i.e. that it is a limit

(𝐽∗, 𝐻∗)
?
= lim

𝑛→∞
𝐶(𝐶(⋯𝐶
⏟⎴⏟⎴⏟
𝑛 applications

(𝐽, 𝐻)))

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
≕(𝐽(𝑛),𝐻(𝑛))

(2.58)

Hence, if one can get a handle on the flow of parameters

(𝐽(0), 𝐻(0)) → (𝐽(1), 𝐻(1)) → (𝐽(2), 𝐻(2)) → (𝐽(3), 𝐻(3)) → ⋯ (2.59)

then one has established a process that tunes itself to the critical point of the Ising-
model and might understand it without having to solve the full model.

17For example: when a function 𝑓(𝑥) from some space to itself is continuous and 𝑛-times application
𝑓(𝑓(⋯𝑓(𝑥))) ≕ 𝑓(𝑛)(𝑥) limits in some 𝑥∗, then observe that one may do a change of index and pull in
the limit to the effect 𝑥∗ = lim𝑛→∞ 𝑓(𝑛)(𝑥) = lim𝑛→∞ 𝑓(𝑛+1)(𝑥) = 𝑓(lim𝑛→∞ 𝑓𝑛(𝑥)) = 𝑓(𝑥∗), i.e. 𝑥∗
must be a fixed point of 𝑓.
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There are issues with this picture however: assumptions (1) and (2) are on shaky
grounds, as Kadanoff (1966) address themselves andWilson (1971a) emphasizes. This
can be remedied with a more careful approach presented in Wilson (1971a) and Wil-
son (1974), switching to the Landau-Ginzburg point-of-view. In path integral expres-
sions like ∫ 𝒟𝑓 it is not specified what kinds realizations of the order parameter 𝑓(𝒓)
(or 𝑓(𝒓, 𝑡) in dynamical transitions) are included: boundary conditions, regularity,
etc. are not specified. Importantly for the present discussion: since both thermody-
namical Landau-Ginzburg free energy and field theories of stochastic processes are
large-scale descriptions, the included realizations should not have arbitrarily fine de-
tail (which would also be self-defeating). Instead, there is a cutoff-wavenumber or
UV-cutoff Λ, where the latter name comes from quantum field theory and has dif-
fused into statistical field theory literature. It defines the length-scales Λ−1 (and in
dynamical transitions also time-scales) below which the field theory does not resolve
the system.

Wilson Renormalization The following ideas can be found in very similar form
inWilson (1974, sec. 3 - 5)18. A more recent presentation can be found in Tong (2017,
sec. 3). I am sticking to equilibrium because these references do. The ideas carry over
withmore clutter but with the same principles to non-equilibrium (Janssen 1976; Wi-
jland, Oerding, and Hilhorst 1998). Let 𝐸[𝑓] be a local Landau-Ginzburg free energy
functional and absorb the (1∕𝑘B𝑇) into the coupling constants. The partition function
then reads

𝑍 = ∫ 𝒟𝑓 𝑒−𝐸[𝑓] (2.60)

The goal is the same as in the Kadanoff approach: backed by the justification of di-
verging correlation lengths towards criticality we want to ignore smaller lengthscales
in a way that gives us a new theory of the same form as 𝐸[𝑓] but with different cou-
pling constants as before. Their flow under an iterative application of this scheme is
then analysed for fixed points, which are scale-invariant descriptions by definition.
These then must correspond to different critical point behaviours, i.e. to different
universality classes (Lubeck 2004, sec. 1.4)

For this we pick a new lengthscale (Λ′)−1 > Λ−1 (or, in terms of wave-numbers,
a lower cutuff Λ′ < Λ) and attempt to integrate out smaller wavelength detail and
hence instate Λ′ as the new cutoff. Let the ratio of cutoffs be

𝜁 = Λ
Λ′ (2.61)

where 𝜁 > 1 because the new high wavenumber cutoff is naturally smaller than the
old one. Concretely we do this in the following way: 𝐸[𝑓] can in principle be written
as a functional of the Fourier-transform of the order parameter by expanding

𝑓(𝒓) = ∫ d𝑑𝑘
(2𝜋)𝑑

𝑓(𝒌) 𝑒𝑖𝒌𝒓 (2.62)

and inserting that into the functional19. We can now split the Fourier-transforms 𝑓(𝒌)
18In honour ofWilson, the procedure described in the following is known asWilson renormalization
19To give an idea of how this changes the expressions of a local functional, consider a 𝑓4-theory

𝐸[𝑓] = ∫ d𝑑𝑟 ((∇𝑓)2 + 𝑎𝑓2 + 𝑏𝑓4) which by the identity (2𝜋)𝑑𝛿(𝒌) = ∫ d𝑑𝑟 𝑒𝑖𝒌𝒓 becomes 𝐸[𝑓] =
∫ d𝑑𝑘 ((𝒌2 + 𝑎)𝑓(𝒌)𝑓(−𝒌)) + 𝑏 ∫ d𝑑𝑘1 ∫ d𝑑𝑘2 d𝑑𝑘3 d𝑑𝑘4 𝛿(𝒌1 + 𝒌2 + 𝒌3 + 𝒌4) 𝑓(𝒌1)𝑓(𝒌2)𝑓(𝒌3)𝑓(𝒌4)
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along the new cutoff
𝑓(𝒌) = 𝑓−(𝒌) + 𝑓+(𝒌) (2.63)

where 𝑓−(𝒌) are the large-scalemodes (small wavenumber) and 𝑓+(𝒌) the small-scale
ones (large wavenumber)

𝑓−(𝒌) = 𝑓(𝒌)Θ(Λ′ − |𝒌|)
𝑓+(𝒌) = 𝑓(𝒌)Θ(|𝒌| − Λ′)

(2.64)

with Θ(𝑥) being the Heaviside step function. Notice that 𝑓−(𝒌)𝑓+(𝒌) ≡ 0 because
they vanish respectively on the other’s support. Not only that, but because the cutoff
is radially symmetric, orthogonally transforming the arguments of 𝑓− and 𝑓+ will not
get their supports to overlap, such that 𝑓−(𝒌)𝑓+(𝑅𝒌) ≡ 0 for any 𝑅 ∈ 𝑂(𝑑). Very
importantly, this includes mirroring 𝑅 = −1 to the effect 𝑓−(𝒌)𝑓+(−𝒌) ≡ 0; for this
reason, the lowest orders of the field theory (whatever its form beyond that it may
have) separate cleanly into an 𝑓−(𝒌) and an

𝐸[𝑓] = ∫ d𝑑𝑟 ((∇𝑓)2 + 𝑎𝑓2 +⋯)

= ∫ d𝑑𝑘 ((𝒌2 + 𝑎)𝑓(𝒌)𝑓(−𝒌))
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

≕𝐸0[𝑓]

+∫ d𝑑𝑘1 ∫ d𝑑𝑘2 (⋯) +⋯

= ∫ d𝑑𝑘 ((𝒌2 + 𝑎) (𝑓+(𝒌) + 𝑓−(𝒌))(𝑓+(−𝒌) + 𝑓−(−𝒌))⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=𝑓+(𝒌)𝑓+(−𝒌)+𝑓−(𝒌)𝑓−(−𝒌)

) +⋯⏟⏟⏟
≕𝑉[𝑓+,𝑓−]

= 𝐸0[𝑓+] + 𝐸0[𝑓−] + 𝑉[𝑓+, 𝑓−]

(2.65)

Furthermore, in any discretization of the path integral all the 𝑓(𝒌) values are varied
independently, such that it splits without issues into

∏

𝒌
∫ d𝑓(𝒌) (⋯)

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
∫ 𝒟𝑓

=
∏

|𝒌|<Λ′
∫ d𝑓(𝒌)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
∫ 𝒟𝑓−

∏

|𝒌|>Λ′
∫ d𝑓(𝒌)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
∫ 𝒟𝑓+

(⋯) (2.66)

We can hence rewrite the partition function as

𝑍 = ∫ 𝒟𝑓−𝑒−𝐸0[𝑓−] ∫ 𝒟𝑓+𝑒−𝐸0[𝑓+] 𝑒−𝑉[𝑓+,𝑓−] (2.67)

The inner path integral ∫ 𝒟𝑓+ now is precisely the sought integration over small scale
detail (high wavenumbers). 𝐸0[𝑓−] is already in the same functional form as 𝐸0[𝑓]
(just with a lower cutoffwavenumber), so what remains is finding a functional𝑉′[𝑓−]
fulfilling

𝑒−𝑉′[𝑓−] = ∫ 𝒟𝑓+𝑒−𝐸0[𝑓+] 𝑒−𝑉[𝑓+,𝑓−] (2.68)
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hopefully also of the same functional form. After taking the logarithm on both sides,
we get

𝑉′[𝑓−] = − log( ∫ 𝒟𝑓+𝑒−𝐸0[𝑓+] 𝑒−𝑉[𝑓+,𝑓−]

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
=𝑍+⋅

1
𝑍+

∫ 𝒟𝑓+(⋯)

)

= − log
⟨
exp

(
−𝑉[𝑓+, 𝑓−]

)⟩
+ + log(𝑍+)

(2.69)

where 𝑍+ = ∫ 𝒟𝑓+ 𝑒−𝐸0[𝑓+] and accordingly ⟨⋅⟩+ denotes the average with respect to
the small scalemodes. log(𝑍+) is just a constant shift to𝐸 andwould drop out in all av-
erages. It might as well be dropped now. One can recognize log

⟨
exp

(
−𝑉[𝑓+, 𝑓−]

)⟩
+

as the cumulant generating function of 𝑉[𝑓+, 𝑓−] with respect to the high wavenum-
ber modes

log
⟨
exp

(
−𝑉[𝑓+, 𝑓−]

)⟩
+ =

∞∑

𝑛=1

(−1)𝑛
𝑛!

⟨
𝑉[𝑓+, 𝑓−]𝑛

⟩+
c (2.70)

where
⟨
𝑉[𝑓+, 𝑓−]𝑛

⟩+
c is the 𝑛-th cumulant. For all but the free theory (𝑉 = 0) the

exact solution is out of reach. But cutting off eq. (2.70) at some order and determining
all of the included terms (by taming the resulting combinatorics with Wick’s theo-
rem and diagrammatic methods, as may be familiar from perturbative calculations
in quantum field theory) yields an approximate, perturbative expression that is gen-
erally of the same functional form as the starting point 𝐸[𝑓]. More precisely, every
coupling constant in 𝐸[𝑓] has a pendant in the new 𝐸′[𝑓−] = 𝐸0[𝑓−] +𝑉′[𝑓−], where
one should consider couplings that were not present in 𝐸[𝑓] has being zero at the out-
set. All that is left to retain full comparability between 𝐸′[𝑓−] and 𝐸[𝑓] are two steps:
(1) rescaling lengths in the system by replacing 𝒌 = 𝜁𝒌′ such that in these new units
the UV-cutoff Λ′ has the same value as Λ and (2) rescale the order parameter 𝑓− (and
calling the result 𝑓′) such that the (∇𝑓′)2 term has the same prefactor as (∇𝑓)2 before
integrating out the small scale modes. Cruically, all the new couplings are functions
of the old values, the old cutoff Λ and of 𝜁. Detail on scales between Λ−1 and Λ′−1 has
been successfully eliminated.

Performing this procedure twice, respectively with scaling factors 𝜁1 and 𝜁2, will
have the same result as performing it once with scaling factor 𝜁1 ⋅ 𝜁2. This property
has incurred this set of operations the name renormalization (semi-)group. Since cou-
pling constants of the same term at different 𝜁 can be compared, one may think of the
coupling constants as being a function of 𝜁, flowing through the space of possible com-
binations of values for the couplings. This picture is where the name renormalization
flow comes from. To recapitulate: the procedure consists of

1. Choosing a new wave-number cutoff Λ′ for a theory 𝐸[𝑓] with 𝜁 = Λ∕Λ′

2. Integrating out the high wave number modes from 𝐸[𝑓] (the hard part)

3. Rescaling all lengths, such that in the newunitsΛ′ has the samenumerical value
that Λ had, and hence finally have a theory 𝐸′[𝑓′] of the same functional form
as 𝐸[𝑓]
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Fixed points and couplings Now assume a fixed point 𝐸∗ in renormalization flow,
given by the list of values for all the coupling constants (𝑐∗1 , 𝑐∗2 , 𝑐∗3 , … ). Renormalization
with rescaling factor 𝜁, which I will denote by ℜ𝜁[𝐸] or ℜ𝜁(𝑐1, 𝑐2, 𝑐3, … ) or ℜ𝜁[{𝑐𝑘}],
can be thought of as a flow field in coupling constant space. In the vicinity of a fixed
point 𝐸∗ + 𝛿𝐸 ≃ (𝑐∗1 + 𝛿𝑐1, 𝑐∗2 + 𝛿𝑐2, 𝑐∗3 + 𝛿𝑐3, … ), this flow field causes three broad
categories of behaviour (see fig. 2.13):

1. Irrelevant: Renormalization flow fixed points have a basin of attraction, that is
directions 𝛿𝐸 ≃ (𝛿𝑐1, 𝛿𝑐2, 𝛿𝑐3, … ) inwhich the flow leads right back to𝐸∗. Recall
that these “directions” correspond to terms in the Landau-Ginzburg free energy,
so such terms neither cause new critical behaviour, nor do they survive RGflow;
hence they are called irrelevant.

2. Relevant: When the direction 𝛿𝐸 ≃ (𝛿𝑐1, 𝛿𝑐2, 𝛿𝑐3, … ) in coupling constant space
puts 𝐸∗ + 𝛿𝐸 into a region that leads away from 𝐸∗ under the action ofℜ𝜁[𝐸],
then a different fixed point (different universal behaviour) is approached; these
terms are hence called relevant.

3. Marginal: When renormalization flow neither moves 𝐸∗ + 𝛿𝐸 away from 𝐸∗
nor back to it (such that 𝐸∗ + 𝛿𝐸 stays put), then 𝐸∗ is just one fixed point on
an entire (higher-dimensional) ridge and 𝛿𝐸 was a step along the ridge. Such
perturbations of the coupling constants are called marginal.

Most couplings are irrelevant (Tong 2017, sec. 3.1.1), which is an important source of
validity for Landau-Ginzburg theory and stochastic field theories like eq. (2.39), which
try to cut off the expansions in the order parameter and its derivatives. It is however
necessary to watch out: some couplings can be irrelevant, but still be important for
the perturbation theory for relevant couplings; just ignoring these outright can lead
to wrong results. Such terms are hence called dangerously irrelevant.

ScalingAnalysisArguments An argument akin to dimensional analysis starts be-
coming a very helpful tool. 𝐸[𝑓] is dimensionless. Without loss of generality (by
rescaling the order-parameter) one may choose that the first coupling (∇𝑓)2 has a
prefactor of 1, such that from 𝐸[𝑓] = ∫ d𝑑𝑟 ((∇𝑓)2 + ⋯) one may read off that the
units of the (conveniently rescaled) order parameter are given by 1 = 𝐿𝑑𝐿−2[𝑓]2where
𝐿 is a lengthscale. Rearranging the units gives [𝑓] = 𝐿(2−𝑑)∕2. Very close to the fixed
point, theories are already very close to being scale-invariant and correlators may be
assumed to take power law form (in a homogeneous system)

⟨𝑓(𝒓1)𝑓(𝒓2)⟩c ∼ |𝒓2 − 𝒓1|𝑝 (2.71)

because power laws 𝐴𝑟𝑝 have the convenient property that they can keep their func-
tional form under rescaling of their argument by just rescaling constants

𝐴𝑟𝑝 = 𝐴𝜁−𝑝(𝑟∕𝜁)𝑝 = 𝐴′𝑟′𝑝 (2.72)

with new, rescaled constant 𝐴′ = 𝐴𝜁𝑝 and the argument given in the new scale as
𝑟′ = 𝑟∕𝜁. Applying the RG procedure to𝐸[𝑓] up to the second step leaves the coupling
(∇𝑓−)2 with a coupling constant 𝑐, whose dimensions may be different and which
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Figure 2.13: Visualization from Tong (2017, fig. 23) of the possible coupling be-
haviours: under renormalization flow: the red point symbolizes is the fixed point,
corresponding to the transition of interest. The red line symbolizes the trajectory of
a relevant coupling flowing to a different fixed point. The dotted blue lines are the
trajectories of irrelevant couplings, flowing back to the fixed point

can depend in an arbitrarily complicated manner on 𝜁. Absorbing 𝑓′ =
√
𝑐𝑓− will

ensure [𝑓′] = 𝐿(2−𝑑)∕2 = [𝑓]. However, as a consequence 𝑓 does not scale under
the renormalization step, as could be naively assumed, by 𝑓 ∼ (𝐿∕𝜁)(2−𝑑)∕2 ∼ 𝜁(𝑑−2)∕2
but instead with a more general, non-integer exponent 𝑓 ∼ 𝜁𝑑𝑓 called the scaling-
dimension 𝑑𝑓. Under rescaling with 𝜁, we now expect the power law of the correlator
to change on either side with

𝜁2𝑑𝑓 ⟨𝑓(𝒓)𝑓(0)⟩c ∼ 𝜁−𝑝𝑟𝑝 (2.73)

such that−𝑝 = 2𝑑𝑓 is necessary for scale-invariance. 𝑝 is typically written as 𝑝 = 2−
𝑑−𝜂, such that 𝜂 is the deviation from the exponent naively expected from [𝑓]2 = 𝐿2−𝑑.
The exponent 𝜂 can for example bemeasured by determining the power law eq. (2.71)
in experiment and simulation for a model assumed to be in the studied universality
class. One finds

𝑑𝑓 =
𝑑 − 2 + 𝜂

2 (2.74)

i.e. an expression for 𝑑𝑓 in terms of 𝜂. This discussion is supposed to highlight two
things about the renormalization flow method: (1) critical exponents come from the
scaling dimension of quantities under renormalization and (2) dimensional analysis
akin arguments, such as the just presented, allow relating the various critical expo-
nents of power-law exhibiting quantities, leaving only a handful of independent expo-
nents. To give two more very relevant examples: the correlation length, as a length-
scale, experiences the simplest possible rescaling 𝜉′ = 𝜉∕𝜁 under renormalization
flow, and is related to the distance 𝛼 of the control parameter from its critical value by
a power law 𝜉 ∼ 𝛼−𝜈 (to clarify: 𝛼 could mean (𝑇 − 𝑇c) or 𝛼 = (𝑝 − 𝑝c) for example).
The rescaling dimension 𝑑𝛼 of the control parameter is not trivial. Yet the law should
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be scale invariant, such that 𝜁−1𝜉 = 𝜉′ ∼ 𝛼′−𝜈 = (𝜁∆𝛼𝛼)−𝜈 = 𝛼−𝜈𝜁−𝜈∆𝛼 which requires

∆𝛼 =
1
𝜈 (2.75)

The expectation value of the order parameter also follows a power law ⟨𝑓⟩ ∼ 𝛼𝛽. Be-
cause, as now established, either of them rescale under anRGprocedure like 𝜁𝑑𝑓 ⟨𝑓⟩ ∼
(𝛼𝜁𝑑𝛼)𝛽 = 𝛼𝛽𝜁𝛽𝑑𝛼 , scale invariance demands 𝑑𝑓 = 𝛽𝑑𝛼 and hence

𝜈 ⋅
𝑑 − 2 + 𝜂

2
eq. (2.74)
= 𝜈𝑑𝑓

eq. (2.75)
=

𝑑𝑓
𝑑𝛼

= 𝛽 (2.76)

Measuring 𝛽 and 𝜈 for example hence already determines the value of 𝜂.





3 RandomOrganizationAdjacentLit-
erature

This section discusses some models related to the study of random organization that
I encountered in my literature research. The purpose of presenting them is to detail
this relevant part of my literature work and to provide the context I am working with
in chapter 3.

3.1 Simulations

The overlap reducing protocol of Corté et al. (2008) understands itself as shearing the
suspensionwith some strain amplitude 𝛾0. As noted inMilz and Schmiedeberg (2013)
however, replacing particles depending onwhether theywouldmeet any others in the
process of shearing has the same effect as just elongating them along the shearing axis
and, without shearing, replacing them if they overlap. With this argument they elim-
inate the need for specifying a shear-amplitude 𝛾0 and replace it with the, muchmore
general, idea of performing 𝛾0 = 0 random organization with particless of different
shapes. This leaves packing density Φ as the only control parameter. With active par-
ticle fraction 𝑓∞𝑎 kept as the order parameter, Milz and Schmiedeberg (2013) proceed
to do a very similar1 simulation study as Corté et al. (2008) and determine the critical
packing density Φc for a handful of dimensions and particle shapes and also fit the
critical exponents to the power-laws displayed by 𝑓∞𝑎 and the relaxation time 𝜏.

Milz and Schmiedeberg (2013) also point out parallels between random organiza-
tion and protocols for generating so called athermally jammed configurations. This is
a very noteworthy observation, but requires giving a very short exposition of jamming:
a large, composite system is characterized by O’Hern et al. (2003) as jammed if they
are disordered (for example not crystalline) and the characteristic time over which
they relax stresses is effectively infinite on experimental time scales. Amongst the ex-
amples given by the authors is granular matter (like sand) funnelled into a hopper,
but where at the constriction the grains have such difficulties finding ways past each
other that they get stuck. In that example the system is under stress due to gravity and
relaxation would consist in the mutual blockades of grains being resolved such that
the system can start to flow. But since the grains are stuck, without outside influence
like shaking there will be no spontaneous flow for the foreseeable future (effectively

1Their random organization protocol resolves overlaps by separating the particles, along a random
direction, until they just barely touch, as opposed to completely independent random displacements
like in Corté et al. (2008)
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infinite relaxation time). Note that this behaviour is in stark contrast to equilibrium
physics, where characteristic time for the relaxation of stresses (in the form of a slight
perturbation out of equilibrium) are very short on experimental time scales, arguably
by definition.

O’Hern et al. (2003) suggest understanding this phenomenon with simulations
of particles with soft2 finite range interactions 𝑢(𝑟) (where that range is interpreted
as the particles’ extension 𝜎), at some packing density Φ, subject to a shear stress Σ
and a “temperature” 𝑇; the latter cannot always be identified with thermodynamic
temperature and instead more generally quantifies the ability of the system to over-
come energy barriers. They focus on the case 𝑇 = 0 (athermal jamming) by means
of the following protocol: first they disperse particles with centres {𝒙𝑘} randomly, in-
dependently and uniformly in their simulation box. Since this placing has no respect
for the potential energy 𝑉 =

∑
𝑗<𝑘 𝑢(|𝒙𝑘 − 𝒙𝑗|) they describe this ensemble to be

at 𝑇 = ∞. To get to 𝑇 = 0, they then take a conjugate gradient descent to mini-
mize energy (which will not cross potential energy barriers). In effect, this leads to a

Figure 3.1: O’Hern et al. (2003, fig. 5b), de-
picting the dependence of the fraction 𝑓𝑗
of initial 𝑇 = ∞ particle configurations
that jam under their relaxation protocol to
𝑇 = 0.

repulsion of overlapping particles while
particles without overlaps stay in place.
Depending on packing density, they ob-
serve one of two behaviours: in lower
density systems the energyminimization
protocol resolves all overlaps and poten-
tial energy drops all the way to 𝑉 = 0.
In higher density systems some overlaps
remain indefinitely unresolved and 𝑉 >
0; in that case the system is considered
jammed. The authors run this protocol
out for various particle numbers 𝑁 and
packing densitiesΦ and observe how the
fraction 𝑓𝑗 of initial states that lead to
jamming changes with these two param-
eters. They find that 𝑓𝑗 as a function of
densityΦ develops a sharper and sharper
threshold the larger the system size 𝑁 is (fig. 3.1). For systems of three-dimensional
spheres, they extrapolate the thermodynamic limit 𝑁 → ∞ of this threshold value
and find Φ𝐽 = 63.9% ± 0.1%.

With view to the energy minimization steps, the similarity to random organiza-
tion cannot be overlooked. Milz and Schmiedeberg (2013) compare the two protocols
by having two variants of their overlap reducing protocol: the earlier described one,
where displacements of overlapping particles have random directions, and another
protocol, representing athermal jamming, where overlapping particles aremoved away
from each other along the line connecting their centres. The latter deterministic-
displacement version of random organization brings the critical packing density way
up to Φ(det)

c = 62.76% ± 0.05% (very close to the athermal jamming density Φ𝐽 =

2as in: two particles can occupy the same position in space with only a finite amount of work nec-
essary. Contrast this with interactions that have (effective) hard cores like the Lennard-Jones potential
𝑢(𝑟) = 4𝜀((𝜎∕𝑟)12 − (𝜎∕𝑟)6)
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63.9% ± 0.1%. That the critical packing density is that high happens because con-
sciously moving away from any overlap partners lets particles search much more ef-
fectively for vacant areas.

Milz and Schmiedeberg (2013) characterized random organization and athermal
jamming as two ends in a possible spectrum of overlap reducing protocols. Wilken
et al. (2021) and Wilken et al. (2023) followed up on this idea with a protocol they
named biased random organization (BRO): they interpolate overlap reducing proto-
cols with fully deterministic and fully random directions. They do so with some pa-
rameter 0 < 𝛿 < 1, with 𝛿 = 1 being the fully repulsive and 𝛿 = 0 entirely ran-
dom displacements. The length of their particle jumps is chosen uniformly at random
from [0, 𝜀]; 𝜀 hence can be thought of as the jump size or alternatively as quantifying
how close to continuous time the protocol is (since smaller steps correspond to more
continuous motion). For all 𝛿 they find a Manna class dynamical phase transition
(fig. 3.2a). Wilken et al. (2021) observe what happens in the 𝜀 → 0 limit (small steps
/ time-continuous): at 𝑑 = 3 spatial dimensions, exactly at 𝛿 = 0 (fully random dis-
placements) the critical BRO packing density converges to about ≈ 20%, a value close
to the critical density of the random organization model of Milz and Schmiedeberg
(2013), which lies at ≈ 15% (where the difference is likely due to differences in the
exact protocol). For all 𝛿 > 0 however, Φc converges to a value extremely close to the
athermal jamming density Φ𝐽 ≈ 64% (fig. 3.2b) and the absorbing phase configura-
tions near the critical point boast properties commonly associated with random close
packing of spheres3.

Note that this kind of link to jamming is the main motivation for my exploration
of analytical random organization descriptions in chapter 4, where, with view to the
𝜀 → 0 limit in Wilken et al. (2021) and Wilken et al. (2023), I try to write down time-
continuous dynamical equations. If these methods turn out fruitful, links to jamming
physics could be made by introducing the bias; the investigation into this is ongoing.

(a) Measured universal scaling near
transition

(b) Small jump size limit of the criti-
cal density Φc

Figure 3.2: Fig. 2a (left) and fig. 1 (right) fromWilken et al. (2021)

3A not very well defined state of a system of spheres, supposed to be as dense as possible while
still being randomly arranged (Bernal andMason 1960), as opposed to crystalline or otherwise regular.
Experiments and protocols claiming to produce and study such packings tend to find them atΦ ≈ 64%
(Wilken et al. 2021)
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3.2 Theory of Manna Class Critical Behaviour

3.2.1 Phenomenological Field Equations
Simulation studies like Corté et al. (2008) and Wilken et al. (2021) usually come with
more intentions than just studying the critical behaviour of any given universality
class. The former, as presented in the introduction, models the physics of sheared
colloid suspensions, while the latter, as just discussed, intends to link such models to
the physics of jamming. In contrast, the study of the universal behaviour can be com-
paratively simplified, since it suffices to study the most approachable representative
of any given universality class.

Lattice Models According to Wiese (2016, sec. IV) the following model, referred
to as a stochastic sandpile, is a representative of the Manna universality class: dis-
tribute grains at a given density 𝜌 on some lattice. This grain distribution is changed
in discrete time steps according to the following protocol: if any given site is occupied
by more than one grain, these grains will be randomly redistributed to neighbouring
sites4. Such sandpiles have been the subject of simulation studies into Manna class
behaviour (for example Dantas et al. 2006) and analytical theories that write down
Master-equations for the probability distribution of the grain configurations (for ex-
ample Wijland, Oerding, and Hilhorst 1998).

The analogy to random organization is self-evident and unsurprisingly, the grain-
density 𝜌 serves as the control parameter in a dynamical phase transition, that has the
active grain density 𝜌𝐴 as an order parameter: below some critical grain density 𝜌c all
grains eventually find a lattice site on which they are alone, while above the critical
density grains move around indefinitely (see fig. 3.3). The two phases are separated
by a continuous transition, towards which the time 𝜏 it takes to find the absorbing
configuration diverges, all with exponents in line with the Manna universality class.

(a) absorbing phase (b) active phase

Figure 3.3: Visualization of the Stochastic sandpile, depicting a snapshot of the steady-
state of the system in either phase

4a very similar model was introduced in Manna (1991) for the related purpose of studying the
paradigm of self-organized criticality; I mention this because the author donated their name to the
universality class, but self-organized criticality publication is of no further relevance here

sec:introduction
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Wiese (2016, sec. VI) obtains a mean-field theory for the stochastic sandpile by con-
sidering the 𝑑 → ∞ limit, that is in the approximation that all sites have an immediate
connection. This allows ignoring the spatial dependencies and focusing entirely on
the balance of the rate of activation of inactive grains𝐴+𝐼 → 2𝐴 an the decay of active
grains to inactivity 𝐴 → 𝐼 by landing on empty lattice sites. The result are reaction
equations of the form

𝜕𝜌𝐴(𝑡)
𝜕𝑡 = −𝜇𝜌𝐴(𝑡)⏟⏟⏟

deacti-
vation

+𝜆 𝜌𝐴(𝑡) (𝜌 − 𝜌𝐴(𝑡))⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
activation of
inactive grains

(3.1)

where the coefficients of the various terms vary from author to author (see for exam-
ple Pastor-Satorras and Vespignani 2000; Wijland 2002), because, as explained in next
in section 3.2.1, these reaction-equations are extended to stochastic field theories. To
get spatial dependence back into the picture, the 𝑑 → ∞ behaviour is assumed to
hold locally, while grain density 𝜌 and the density 𝜌𝐴(𝑡) of active grains can still vary
in space; this is similar to the adiabatic approximation in hydrodynamics, that allows
talking about local thermal equilibrium and spatially varying temperature or pres-
sure. Since the replacement of the active grains is uniformly random in the simplified
𝑑 → ∞ treatment, the statistics of motion after giving 𝜌𝐴 and 𝜌 an additional spatial
dependence are argued to be that of random walks. Hence

𝜕𝜌𝐴(𝒓, 𝑡)
𝜕𝑡 = 𝐷∇2𝜌𝐴(𝒓, 𝑡) − 𝜇𝜌𝐴 + 𝜆 𝜌𝐴(𝒓, 𝑡) (𝜌(𝒓, 𝑡) − 𝜌𝐴(𝒓, 𝑡)) (3.2)

Furthermore, local particle conservation is respected by making the grain density 𝜌
evolve according to

𝜕𝜌(𝒓, 𝑡)
𝜕𝑡 = 𝐷∇2𝜌𝐴 (3.3)

The latter equation also entails, that inactive grains do not diffuse, since matter trans-
port apparently is given entirely by active grain diffusion.

Very similar and, also reportedly in the conserved directed percolation class, is
the conserved lattice gas studied numerically by Rossi, Pastor-Satorras, and Vespig-
nani (2000): initially, grains are randomly distributed on a lattice with no double-
occupancy. If all grains who have neighbours are then considered active and get, if
possible,moved randomly to anyneighbouring empty site; control- and order-parameter
are respectively grain density 𝜌 and active grain density 𝜌𝐴, just as in the stochastic
sandpile.

Compared to simulations of grains with continuous positions, the lattice models
are benign (in terms of memory and compute) and simplistic, making them excellent
vehicles for understanding the universality class their dynamical transition belongs
to. The conserved lattice gas, for example, lead the authors to conjecture

"[...] in the absence of additional symmetries, absorbing phase transitions
in systems with stochastic dynamics in which the order parameter is lo-
cally coupled to a static conserved field define a single and new universal-
ity class" (Rossi, Pastor-Satorras, and Vespignani 2000, concolusion)
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(a) deactivation 𝐴 → 𝐼

(b) activation 𝐴 + 𝐼 → 2𝐴

Figure 3.4: Visualization of the competing processes in the stochastic sandpile; time
runs from left to right in either subfigure.
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where absorbing phase transition is a synonym for absorbing state transition. The
universality class they are referring to is CDP. This conjecture echoes a similar one
attributed to Janssen and Grassberger, that any continuous absorbing state transition
(with a scalar, real, non-negative order-parameter) emerging from short-ranged inter-
actions with a unique absorbing state and no further features (like additional sym-
metries) lie in the DP universality class (Janssen 1981; Grassberger 1982; Hinrichsen
2000). It remains to be seen if they hold true in this form.

Stochastic Field Theories for the Manna Class The purely analytical study of
the Manna transition is dominated by stochastic field theories and their analysis with
the renormalization flow method. As explained in section 2.2.3, one of the central
differences between regimes in which mean-field theory is very accurate and regimes
where it fails (notably by predicting inaccurate critical exponents) is whether fluctua-
tions can be neglected on large scales or not. In transitions where they can be ignored,
mean-field behaviour delivers a very complete picture of the transition’s physics. As
further discussed in section 2.2.3, given a mean-field theory, a properly chosen noise
can be added to obtain a theory, in form of a Langevin equation, that is accurate
even below the upper critical dimension. Doing so for the mean-field equation of
the stochastic sandpile eq. (3.2) would yield such a description.

As explained in section 2.2.4, when the goal is to understand the critical behaviour
of a system with the renormalization semigroup, the presence of a coupling is more
essential than the values of the coupling constants. Their exact value is subject change
under the rescaling operations leading to the critical point. When the goal is to capture
more than just critical behaviour, of course, onemay set the constants tomore specific
values or otherwise constrain themand include couplings that are irrelevant in the RG
sense. Langevin equations for the Manna class tend to be given in a form similar to
this (and hence feature the relevant couplings leading to the Manna fixed point):

𝜕𝜌𝐴
𝜕𝑡 = 𝐷∇2𝜌𝐴 − 𝜇1𝜌𝐴 − 𝜇2𝜌2𝐴 + 𝜆𝜌𝐴𝜌 + 𝜅

√
𝜌𝐴𝜁

𝜕𝜌
𝜕𝑡 = 𝐷∇2𝜌𝐴

(3.4)

(compare Doussal and Wiese 2015, eqs. 4 and 5; Janssen and Stenull 2016, eqs. 2.8)
where 𝜁(𝒓, 𝑡) is spatio-temporal Gaussian white noise from eq. (2.50); it read

⟨
𝜁(𝒓, 𝑡)

⟩
noise = 0

⟨
𝜁(𝒓, 𝑡)𝜁(𝒓′, 𝑡′)

⟩
noise = 𝛿(𝒓′ − 𝒓) 𝛿(𝑡′ − 𝑡)

with ⟨⋯⟩noise denoting the average with respect to the noise degrees-of-freedom only.
Mapping to a field-theory with the recipe described at the end of section 2.2.3 and
treating it to the renormalization flow fixed point analysis sketched in section 2.2.4
allows computing the critical exponents of the Manna class (compare Wiese 2024,
leadup to eqs. 25 - 28). Given that the involved quantities and constants can have
vastly different names depending on the authors, the form of eq. (3.4) has been chosen
to keep quantities and equations recognizable and comparable across this text.

Adding an appropriate noise term on a mean-field theory to obtain a Langevin
description valid below the upper critical dimension caters well to the intuitions sur-
rounding the role of fluctuations in the applicability of mean-field treatments (see
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section 2.2.3). It should be noted however, that it is not the only (and in fact no the
first) way in which people have arrived at a field theory description of conserved di-
rected percolation. In Wijland, Oerding, and Hilhorst (1998), whose work is linked
to conserved directed percolation by Pastor-Satorras and Vespignani (2000), the start-
ing point and reference frame is a reaction-diffusion system involving two species of
reagents𝐴 and 𝐼 (that I have suggestively renamed here relative to the sourcematerial
in order to avoid confusion with related results). They each diffuse with constants𝐷𝐴
and 𝐷𝐼 respectively and are involved in two reactions: spontaneous decay 𝐴 → 𝐼 and
proliferation𝐴+𝐼 → 2𝐴 of𝐴-reagents. The concentrations of either reagentwill relax
to a steady-state given by the balance of the two reactions. The steady state concen-
tration of 𝐴-reagents serves as the order parameter of an absorbing state transition,
that has the ratio of the reaction rates as its control parameter: in one phase 𝐴 → 𝐼
dominates 𝐴 + 𝐼 → 2𝐴 and the 𝐴 species dies out, while in the other 𝐴 + 𝐼 → 2𝐴
out-runs decays 𝐴 → 𝐼, leading to a finite steady state concentration (which serves as
the order parameter). Writing down the reaction-diffusion equations of this problem
would be a mean-field theory, since such equations do not model noise in any way.
To get beyond mean-field Wijland, Oerding, and Hilhorst (1998) formulate a lattice
model of the reaction-diffusion system: reagent particles take positions on the lattice
sites and perform random walks at rates proportional to 𝐷𝐼 and 𝐷𝐴 respectively. Sites
can be occupied by arbitrarily many particles and reactions only occur between parti-
cles on the same site. They derive the master equation for the model by understand-
ing the probability distribution as a state-vector |𝑃⟩ on which an operator acts, that
generates the sought reactions and diffusion. Thanks to the analogy of this approach
to quantum systems, they can derive an associated “action 𝑆[𝐴,𝐴∗, 𝐼, 𝐼∗]” in terms
of “classical fields 𝐴(𝒓, 𝑡), 𝐴∗(𝒓, 𝑡), 𝐼(𝒓, 𝑡) and 𝐼∗(𝒓, 𝑡)” (leaning heavily into quantum
lingo). In terms of the concepts introduced in section 2.2.2, 𝑆 is5 the exponent of the
weight exp(𝑆) with 𝐴 and 𝐼 as order-parameter candidates. 𝐴∗ and 𝐼∗ are the corre-
sponding response fields. The second set of fields 𝐼 and 𝐼∗ are the bookkeeping device
with which the authors implement reagent-number conservation (i.e. the coupling to
a conserved field): they are a limited resource for 𝐴-proliferation 𝐴+ 𝐼 → 2𝐴 that can
only be replenished by the decay 𝐴 → 𝐼.

Remark on the Ambiguity of Coupling Constants Not only the values, but the
precise interpretation andderivation of any given term in thesemodels can varywildly.
This is not necessarily aweakness, but a feature of the field theory approach: it reflects
that themany differentmodels of a given universality class all behave in the sameway
towards the critical point. Hence, this kind of ansatz is similar in spirit and method
to Landau-Ginzburg theory in its purposeful ignorance. None of the terms specify
what, on a small scale, the activation process looks like, whether the grains scatter or
not while getting close enough to react, in what configuration exactly particles have
to be to react (imagine penetrable eccentric ellipses versus penetrable spheres, pene-
trable cubes, etc.); such variance could never be captured in the few free parameters
in eq. (3.4).

5With the subtle difference that they insert their boundary conditions as terms into the action in-
stead of postponing their insertion to the choice spatio-temporal evolutions to include in the path-
integral
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Figure 3.5: Random surface as described by eq. (3.5) with displacement field 𝑢(𝒓, 𝑡)
(black line with shade) whose shape is relaxed by ∇2𝑢(𝒓, 𝑡) but subject to spatially
random forcing 𝑓(𝒓, 𝑢(𝒓, 𝑡)) (here in the form of impurities symbolized by the black
dots) and an homogeneously applied external forcing field of strength𝐻

Agood example for howabstract thesemodels are, is the following entry toManna-
class transitions, identified as such byDoussal andWiese (2015): the quenchedEdwards-
Wilkinson model, a simplified description of random surfaces under (spatially) ran-
dom forcing:

𝜕𝑢(𝒓, 𝑡)
𝜕𝑡 = ∇2𝑢(𝒓, 𝑡) + 𝑓(𝒓, 𝑢(𝒓, 𝑡)) + 𝐻 (3.5)

Here 𝑢(𝒓, 𝑡) is the displacement field of the surface (a scalar, for simplicity, i.e. dis-
placement is assumed to only happen in one direction) and 𝑓(𝒓, 𝑢) is the random
forcing that the surface experiences around 𝒓 given it is displaced there by 𝑢. ∇2𝑢
models the relaxation of stress in the surface caused by the displacement field being
different at two close-by locations. An example application of the quenched Edwards-
Wilkinson model are Weiss-domains in ferromagnets under the pressure of an exter-
nal magnetic field 𝐻, which are pinned in place by crystal impurities (fig. 3.5) below
a critical external forcing 𝐻 < 𝐻c (analogous to the absorbing phase in random or-
ganization) but indefinitely shifting for 𝐻 > 𝐻c (analogous to the active phase). At
face value, this model seems unrelated to grains on lattices or sheared suspensions.
In fact, it does not look like eq. (3.4). It can however be mapped to the Manna class
equations in a non-obvious manner.

3.2.2 Relationship to Non-Conserved Directed Percolation
Similarities and Differences in Theory DP and Manna systems are very similar,
which still warrants some discussion: both of them are a feature of respective ab-
sorbing state transitions. Both of their theories can be understood as driven by the
competition between proliferation and decay of a an active physical state in an oth-
erwise passive system. It is, however, widely believed that, despite the similarities,
DP andManna are distinct universality classes (Pastor-Satorras and Vespignani 2000;
Hinrichsen 2000; Lubeck 2004; Corté et al. 2008; Doussal and Wiese 2015; Janssen
and Stenull 2016; Wilken et al. 2021) though the closeness of many of their critical ex-
ponents (Rossi, Pastor-Satorras, and Vespignani 2000; Milz and Schmiedeberg 2013)
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and the ambiguity of what exactly should constitute a universality class far from equi-
librium advise some caution. In what follows I will stick to the understanding found
in literature, that DP and Manna are distinct. On this note, a side-by-side compari-
son of the terms appearing in the Langevin equations eq. (2.54) for DP and eq. (3.4)
Manna

class free propagation interaction coupling to conserved field noise
CDP

(
𝜕∕𝜕𝑡 − 𝐷∇2 + 𝜇1

)
𝜌𝐴 −𝜇2𝜌2𝐴 +𝜆𝜌𝐴𝜌 𝜅

√
𝜌𝐴𝜁

DP
(
𝜕∕𝜕𝑡 − 𝐷∇2 − 𝛼

)
𝑤 −(1∕2)𝑔 𝑤2 n.a. 𝜅

√
𝑤𝜁

show that the only coupling differentiating them is the Manna class coupling to the
conserved field 𝜌 (Doussal and Wiese 2015). This is another perspective from which
to justify the synonym conserved directed percolation for the Manna class. When
neglecting the noise in both models (such that we are dealing with their mean-field
theories) and choose the Manna system to be spatially homogenous by making 𝜌(𝒓, 𝑡)
a constant 𝜌, then one can joint the 𝜆𝜌 ⋅ 𝜌𝐴 and −𝜇1𝜌𝐴 term into one (𝛾𝜌 − 𝜇1)𝜌𝐴.
Unsurprisingly, the mean-field exponents are hence also the same (Lubeck 2004, app.
A.3).

My Own Thoughts That Manna class models can draw only on a conserved and
hence locally limited number of particles (Corté et al. 2008) has an important conse-
quence, that explains why it might make such an important qualitative difference: in
directed lattice percolation problems (see fig. 2.2), whether or not the neighbouring
sites of a wet site will be wet in the subsequent time step, are statistically indepen-
dent events. This is not the case in random organization: an active grain that is busy
activating one part of its neighbourhood by jumping there cannot at the same time
do so in the opposite direction. If one wanted capture such physics faithfully with
directed percolation on a lattice, it would be necessary to introduce a book-keeping
device into the model that tracks grains and correlates the probability of activations
accordingly. This circumstance also makes any map between established DP models
and Manna models like the conserved lattice gas or stochastic sandpile (not to speak
of space-continuous random organization) necessarily unfaithful.

Put another way: say one attempted a map from a random organization model to
a percolation problem on a directed lattice. Nothing stops one from declaring spa-
tial lattice sites in the percolation problem as a tiling of the space that grains from a
random organization model can occupy. One may then proceed to declare, that wet
sites indicate the presence of active grains (which bears the possibility of activating
neighbouring “regions of space” as represented by the percolation problem’s lattice
sites). One can even suggest an effective bond probability 𝑝 given some grain density
𝜌. Though, again, one has to mind, that activations are correlated in random organi-
zation but independent in directed percolation on lattices. Furthermore, grains are
tracked in random organization, for which there is no analogous device available in
the directed lattice percolation problem. This makes it hard to justify assuming, that
one timestep in random organization corresponds to one timestep in the other model.
A salvaging attempt would be to try and identify one time step in the directed lat-
tice percolation with multiple steps in random organization; the idea behind this is
the hope, that, after multiple steps of moving, the correlations between simultaneous
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close-by activations may be low enough to assume statistical independence. While
there is no arguing against this, there clearly is a lot of room for choice and hence
ultimately ambiguity in the map.

I do not rule out however that introducing correlation in a well studied DP model
may make it resemble the coupling to a conserved quantity. This still leaves the grain
tracking question unanswered, however. Hence, to be quantitatively accurate, prob-
ably such a model still requires a priori information on how the positions of grains
correlate. Ideally, an analytic description of random organization should predict these
correlations, not require them. This is not to say, that there is no possibility of some
processes in random organization, biased random organization, etc. displaying some
variant of directed percolation behaviour. However oncemore, without tracking grains,
there is probably noway tomake quantitative predictions about anything that involves
the correlation of grain positions (like critical density). Given a packing structure,
however, a DP problem may serve to analyse how activity propagates.





4 Attempts at Critical Packing Den-
sity

The aim here is to introduce analytical models which encode the critical packing den-
sity of random organization (or overlap reduction protocolsmore generally). The ana-
lytical studies of absorbing state transitions from literature that I presented earlier are
not suited for this task: these Landau-Ginzburg-reminiscent large-scale phenomeno-
logical field theories are geared towards studying critical behaviour with renormaliza-
tion flow methods. Details on microscopic length scales become irrelevant as the de-
scriptions for all models of the same universality class unify towards the critical point.
The packing density is, however, linked to exactly such small scale details, making,
for example, the difference between random organization and biased random orga-
nization behaviour (which have different critical packing densities) or the differing
densest packings for grains of different shapes (think, for example, of spherical ver-
sus very eccentric ellipsoid grains, given that they can rotate). In order to resolve this
level of spatial detail, we require a language allows expressing the entire grain shape.
In the following I present my attempts at, if one may call it that, first-principles ana-
lytical calculations to that end.

In section 4.1 I discuss the simplest possible model I could think of that still pro-
duced a critical packing density. That model turned out to not be very extendable,
hence in section 4.2 I derive a time-continuous variant of randomorganization (which
can be thought of as the formal 𝜀 → 0 limit of the random organization protocol of
Wilken et al. (2021)). Unfortunately, the generator of time evolution in the resulting
equation eq. (4.13) contains many higher order terms. Hence my final attempt sec-
tion 4.3 tries to circumvent these higher order terms by setting up a reaction system
with only two-body interaction vertices; this is achieved bymaking activation and de-
activation gradual instead of instantaneous. I am still investigating how fruitful this
last approach is, but will present preliminary insights that compel me to continue.

4.1 Structureless Random Replacement
Intentions Recall the mean-field stochastic sandpile from section 3.2.1: grains are
assumed to have no spatial correlations and are replaced to any location in the system
every time step. Given the dramatic simplicity that these assumptions can provide,
I decided to investigate, analogously, what happens when I assume that the grains
in the overlap reducing protocol are, in analogy to the mean-field sandpile, both (1)
replaced with uniform probability density somewhere in the finite but large box while
(2) neglecting spatial correlations (see illustrating fig. 4.2).
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Figure 4.1: Typical 𝑔(𝑟) curves for a homogeneous simple fluid in thermal equilib-
rium, where the constituent molecules interacting with the isotropic as the Lennard-
Jones pair-potential 𝑢(𝑟) = 4𝜀((𝜎∕𝑟)12 − (𝜎∕𝑟)6). 𝜎 can be thought of as the molecule
diameter. The dashed curve is an analytical expansion of up until second order in
density, while the solid curve is obtained from Metropolis-Hastings sampling of the
canonical ensemble for the system at packing density Φ = 60% and 𝑘B𝑇 = 𝜀. The
dotted line is the structure (or rather lack thereof) I am assuming to arrive at eq. (4.3)

Describing Spatial Correlations The latter point (2) can be expressed with the
radial distribution function 𝑔(𝑟): it is obtained by taking the continuous version of a
histogram of pair locations (𝒓1, 𝒓2), the so called pair density, two-point density or two-
body density 𝜌(2)(𝒓1, 𝒓2) and normalizing it with the product of densities 𝜌(𝒓1) ⋅ 𝜌(𝒓2).
The latter is done to eliminate the effects of possible inhomogeneity in the density
profile 𝜌(𝒓), isolating the (purely local) influence of grain interactions. In a homoge-
neous, isotropic system the two-point density only depends on the distance between
its arguments and 𝜌(2)(𝒓1, 𝒓2) = 𝜌(2)(|𝒓1 − 𝒓2|) = 𝜌2𝑔(|𝒓1 − 𝒓2|). A typical form for
𝑔(𝑟) can be found in simple fluids, as depicted in fig. 4.1: the distribution function is
𝑔(𝑟) ≈ 0 for 𝑟 smaller than themolecule extension 𝜎, indicating theirmutual exclusion
volume. For 𝑟 > 0 pair-distances oscillate between being being above and below aver-
age likely, but this oscillation quickly tampers to 𝑔(𝑟) = 1 (no correlation) as 𝑟 ≫ 𝜎. To
connect it to the previously introduced concept of a two-point cumulant: in a theory
where 𝜌(𝒓) is a Landau-Ginzburg-like order parameter one could write

𝑔(𝒓2, 𝒓1) − 1 ≔
⟨𝜌(𝒓1)𝜌(𝒓2)⟩c
⟨𝜌(𝒓1)⟩ ⋅ ⟨𝜌(𝒓2)⟩

(4.1)

Further assuming a homogeneous and isotropic system 𝜌(𝒓) ≡ 𝜌 will have the effect
that 𝑔(𝒓2, 𝒓1) only depend on the distance |𝒓2 − 𝒓1|. My mean-field approximation
now consists of neglecting correlations altogether, and have 𝑔(𝑟) ≡ 1. In an infinite
system𝑁,𝑉 → ∞ this is the same as assuming the points are distributed in a Poisson
point cloud (orPoisson point process), whichmeans that grain locations are statistically
independent of each other. One consequence of this is that the number of grains𝑁(𝑈)
in any given finite volume 𝑈 is a Poisson distributed random variable with mean 𝜌𝑈
(assuming homogeneous grain density 𝜌); hence the name.

Note, that a system of extended grains with packing density Φ distributed in a
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Figure 4.2: Visualization of the overlap reducing protocol approximated eq. (4.3):
grains that overlap (bright orange) will in the next timestep be replaced randomly,
independently from each other and uniformly in the system. The probability of land-
ing in the shaded areas (where the grain) is estimated by the probability 1−𝑇(𝐵) that
there is a cavity at least two grain diameters across. In eq. (4.2), the correlation of
grain positions is neglected (hence the name structureless random replacement) by
using the Poisson point cloud expression for 1 − 𝑇(𝐵)

Poisson point cloud has a non-negotiable density1 of grains with overlaps. Obviously,
this value can only change when the density changes. So when I say, that we assume
a Poisson point cloud, this is not meant literally: instead, I am estimating in every
time step, that the probability of finding a cavity at least the size of a grain, i.e. the
probability of finding a vacant spot for a grain to be overlap free, is the same as in a
Poisson point cloud. Moving on: this probability is given by one minus the so called
capacity functional (Baddeley 2007)

1 − 𝑇(𝐵) = 𝑃 (𝑁(𝐵) > 0) = 𝑒−2𝑑Φ (4.2)

where𝐵 is a ball of radius𝜎, intowhich one can exactly fit a spherical grain of diameter
𝜎 without any other grains at the surface of 𝐵 and beyond being able to overlap with
it.

Mean-Field Iteration Equation The probability of any active grain landing on
some inactive grain after replacing it is given by the fraction of volume that the in-
active grain takes up. This fraction can be estimated by (𝑁 − 𝑁𝐴) ⋅ Φ∕𝑁. Thus the
expectation value 𝑁𝐴(𝑡) of the number of active grains changes from 𝑡 to 𝑡 + 1 with

𝑁𝐴(𝑡 + 1) − 𝑁𝐴(𝑡)⏟ ⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⏟
change in

active grain number

= − 𝑁𝐴(𝑡) ⋅ 𝑒−2
𝑑Φ

⏟⎴⎴⏟⎴⎴⏟
number of grains
finding vacant spots

by eq. (4.2)

+ 𝑁𝐴(𝑡) ⋅ (𝑁 − 𝑁𝐴(𝑡)) ⋅
Φ
𝑁⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

number of previously inactive grains
that an active grain will land on

(4.3)

The stationary value at 𝑡 → ∞ is obtained by assuming lim𝑡→∞𝑁𝐴(𝑡) ≕ 𝑁∞
𝐴 exists

and taking the 𝑡 → ∞ limit on both sides

𝑁∞
𝐴 ⋅ 𝑒−2𝑑Φ = 𝑁∞

𝐴 (𝑁 − 𝑁∞
𝐴 ) ⋅ Φ∕𝑁 (4.4)

1calculating this is an easy, but instructive exercise in the theory of point clouds, see for example
Baddeley (2007) of grains involved in overlaps Φ𝐴 = Φ(1 − exp

(
2𝑑Φ

)
) for notes
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This equation for𝑁∞
𝐴 is solved by either 0 (which I interpret as the absorbing phase) or

1−𝑁∞
𝐴 ∕𝑁 = 𝑒−2𝑑Φ∕Φ (which I interpret as the steady state value in the active phase).

Since we know that the transition is continuous, solving the active phase expression
𝑁∞
𝐴 (Φ) = 0 for the packing density should give us the critical point Φc. Doing so

results in
Φc = 𝑒−2𝑑Φc (4.5)

See table 4.1 for a comparison with three literature values.

𝑑 eq. (4.5) (rounded) Milz and Schmiedeberg (2013) Wilken et al. (2021)
2 0.301 0.336 ± 0.002 n.a.
3 0.2007 0.1505 ± 0.0005 0.20 [sic]

Table 4.1: Comparison of measured (from different random-organization like proto-
cols) zero-strain-amplitude critical packing densities of with the estimates rendered
by structureless random replacement.

Exponents Since the active phase relationship between 𝑁∞
𝐴 and Φ eq. (4.4) is an-

alytic in Φ = Φc, the order-parameter exponent 𝛽 is an integer, given by the leading
order in the Taylor expansion

𝑁∞
𝐴 = 1 − 𝑒−2𝑑

Φ

= [1 − 𝑒−2𝑑Φ
Φ ]

|||||||Φ=Φc⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=0 by eq. (4.5)

+ 𝜕
𝜕(Φ − Φc)

(1 − 𝑒−2𝑑Φ
Φ )

|||||||Φ=Φc
⋅ (Φ − Φc)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=(2𝑑+1∕Φc)>0, by eq. (4.5)

+𝒪
(
(Φ − Φc)2

)

∼ |Φ − Φc|
(4.6)

meaningwe have 𝛽 = 1 for this, putativelymean-field, theory. We can also check how
𝑁𝐴(𝑡) behaves right at the critical point by inserting eq. (4.5) into eq. (4.3), resulting
in

𝑁𝐴(𝑡 + 1) − 𝑁𝐴(𝑡) = −
Φc
𝑁 ⋅ 𝑁𝐴(𝑡)2 (4.7)

We can find a continuum limit of this equation as 𝑡 ≫ 1 by introducing units of time
with a timestep d𝑡 and choosing to scale the system size inversely with d𝑡. To be more
precise, we demand that 𝑁 d𝑡 ≡ 1∕𝜂 remains constant, to the effect

d𝑁𝐴

d𝑡 = −𝜂Φc ⋅ 𝑁𝐴(𝑡)2 (4.8)

which by separation of variables is easily solved and has asymptotic 𝑡 → ∞ behaviour
given by

𝑁𝐴(𝑡) =
1

1∕𝑁𝐴(0) + 𝜂Φc𝑡
∼ 𝑡−1 (4.9)

offwhichwe read 𝜈∥ = 1. Since by design there is no spatial dependence in thismodel,
there is no value for 𝜈⟂. So far these mean-field exponents align with 𝛽 and 𝜈⟂ of DP
and CDP (table 2.1).
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Conclusion As displayed in table 4.1, eq. (4.5) is not completely off the two listed
measurements. Unfortunately, without somemeans of tracking where the grains are,
there seems to be no clear way to improve this estimate without assuming a 𝑔(𝑟) a
priori by inserting it into 𝑇(𝐵), which would defeat the purpose of finding theories for
the value of critical density that have predictive power.

4.2 Fokker-Planck Equation
Evolution Equation The next idea I consideredwaswriting down a Fokker-Planck
equation for the many body probability distribution 𝑃(𝒙1, … , 𝒙𝑁) of a configurations
of𝑁 grains that perform Brownianmotion when they overlap. It may be derived from
the Langevin-equation-like stochastic differential equation

𝒙̇𝑘(𝑡) = 𝟏{grain 𝑘 has overlap} ⋅ 𝜻 𝑘(𝑡) (4.10)

where 𝟏{⋯} is the indicator function of the event described in the curly braces and the
𝜻 𝑘(𝑡) aremutually independent temporally uncorrelatednoises dictating the velocities
𝒙̇𝑘(𝑡) of their grains’ positions, obeying

⟨
𝜻 𝑘(𝑡)

⟩
= 0 (4.11)

⟨
𝜻 𝑘(𝑡) ⊗ 𝜻 𝑘′(𝑡

′)
⟩
= 2𝐷 ⋅ 𝛿𝑘,𝑘′ ⋅ 𝛿(𝑡 − 𝑡′) ⋅ 𝟙 (4.12)

where⊗ denotes the outer product, employed to avoid too many indices, and𝐷 is the
diffusion constant of the randomwalk. The dynamics eq. (4.10) are a time-continuous
formulation of zero strain-amplitude2 random organization, translating to "grain 𝑘
performs Brownian motion if and only if it overlaps any other grain". One can derive
from this (Garcia-Palacios 2007, sec. 5.3) an evolution equation for the probability
distribution 𝑃(𝒙1, … , 𝒙𝑁, 𝑡) of 𝑁-grain configurations at time 𝑡

𝜕𝑃
𝜕𝑡 =

∑

𝑘
𝐷∇2

𝑘 ( 𝟏{grain 𝑘 has overlap} ⋅ 𝑃 ) (4.13)

where ∇𝑘 is the gradient with respect to the position 𝒙𝑘. The interpretation of this
equation is simple when recalling the diffusion equation 𝜕∕𝜕𝑡𝑃(𝒙, 𝑡) = 𝐷∇2𝑃(𝒙, 𝑡): if
the indicators 𝟏{⋯} were not present (i.e. just equal to 1) every term 𝐷∇2

𝑘 would just
generate diffusion of grain 𝑘. The presence of the indicator 𝟏{grain 𝑘 has overlap}now
turns off diffusion for grain 𝑘 if it does not meet the requirement of having an overlap.

Most Likely Dead Ends It is, however, not clear how to proceed from here in gain-
ing any insight on the general system with 𝑁 grains analytically. One reason for this
is that 𝟏{grain 𝑘 has overlap} depends on all grain positions in a way that does not re-
duce to any handleable algebraic expression in terms of the pair overlap indicators,
which are just given by the grain form factor

𝟏{grains 𝑗 and 𝑘 overlap} = Θ(𝜎 − |𝒓𝑗 − 𝒓𝑘|) (4.14)
2Introducing the periodic straining from Corté et al. 2008 would be just a matter of adding onto 𝒙̇𝑘

the contribution to velocity 𝒖(𝒓, 𝑡) that a grain at position 𝒓 experiences at time 𝑡 due to the shearing
of the surrounding fluid. This would result in a drift term in eq. (4.13)
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where Θ(𝑥) is the Heaviside step function. Instead, by inverting the statement "k has
no overlap" one gets "every grain 𝑗 ≠ 𝑘 does not overlap with 𝑘", which can be ex-
pressed in terms of indicator functions as

1 − 𝟏{grain 𝑘 has overlap} =
∏

𝑗≠𝑘
(1 − 𝟏{grains 𝑗 and 𝑘 overlap}) (4.15)

where we used that logical AND translates into multiplication of indicators 𝟏{⋯}𝟏{⋯}
and logical NOT into 1− 𝟏{⋯}. Multiplying out the right hand side of eq. (4.15) results
in an inclusion-exclusion principle reminiscent expression

1 − 𝟏{grain 𝑘 has overlap}
=

∑

ℳ⊆{1,…,𝑁}⧵{𝑘}
(−1)|ℳ|

∏

𝑚∈ℳ
𝟏{grains𝑚 and 𝑘 overlap} (4.16)

clearly containing not only handleable two-body terms, but arbitrarily high (up to𝑁)
body terms.

To mend this, one may consider that it sounds plausible that one can neglect
higher 𝑛-body terms at the densities of interest (i.e. around the density at which
the dynamics can just barely eliminate all overlaps), because in a system of homo-
geneously distributed grains, one would expect any given grain to have fewer neigh-
bours than in the densest packings, e.g. less than six (triangular crystal packing)
for two-dimensional discs and less than twelve (face centre cubic packing) for three-
dimensional spheres. However, sincewe are dealingwith a discontinuously changing,
discrete quantity, breaking the assumption of few overlaps results not in proportion-
ate, small error as physicists are accustomed to, but in non-negligible discontinuous
changes; simple example for how jarring this behaviour is can be easily seenwith only
𝑁 = 3, where, if we, for brevity, define

𝑂𝑚𝑘 ≔ 𝟏{grains𝑚 and 𝑘 overlap} (4.17)

the right hand side of eq. (4.16) becomes for e.g. 𝑘 = 1

1 − 𝟏{grain 𝑘 has overlap} = (−1)|∅| + (−1)|{2}|𝑂12 + (−1)|{2}|𝑂13 + (−1)|{2,3}|𝑂12𝑂13

= 1 − 𝑂12 − 𝑂13 + 𝑂12𝑂13
(4.18)

If we now "assume only pair overlaps" by neglecting 𝑂12𝑂13 then in configurations
where 1 overlaps with both grain 2 and 3 the supposed approximation results in

1 − 𝟏{grain 𝑘 has overlap} = 1 − 𝑂12 − 𝑂13 + 𝑂12𝑂13

≈ 1 − 𝑂12 − 𝑂13

= 1 − 1 − 1
= −1

(4.19)

which is not even a logical value. Even if this was not a concern and one could cut off
eq. (4.16) in eq. (4.13), surely there would be more than one overlap per particle at the
critical density and hence terms higher than second or even third order in Θ(𝜎 − 𝑟)
would have to be included. Thus it becomes attractive to switch approaches, with the
goal of dealing only with generators involving two-body terms.
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4.3 Many-Body Reaction System

4.3.1 From Instantaneous Activation to Reactions
Ideas and Inspirations To make progress with understanding eq. (4.13), I took a
hint from the reaction-diffusion realization of the Manna transition, such as Master
equations for grains on a lattice like Rossi, Pastor-Satorras, and Vespignani (2000) or
Pastor-Satorras and Vespignani (2000), or phenomenological field theories like Wij-
land, Oerding, andHilhorst (1998), Janssen and Stenull (2016) orWiese (2016), whose
reaction terms are just one- and two-body in nature: I got the idea to relax the require-
ment that grain activation and deactivation must be instantaneous3. Instead, one can
introduce active grains 𝐴 and inactive grains 𝐼 as two different species of grain, and
have only active grains move around (say by diffusion or repulsion) while inactive
grains are immobile; then two reactions would be introduced, with the goal of mak-
ing our reaction system resemble overlap reducing protocols like randomorganization
and biased random organization:

1. Active grains spontaneously decay into inactivity exponentially fast with rate 𝜇

𝐴
𝜇
→ 𝐼

2. Pairs of grains (𝑗, 𝑘) closer than one diameter 𝜎 react with a higher rate 𝜆 > 𝜇 to
a pair of active grains

𝑎𝑗 + 𝑎𝑘
𝜆⋅𝑂𝑗𝑘
,→ 2𝐴

where the 𝑎𝑘 ∈ {𝐴, 𝐼} and 𝑂𝑗𝑘 is the indicator of overlap between 𝑗 and 𝑘 from
eq. (4.17).

It is worth pausing briefly to recall what we want to do differently now: we detached
being active from having overlaps and instead instate dynamics that make it very un-
likely for an active grain to not be involved in an overlap and vice versa making it very
unlikely for an inactive grain to have an overlap4. Since being active/inactive now is
a degree of freedom, the outcome space has now been extended from {(𝒙1, … , 𝒙𝑁)} to
{((𝑎1, , … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁))}.

The benefit that this brings is the following: the proposed reactions involve only
two-body terms but will relax to the correct activation state, albeit gradually (over the
time-scales 𝜇−1 and 𝜆−1). This is more helpful that relying on an infinite amount of
arbitrarily high 𝑛-body terms for a instantaneous fool-proof check for whether a grain
is involved in overlaps or not.

We expect to recover the behaviour of continuous-time random organization (see
eq. (4.13)) in the limit 𝜆 ≫ 𝜇 ≫ 𝜏−1motion compared to the timescales5 of active grain

3as it is in eq. (4.13)
4Note that this did not destroy any absorbing states: if all grains are overlap free and inactive, none

of the introduced processes can give rise to activity again
5be that 𝐷∕𝜎2 for diffusion constant 𝐷 or perhaps 𝑣∕𝜎 for repulsion with drift-velocity 𝑣 that we

could introduce if we want to imitate the deterministic displacements in Milz and Schmiedeberg 2013
or Wilken et al. 2023
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motion 𝜏motion; this is because that limit (however carried out in practice)may be inter-
preted as sending to zero the characteristic times 𝜆−1 and 𝜇−1 it takes for the reactions
to produce the correct state of activations.

However it is, at this stage, not necessarily clear how to best describe this mathe-
matically, especially how exactly to implement that the reaction 𝑎𝑗 + 𝑎𝑘 → 2𝐴 only
takes place when there is an overlap between 𝑗 and 𝑘. In the following I will first dis-
cuss how one would implement this for one or two grains and then lead over on how
to formulate it for an arbitrary number of grains in section 4.3.2.

One Isolated Grain An approach familiar to statistical physics is the derivation
of a master equation. To proceed, we start with the simplest case where it is fairly
obvious what to do: an isolated grain, i.e. a grain that does not and, for the time we
are interested in it, will not overlap with other grains. If we choose 𝜆, 𝜇 ≫ 𝐷𝜎−2, this
is a scenario one would expect to happen frequently at lower densities, where grains
can easily find regions devoid of other grains. Reactions then happen so much faster
than diffusion (tuned by 𝐷) that the latter does not play a role. In this situation the
probabilities 𝑃𝑎(𝑡) of being active (𝑎 = 𝐴) or inactive (𝑎 = 𝐼) change in time by

𝜕𝑃𝐴(𝑡)
𝜕𝑡 = −𝜇 ⋅ 𝑃𝐴(𝑡)

𝜕𝑃𝐼(𝑡)
𝜕𝑡 = +𝜇 ⋅ 𝑃𝐴(𝑡)

(4.20)

or as an evolution equation for the probability-covector via a rate matrix6 equation

𝜕
𝜕𝑡
(
𝑃𝐴(𝑡) 𝑃𝐼(𝑡)

)
=
(
𝑃𝐴(𝑡) 𝑃𝐼(𝑡)

)
(−𝜇 +𝜇
0 0 ) (4.21)

with solution (found for example by splitting into eigenvectors of the rate matrix)

𝑃𝐴(𝑡) = 𝑃𝐴(0) ⋅ 𝑒−𝜇𝑡

𝑃𝐼(𝑡) = 𝑃𝐼(0) ⋅ (1 − 𝑒−𝜇𝑡)
(4.22)

i.e. an exponentially fast decay from 𝐴 → 𝐼, where 𝑃𝑎(0) is the probability of the iso-
lated grain being in activation state 𝑎 at time 0. So, on timescales relative to which
𝜇−1 is negligible, this decay to the correct activation state (namely inactivity 𝐼) is in-
stantaneous.

Two IsolatedGrains The nextmore complicated case is an isolated grain pair (𝑗, 𝑘)
undergoing the just described reactions; negligibility of motion now among other
things means that we may assume that the positions 𝒙𝑗 and 𝒙𝑘 of the involved grains
does not change and so neither does the indicator of overlap between 𝑗 and 𝑘, that
by eq. (4.17) reads 𝑂𝑗𝑘 = 𝟏{|𝒙𝑗 − 𝒙𝑘| < 𝜎}. The rate with which the joint probability
𝑃𝑎𝑗 ,𝑎𝑘 of grain 𝑗 having activation state 𝑎𝑗 and grain 𝑘 activation state 𝑎𝑘 changes is

6note that thematrix is not hermitian, which would preserve
∑

𝑎 |𝑃𝑎|
2 instead of probability

∑
𝑎 𝑃𝑎;

hermitianess is replaced by all rows summing to zero
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then given by

𝜕𝑃𝐴𝐴(𝑡)
𝜕𝑡 =

independent deactivation
of either grain⏞⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏞

(−𝜇𝑃𝐴𝐴(𝑡) − 𝜇𝑃𝐴𝐴(𝑡)) +

activation conditioned
on overlap between 𝑗 and 𝑘⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

𝜆 ⋅ 𝑂𝑗𝑘 ⋅ (𝑃𝐴𝐼(𝑡) + 𝑃𝐼𝐴(𝑡) + 𝑃𝐼𝐼(𝑡))

𝜕𝑃𝐴𝐼(𝑡)
𝜕𝑡 = (−𝜇𝑃𝐴𝐼(𝑡) + 𝜇𝑃𝐴𝐴(𝑡)) − 𝜆 ⋅ 𝑂𝑗𝑘 ⋅ 𝑃𝐴𝐼(𝑡)

𝜕𝑃𝐼𝐴(𝑡)
𝜕𝑡 = (+𝜇𝑃𝐴𝐴(𝑡) − 𝜇𝑃𝐼𝐴(𝑡)) − 𝜆 ⋅ 𝑂𝑗𝑘 ⋅ 𝑃𝐼𝐴(𝑡)

𝜕𝑃𝐼𝐼(𝑡)
𝜕𝑡 = (+𝜇𝑃𝐴𝐼(𝑡) + 𝜇𝑃𝐼𝐴(𝑡)) − 𝜆 ⋅ 𝑂𝑗𝑘 ⋅ 𝑃𝐼𝐼(𝑡)

(4.23)

where we extended the single-grain equation of 𝐴 → 𝐼 from eq. (4.20) by first noting
that in the case of 𝑂𝑗𝑘 = 0, where the behaviour is independent, the rate of change of
an initially uncorrelated pair reads

𝜕
𝜕𝑡
(
𝑃𝑎𝑗(𝑡)𝑃𝑎𝑘(𝑡)

)
=
𝜕𝑃𝑎𝑗(𝑡)
𝜕𝑡 𝑃𝑎𝑘(𝑡) + 𝑃𝑎𝑗(𝑡)

𝜕𝑃𝑎𝑘(𝑡)
𝜕𝑡

= 𝜇(𝛿𝑎𝑗 ,𝐼 − 𝛿𝑎𝑗 ,𝐴)𝑃𝐴,𝑗(𝑡)𝑃𝑎𝑘(𝑡) + 𝜇(𝛿𝑎𝑘 ,𝐼 − 𝛿𝑎𝑘 ,𝐴)𝑃𝑎𝑗(𝑡)𝑃𝐴,𝑘(𝑡)

and then, by the argument that the decay term should have the same form in general,
inferring what the two-grain decay term looks like by replacing 𝑃𝑎𝑗𝑃𝑎𝑘 ⇝ 𝑃𝑎𝑗 ,𝑎𝑘 . The
corresponding evolution equation to eq. (4.23) for the probability-covector via a rate
matrix equation reads

𝜕
𝜕𝑡𝑷(𝑡) = 𝑷(𝑡)

(
𝑄𝜇 + 𝑄𝜆

)
(4.24)

where 𝑷(𝑡) is the probability covector

𝑷(𝑡) =
(
𝑃𝐴𝐴(𝑡) 𝑃𝐴𝐼(𝑡) 𝑃𝐼𝐴(𝑡) 𝑃𝐼𝐼(𝑡)

)
(4.25)

and where 𝑄𝜇 and 𝑄𝜆 are rate matrices generating inactivation 𝐴 → 𝐼 and activation
𝑎𝑗 + 𝑎𝑘 → 2𝐴 respectively, reading

𝑄𝜇 ≔ 𝜇⋅
⎛
⎜
⎜
⎝

−2 1 1 0
0 −1 0 1
0 0 −1 1
0 0 0 0

⎞
⎟
⎟
⎠

𝑄𝜆 ≔ 𝜆 ⋅ 𝑂𝑗𝑘⋅
⎛
⎜
⎜
⎝

0 0 0 0
1 −1 0 0
1 0 −1 0
1 0 0 −1

⎞
⎟
⎟
⎠

(4.26)

We plot the solutions of eq. (4.23) in fig. 4.3 for both the case of 𝑂𝑗𝑘 = 0 (𝑗 and 𝑘 not
overlapping) and𝑂𝑗𝑘 = 1 (𝑗 and 𝑘 overlapping): when𝑂𝑗𝑘 = 0 (for simplicity starting
out at 𝑃𝐼𝐼(0) = 0), the pair decays approximately like

𝑃𝐼𝐼(𝑡)
𝑂𝑗𝑘=0
≈ 1 − 𝑒−𝜇𝑡
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to both being inactive with 100% probability. On the other hand, when 𝑂𝑗𝑘 = 1 (with
simplicity starting out at 𝑃𝐴𝐴(0) = 0), the pair decays approximately like

𝑃𝐴𝐴(𝑡)
𝑂𝑗𝑘=1
≈ 𝑃∞𝐴𝐴(1 − 𝑒−𝜆𝑡)

to the stationary value 𝑃∞𝐴𝐴 = 𝜆∕(𝜆 + 2𝜇) given by the balance of decays 𝐴 → 𝐼 and
activation𝐴+𝐼 → 2𝐴 and 𝐼 +𝐼 → 2𝐴. Note that 𝑃∞𝐴𝐴moves ever closer to 1 the larger
the pair activation rate 𝜆 the is compared to the rate of decay to inactivity 𝜇.

Equation for a Diffusing Grain We want to now try to get the grain motion back
into the picture by introducing diffusion of active grains. The behaviour of the isolated
grain eq. (4.21) does not change when diffusion is introduced, because decay 𝐴 → 𝐼
happens with rate 𝜇 no matter where exactly the grain is or how it is moving. For
a grain pair eq. (4.24) it does matter though. Hence, for simplicity we are after all
interested in what the equations withmotion look like, when there is just one grain: if
active grains diffused, but did not decay, the time evolution of𝑃𝐴(𝒙, 𝑡)would obviously
just be the diffusion equation

(
𝜕∕𝜕𝑡 − 𝐷∇2) 𝑃𝐴(𝒙, 𝑡) = 0 with active-grain diffusion

constant 𝐷. So together with the decay term −𝜇𝑃𝐴(𝒙, 𝑡) we get

( 𝜕𝜕𝑡 − 𝐷∇2) 𝑃𝐴(𝒙, 𝑡) = −𝜇 ⋅ 𝑃𝐴(𝒙, 𝑡)

𝜕
𝜕𝑡𝑃𝐼(𝒙, 𝑡) = +𝜇 ⋅ 𝑃𝐴(𝒙, 𝑡)

(4.27)

which one may again write in matrix, or rather in operator form

𝜕
𝜕𝑡𝑷(𝑡) = 𝑷(𝑡)

(
𝑄𝐷 + 𝑄𝜇

)
(4.28)

with 𝑄𝜇 generating reactions by coupling 𝑃𝐴(𝒙, 𝑡) and 𝑃𝐼(𝒙, 𝑡)

𝑄𝜇 ∶
(
𝑃𝐴(𝒙) 𝑃𝐼(𝒙)

)
↦→

(
𝑃𝐴(𝒙) 𝑃𝐼(𝒙)

)
(−𝜇 +𝜇
0 0 ) (4.29)

and 𝑄𝐷 generating diffusion exclusively in the active state by acting with 𝐷∇2 exclu-
sively on the 𝑃𝐴-component

𝑄𝐷 ∶
(
𝑃𝐴(𝒙) 𝑃𝐼(𝒙)

)
↦→

(
𝐷∇2𝑃𝐴(𝒙) 0

)

= 𝐷∇2 (𝑃𝐴(𝒙) 𝑃𝐼(𝒙)
)
(1 0
0 0)

= [(𝐷∇
2 0

0 0) (
𝑃𝐴(𝒙)
𝑃𝐼(𝒙)

)]
⊺

(4.30)

In Fourier space eq. (4.27) reads

𝜕𝑃̃𝐴(𝒌, 𝑡)
𝜕𝑡 = (−𝐷𝒌2 − 𝜇) ⋅ 𝑃̃𝐴(𝒌, 𝑡)

𝜕𝑃̃𝐼(𝒌, 𝑡)
𝜕𝑡 = +𝜇 ⋅ 𝑃̃𝐴(𝒌, 𝑡)

(4.31)



4.3. Many-Body Reaction System 65

0 2 4 6 8 10
time in units of characteristic inactivation time t

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
P a

j,a
k(t

) o
f a

ct
iv

at
io

ns
 (a

j,a
k)

Ojk = 0, pair activation rate = 10 and inactivation rate = 1

both active PAA(t)
one inactive PIA(t) + PAI(t)
both inactive PII(t)
lim
t

PAA (t) = 1

(a) Solution to eq. (4.24) when 𝑂𝑗𝑘 = 0 (grain 𝑗 and 𝑘 do
not overlap): decay (blue curve) with characteristic time 𝜇−1
to complete inactivity 𝑃∞𝐼𝐼 = 100% with initial conditions
𝑃𝐴𝐴(0) = 100% and all other 𝑃𝑎𝑗 ,𝑎𝑘 (0) = 0%. Note that the
time axis goes all the way to 𝜇𝑡 = 10
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(b) Solution to eq. (4.24) when 𝑂𝑗𝑘 = 1 (grain 𝑗 and 𝑘 over-
lap): decay (red curve) with characteristic time 𝜆−1 to asymp-
totic probability 𝑃∞𝐴𝐴 = 𝜆∕(𝜆+2𝜇). The initial conditions are
𝑃𝐼𝐼(0) = 100% and all other 𝑃𝑎𝑗 ,𝑎𝑘 (0) = 0%. The asymptotic
value will be the closer to 1 the further one goes to the limit
of 𝜆 ≫ 𝜇. Note that the time axis goes only until 𝜇𝑡 = 1. The
stationary value 𝑃∞𝐴𝐴 is determined by noting that 𝜕𝑷∕𝜕𝑡 → 0
as 𝑡 → ∞ and solving it by finding all covectors 𝑷∞ from the
left null-space of 𝑄, i.e. those fulfilling 0 = 𝑷∞𝑄

Figure 4.3: Solution of eq. (4.23) both with (fig. 4.3a) and without (fig. 4.3b) 𝑗 and
𝑘 overlapping, as indicated by 𝑂𝑗𝑘 (respectively 𝑂𝑗𝑘 = 1 and 𝑂𝑗𝑘 = 0). They show
that when 𝜆 ≫ 𝜇, the probability of the activation states being correct is reached
exponentially very quickly.
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where the solution is obvious for the first equation and then easily obtained for the
second equation by integration

𝑃̃𝐴(𝒌, 𝑡) = 𝑒−(𝐷𝒌
2+𝜇)𝑡𝑃̃𝐴(𝒌, 0)

𝑃̃𝐼(𝒌, 𝑡) = 𝑃̃𝐼(𝒌, 0) +
𝜇

𝐷𝒌2 + 𝜇

(
1 − 𝑒−(𝐷𝒌

2+𝜇)𝑡
)
𝑃̃𝐴(𝒌, 0)

As 𝑡 → ∞ the probability 𝑃̃𝐴(𝒌, 𝑡) of any active-grain mode being occupied vanishes,
leading, unsurprisingly, to

𝑃𝐼(𝑡) ≔ ∫ d𝑑𝑥 𝑃𝐼(𝒙, 𝑡)
𝑡→∞
,→ 100%

Two Diffusing Grains We can now again extend this to two grains. Let ∇𝑗 and
∇𝑘 be the gradients with respect to 𝒙𝑗 and 𝒙𝑘 respectively. To make active grains not
only decay but diffuse we extend eq. (4.24) by first introducing dependence on posi-
tion 𝑃𝑎𝑗 ,𝑎𝑘(𝒙𝑗, 𝒙𝑘), such that now we track both the activation states 𝑎𝑗 and 𝑎𝑘 and the
positions 𝒙𝑗 and 𝒙𝑘 of grains 𝑗 and 𝑘. Then we add the generator 𝑄𝐷 of active grain
diffusion

𝜕
𝜕𝑡𝑷(𝒙𝑗, 𝒙𝑘, 𝑡) = 𝑷(𝒙𝑗, 𝒙𝑘, 𝑡)

(
𝑄𝐷 + 𝑄𝜇 + 𝑄𝜆

)
(4.32)

where 𝑄𝐷 is written downmost compactly via its transpose 𝑄
⊺
𝐷 (not its adjoint 𝑄

†
𝐷, we

just want to transpose the matrix that the derivative operators are arranged in)

𝑄⊺
𝐷 ∶

⎛
⎜
⎜
⎝

𝑃𝐴𝐴(𝒙𝑗, 𝒙𝑘)
𝑃𝐴𝐼(𝒙𝑗, 𝒙𝑘)
𝑃𝐼𝐴(𝒙𝑗, 𝒙𝑘)
𝑃𝐼𝐼(𝒙𝑗, 𝒙𝑘)

⎞
⎟
⎟
⎠

↦→

⎛
⎜
⎜
⎜
⎝

(𝐷∇2
𝑗 + 𝐷∇2

𝑘)𝑃𝐴𝐴(𝒙𝑗, 𝒙𝑘)
𝐷∇2

𝑗𝑃𝐴𝐼(𝒙𝑗, 𝒙𝑘)
𝐷∇2

𝑘𝑃𝐼𝐴(𝒙𝑗, 𝒙𝑘)
0

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

(𝐷∇2
𝑗 + 𝐷∇2

𝑘)
𝐷∇2

𝑗
𝐷∇2

𝑘
0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑃𝐴𝐴(𝒙𝑗, 𝒙𝑘)
𝑃𝐴𝐼(𝒙𝑗, 𝒙𝑘)
𝑃𝐼𝐴(𝒙𝑗, 𝒙𝑘)
𝑃𝐼𝐼(𝒙𝑗, 𝒙𝑘)

⎞
⎟
⎟
⎠

(4.33)

Note also that we also now need to be careful with grain indistinguishability: since
we will only care on how many active grains there are at any given location and not
who they are, there is no point in tracking the identity of grains. 𝑃𝑎𝑗 ,𝑎𝑘(𝒙𝑗, 𝒙𝑘) should
be the same as 𝑃𝑎𝑘 ,𝑎𝑗(𝒙𝑘, 𝒙𝑗). and in both cases it should be the probability of the even
“some grain of activity state 𝑎𝑗 is located at 𝒙𝑗 and some grain of activity state 𝑎𝑘 is
located at 𝒙𝑘”. This has consequences for the normalization: there is a (1∕𝑁!) prefactor
(with 𝑁 = 2 here)

1
2!
⎛
⎜
⎝

∑

𝑎𝑗

∫ d𝑑𝑥𝑗
⎞
⎟
⎠

⎛
⎜
⎝

∑

𝑎𝑘

∫ d𝑑𝑥𝑘
⎞
⎟
⎠
𝑃𝑎𝑗 ,𝑎𝑘(𝒙𝑗, 𝒙𝑘) = 100% (4.34)

where the sums
∑

𝑎 run over 𝑎 ∈ {𝐴, 𝐼}.
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Towards a More Scalable Language While these discussions illustrate the basic
idea of how one would implement the evolution equations for 𝑃𝑎1,…,𝑎𝑁(𝒙1, … , 𝒙𝑁), it
is clear that doing so in these manually crafted matrices is not scalable. This burden
seems very unnecessary, given that the reactions involved are very simple. To now
implement this idea in a concise way for an arbitrary number of grains, one may turn
to more sophisticated frameworks for reaction system descriptions, that take into ac-
count the spatial correlation of grains. This end is served by the formalism developed
in Doi (1976a), that discusses using the many-body language typically employed in
many-body quantum systems (say, electrons and phonons in a crystalline solid) for
classical physical stochastic systems and gains insight into the many-body aspects of
diffusion controlled chemical reactions in Doi (1976b) using that technique.

Before introducing the framework to the extent I deem necessary to understand
mymodel, I want to reformulate the generators𝑄𝜇 and𝑄𝜆 as a showcase: Let ⟨𝐴| and
⟨𝐼| be the basis vectors of the space in which we the probability covector 𝑷 ≃ ⟨𝑃| lies.
We nowwant to think of them as embedded in a symmetric Fock-space with vaccuum
state |0⟩ and creation/annihilation operators with commutation relations

[
𝐴,𝐴†] = 1

and
[
𝐼, 𝐼†

]
= 1 (all other commutators vanishing). Starting out for simplicity with a

single grain 𝑄𝜇: the probability vector 𝑷⊺ may be written as a ket

|𝑃⟩ = 𝑃𝐼 |𝐼⟩ + 𝑃𝐴 |𝐴⟩ = (𝑃𝐴𝐴† + 𝑃𝐼𝐼†) |0⟩ (4.35)

In this language eq. (4.20) reads

𝜕
𝜕𝑡
|||𝑃(𝑡)⟩

!
= +𝜇𝑃𝐴(𝑡) |𝐼⟩ − 𝜇𝑃𝐴(𝑡) |𝐴⟩

= 𝜇(𝑃𝐴𝐴† − 𝑃𝐴𝐼†) |0⟩
= 𝜇𝐴† ⋅ 𝑃𝐴(𝑡) |0⟩⏟⎴⏟⎴⏟

=𝐴|𝑃(𝑡)⟩

−𝐼† ⋅ 𝑃𝐴(𝑡) |0⟩⏟⎴⏟⎴⏟
=𝐴|𝑃(𝑡)⟩

= 𝜇(𝐴† − 𝐼†)𝐴
⏟⎴⎴⏟⎴⎴⏟

𝑄†𝜇

|||𝑃(𝑡)⟩

(4.36)

where we used

𝐴 |||𝑃(𝑡)⟩ = 𝐴(𝑃𝐴𝐴† + 𝑃𝐼𝐼†) |0⟩
= (𝑃𝐴(

[
𝐴,𝐴†]
⏟ ⏟ ⏟

=1

+𝐴†𝐴) + 𝑃𝐼(
[
𝐴, 𝐼†

]
⏟⏟⏟

=0

+𝐼†𝐴)) |0⟩

= 𝑃𝐴 |0⟩ + 𝑃𝐴𝐴†𝐴 |0⟩
⏟⎴⎴⏟⎴⎴⏟

=0

+𝑃𝐼𝐼†𝐴 |0⟩⏟⎴⏟⎴⏟
=0

= 𝑃𝐴 |0⟩

(4.37)

Just like the Markov rate matrix, the translation into the Fock-space formalism is not
symmetric. Instead, one should interpret

(𝐼† − 𝐴†)𝐴
⏟⎴⎴⏟⎴⎴⏟

( (creation ’to’)− (creation ’from’) ) × (annihilation ’from’)

(4.38)
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Conveniently, once we have written down the generator for 𝐴 → 𝐼 in this way, it is
valid for all grain numbers7:

𝑄†
𝜇 |𝐴𝑛𝐼𝑚⟩ ≔ (𝐼† − 𝐴†)𝐴 ⋅ (𝐴†)𝑛(𝐼†)𝑚 |0⟩

= 𝜇(𝐼† − 𝐴†)(
[
𝐴, (𝐴†)𝑛

]
⏟⎴⏟⎴⏟
𝑛(𝐴†)𝑛−1

+(𝐴†)𝑛𝐴)(𝐼†)𝑚 |0⟩

= 𝑛𝜇(𝐼† − 𝐴†)(𝐴†)𝑛−1(𝐼†)𝑚 |0⟩
= 𝑛𝜇((𝐼†)𝑚+1(𝐴†)𝑛−1 − (𝐴†)𝑛(𝐼†)𝑚) |0⟩
= +𝑛𝜇 ||||𝐴

𝑛−1𝐼𝑚+1
⟩
− 𝑛𝜇 |𝐴𝑛𝐼𝑚⟩

(4.39)

which are the correct rates: in state |𝐴𝑛𝐼𝑚⟩, 𝑛 active grains decay to with rate 𝜇 to a
state 𝜇 ||||𝐴

𝑛−1𝐼𝑚+1
⟩
with one active grain less and an inactive grain more. The reaction

𝑎1 + 𝑎2 ↦→ 2𝐴 is similarly simple to write down with operators

𝑄†
𝜆 =

∑

𝑎1,𝑎2

(
𝐴†𝐴† − 𝑎†1𝑎

†
2

)
𝑎1𝑎2 (4.40)

4.3.2 Field Operator Language
Field Operators and Bra-Ket-Notation, Single-Species Case In contrast to our
situation, the papers, for simplicity’s sake, elaborate their ideas almost entirely for
the case of a single particle species, but the concepts generalize easily. The central
starting-point ideas of the papers are (a) the introduction of a many-particle Hilbert-
space with vaccuum state (or vacant state) |0⟩ and annihilation/creation field operator
pairs Ψ(𝒓) and Ψ†(𝒓) for respectively removing or inserting particles at location 𝒓 (in
our case down the line it will become one for each species of particle), which obey the
commutation relations [

Ψ(𝒓), Ψ†(𝒓′)
]
= 𝛿(𝒓 − 𝒓′) (4.41)

(all other commutators vanishing, especially all commutators between field operators
belonging to distinct particle species); the purpose being (b) interpreting the prob-
ability distribution on all particle configurations with all possible particle numbers
𝑃 = (𝑃(0), 𝑃(1), 𝑃(2), … ), which is defined on the disjoint union of all𝑁-particle config-
uration spaces {(𝒙1, … , 𝒙𝑁)}

Ω =
⋃̇∞

𝑁=0
{(𝒙1, … , 𝒙𝑁)} (4.42)

(with 𝑃(𝑁) being the restriction of 𝑃 to {(𝒙1, … , 𝒙𝑁)}) as a Dirac-bra8

⟨𝑃| =
∞∑

𝑁=0
∫ d𝑃(𝑁) (𝒙1, … , 𝒙𝑁) ⟨0| Ψ(𝒙1)⋯Ψ(𝒙𝑁)⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

≕ ⟨𝒙1,…,𝒙𝑁|

(4.43)

7note that
[
𝐴, (𝐴†)𝑛

]
= 𝑛(𝐴†)𝑛−1 is easily shown by induction via

[
𝐴, (𝐴†)𝑛

]
=
[
𝐴,𝐴†](𝐴†)𝑛−1 +

𝐴†[𝐴, (𝐴†)𝑛−1
]

8or alternatively a Dirac-ket, like in Doi (1976a) and Doi (1976b), but I choose bras for this section
of the text to keep closer to Markov-Process conventions (see eq. (4.46)) rather than those of Quantum
Mechanics. We will switch between using |𝑃⟩ and ⟨𝑃| as is convenient.
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with (if one is willing to deal with 𝑃(𝒙1, … , 𝒙𝑁) possibly being distributional)

d𝑃 (𝒙1, … , 𝒙𝑁) =
d𝑑𝑥1⋯d𝑑𝑥𝑁

𝑁! 𝑃(𝒙1, … , 𝒙𝑁) (4.44)

(the 𝑁! coming from the indifference of the dynamics to the identity of Ψ-particles,
usually called particle indistinguishability) that will evolve in time according to an
operator 𝑄

𝜕
𝜕𝑡 ⟨𝑃(𝑡)

||| = ⟨𝑃(𝑡)||| 𝑄 (4.45)

in analogy to evolving the probability covector 𝑷(𝑡) of a finite-state (and thus finite-
dimensionally described) Markov-Process according to a master equation given by
some rate matrix 𝑄 (examples being eq. (4.21) and eq. (4.24))

𝜕
𝜕𝑡𝑷(𝑡) = 𝑷(𝑡) 𝑄 (4.46)

and also, more loosely, in analogy to the Schrödinger equation

𝑖 𝜕𝜕𝑡
|||𝜓(𝑡)⟩ = 𝐻 |||𝜓(𝑡)⟩

appropriating the powerful Bra-Ket notation to stochastic ends; besides the latter ben-
efit, we will demonstrate shortly that this is a convenient formulation of reaction-
systems where fully resolved spatial-correlations are important (like in our present
case). In fact, one can glean off the fields of quantum-many body systems and quan-
tum field theory in the search for approaches to solving problems. An example for
this was worked out by Doi (1976b) themselves, namely the expansion (in Feynman-
diagrams) of the probability-generating function 𝐺(𝑧, 𝑡) =

⟨
𝑧𝑁
⟩
of the number of par-

ticles 𝑁 (some time 𝑡 after they were initialized as a Poisson point cloud at time 0),
performing Brownian motion and undergoing the reaction Ψ + Ψ → Ψ at some fi-
nite rate when closer than some reaction distance (reminiscent of coalescing random
walks on lattices).

Multiple Species Case As already foreshadowed, in our case we want to introduce
two grain species, active 𝐴(𝒓) and inactive 𝐼(𝒓) grains, where, similar to the single-
species eq. (4.41) we have

[
𝐴(𝒓), 𝐴†(𝒓′)

]
= 𝛿(𝒓 − 𝒓′) and

[
𝐼(𝒓), 𝐼†(𝒓′)

]
= 𝛿(𝒓 − 𝒓′) with

all other commutators vanishing, which can be summarized as
[
𝑎(𝒓), 𝑎′†(𝒓′)

]
= 𝛿𝑎,𝑎′𝛿(𝒓 − 𝒓′) (4.47)

with activation states 𝑎, 𝑎′ ∈ {𝐼, 𝐴} and all other commutators vanishing. Relative to
the single species case, this extends the outcome spaceΩ to all possible configurations
of positions and activation states {(𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁)} for all grain numbers 𝑁

Ω =
⋃̇∞

𝑁=0
{(𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁)} (4.48)

𝐴(𝒓) and 𝐼(𝒓) should be interpreted as describing the stochastic density field of ac-
tive/inactive grains as opposed to the interpretation these kinds of operators have in
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their farmore common use as quantummany-body descriptions. Writing ⟨𝑃| in terms
of the probability distribution 𝑃 = (𝑃(0), 𝑃(1), 𝑃(2), … ) now is a matter of writing

⟨𝑃| =
∞∑

𝑁=0
∫ d𝑃(𝑁) (𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁) ⟨0| 𝑎1(𝒙1)⋯𝑎𝑁(𝒙𝑁)⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

≕ ⟨𝑎1,…,𝑎𝑁 ,𝒙1,…,𝒙𝑁|

(4.49)

with

∫ d𝑃(𝑁)(𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁) (⋯) =

∫
d𝑑𝑥1⋯d𝑑𝑥𝑁

𝑁!
∑

𝑎1⋯𝑎𝑁

𝑃(𝑁)𝑎1,…,𝑎𝑁(𝒙1, … , 𝒙𝑁) (⋯)
(4.50)

where also here the division by 𝑁! stems from indistinguishability amongst 𝐼 and 𝐴
grains respectively.

Random Variable Operators and Expectation Values The expectation value of
a random variable𝒳 ∶ Ω → ℝ is by definition computed with

⟨𝒳⟩ =
∞∑

𝑁=0

∑

𝑎1⋯𝑎𝑁

∫
d𝑑𝑥1⋯d𝑑𝑥𝑁

𝑁! 𝑃(𝑁)𝑎1,…,𝑎𝑁(𝒙1, … , 𝒙𝑁)

× 𝒳(𝑁)(𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁)
(4.51)

where 𝒳(𝑁) is the restriction of the random variable 𝒳 to the 𝑁-grain configuration
space {𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁}. By eq. (4.49) and the commutation relations [𝑎(𝒓), 𝑎′(𝒓′)] =
𝛿𝑎,𝑎′𝛿(𝒓 − 𝒓′) from eq. (4.47) (see appendix A.2), we can write

𝑃(𝑁)𝑎1,…,𝑎𝑁(𝒙1, … , 𝒙𝑁) = ⟨𝑃|||𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁⟩
= ⟨𝑃| 𝑎†1(𝒙1)⋯𝑎†𝑁(𝒙𝑁) |0⟩

(4.52)

(compare Doi 1976a, eq. 16) By shortening the notation for integration and summa-
tion over the outcome space to

∞∑

𝑁=0
∫

d𝑑𝑟1⋯d𝑑𝑟𝑁
𝑁!

∑

𝑎1⋯𝑎𝑁

←→ ∫ d𝜔 (4.53)

for legibility, where 𝜔 = (𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁) ∈ Ω is an outcome with an associated
ket

|𝜔⟩ = |||𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁⟩ (4.54)
we see that eq. (4.51)may bewrittenwithhelp of a resolution of identity𝟙 = ∫ d𝜔′ |||𝜔′⟩ ⟨𝜔′|||
(verified in appendix A.2)

⟨𝒳⟩ = ∫ d𝜔 𝑃(𝜔)𝒳(𝜔)

= ∫ d𝜔 ⟨𝑃|𝜔⟩𝒳(𝜔)

= ∫ d𝜔 ∫ d𝜔′ ⟨𝑃|||𝜔′⟩ ⟨𝜔′|||𝜔⟩⏟⏟⏟
𝛿(𝜔−𝜔′)

𝒳(𝜔)

(4.55)



4.3. Many-Body Reaction System 71

such that by 𝛿(𝜔 − 𝜔′)𝒳(𝜔) = 𝛿(𝜔 − 𝜔′)𝒳(𝜔′) it is possible to write

⟨𝒳⟩ = ∫ d𝜔 ∫ d𝜔′ ⟨𝑃|||𝜔′⟩ ⟨𝜔′|||𝜔⟩𝒳(𝜔′)

= ⟨𝑃| (∫ d𝜔′𝒳(𝜔′) |||𝜔′⟩ ⟨𝜔′|||) ∫ d𝜔 |𝜔⟩
(4.56)

where one should recall that

∫ d𝜔 |𝜔⟩ =
∞∑

𝑁=0
∫

d𝑑𝑥1⋯d𝑑𝑥𝑁
𝑁!

∑

𝑎1⋯𝑎𝑁

|||𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁⟩ (4.57)

and it should be clarified that

𝛿(𝜔 − 𝜔′) = 𝛿𝑁,𝑁′ ⋅
∑

𝜋∈𝑆𝑁

𝑁∏

𝑘=1
𝛿𝑎𝑘 ,𝑎′𝜋(𝑘)𝛿(𝒙𝑘 − 𝒙′𝜋(𝑘)) (4.58)

for 𝜔 = (𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁) and 𝜔′ = (𝑎′1, … , 𝑎
′
𝑁′ , 𝒙′1, … , 𝒙

′
𝑁′). The reason for doing

this is that we see that there is a canonical operator pendant𝑋 to the random variable
𝒳, abstractly given by

𝑋 ≔ ∫ d𝜔𝒳(𝜔) |𝜔⟩ ⟨𝜔| (4.59)

Thus the expectation value expression eq. (4.51) condenses to

⟨𝒳⟩𝑡 = ⟨𝑃(𝑡)||| 𝑋 |sum⟩ (4.60)

where, as Doi (1976a) notes, we write

∫ d𝜔 |𝜔⟩ =
∞∑

𝑁=0
∫

d𝑑𝑥1⋯d𝑑𝑥𝑁
𝑁!

∑

𝑎1⋯𝑎𝑁

|||𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁⟩

=
∞∑

𝑁=0
∫

d𝑑𝑥1⋯d𝑑𝑥𝑁
𝑁!

∑

𝑎1⋯𝑎𝑁

𝑎†1(𝒙1)⋯𝑎†𝑁(𝒙𝑁) |0⟩

=
∞∑

𝑁=0

1
𝑁!

⎛
⎜
⎝
∫ d𝑑𝑥1

∑

𝑎1

𝑎†1(𝒙1)
⎞
⎟
⎠
⋯
⎛
⎜
⎝
∫ d𝑑𝑥𝑛

∑

𝑎𝑛

𝑎†𝑛(𝒙𝑛)
⎞
⎟
⎠

=
∞∑

𝑁=0

1
𝑁! (∫ d𝑑𝑟

∑

𝑎
𝑎†(𝒓))

𝑁

= exp (∫ d𝑑𝑟
∑

𝑎
𝑎†(𝒓)) |0⟩

≕ |sum⟩

(4.61)

(compare Doi 1976a, eqs. 28 - 31). Random variables that happen to split up into the
form

𝒳(𝑁)(𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁) =
𝑁∑

𝑘=1
𝒳[1](𝑎𝑘, 𝒙𝑘) +

𝑁∑

𝑘=1

𝑘−1∑

𝑗=1
𝒳[2](𝑎𝑘, 𝑎𝑗, 𝒙𝑘, 𝒙𝑗) +⋯ (4.62)
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i.e. with a clean separation into one-body terms of homogeneous9 form𝒳[1], two-body
terms of homogeneous form𝒳[2] etc., work out to

𝑋 =
∞∑

𝑛=0

1
𝑛!𝒳

[𝑛](𝑎1, … , 𝑎𝑛, 𝒙1, … , 𝒙𝑛) ⋅ 𝑎
†
1(𝒓1)⋯𝑎†𝑛(𝒓𝑛) ⋅ 𝑎1(𝒙1)⋯𝑎𝑛(𝒙𝑛) (4.63)

a formula reminiscent of splitting up quantummany-body operators into 𝑛-body com-
ponents (Doi 1976a, eq. 24).

A simple and important example for the operator form of a random variable is
active/inactive grain densities 𝜌𝑎(𝒓), whose (𝒓-dependent) random variables𝒜(𝒓) and
ℐ(𝒓) read respectively

𝒜(𝑁)(𝒓) =
𝑁∑

𝑘=1
𝛿𝐴,𝑎𝑘𝛿(𝒓 − 𝒙𝑘)

ℐ(𝑁)(𝒓) =
𝑁∑

𝑘=1
𝛿𝐼,𝑎𝑘𝛿(𝒓 − 𝒙𝑘)

(4.64)

One can read off they contain only one-body terms 𝒜[1](𝑎, 𝒙; 𝒓) = 𝛿𝐴,𝑎𝛿(𝒓 − 𝒙) and
ℐ[1](𝑎, 𝒙; 𝒓) = 𝛿𝐼,𝑎𝛿(𝒓 − 𝒙). Hence the operator for active and inactive grain density
reads 𝐴†(𝒓)𝐴(𝒓) and 𝐼†(𝒓)𝐼(𝒓) respectively10.

Properties and interpretation of |sum⟩ The name |sum⟩ was probably chosen
in Doi (1976a) in analogy to finite state (and hence finite-dimensionally described)
Markov-processes with states labelled by an index running from 𝑗 = 1,… ,𝑚. In this
case, a random variable𝒳𝑗 is operatorized by

𝑋

finite
dimen-
sionally=

⎛
⎜
⎜
⎜
⎜
⎝

𝒳1
𝒳2

𝒳3
⋱

𝒳𝑚

⎞
⎟
⎟
⎟
⎟
⎠

The vector |sum⟩ for finitely many states reads

|sum⟩

finite
dimen-
sionally=

⎛
⎜
⎜
⎜
⎜
⎝

1
1
1
⋮
1

⎞
⎟
⎟
⎟
⎟
⎠

9With homogeneous I mean to say that every grain 𝑘, pair (𝑘, 𝑗) etc. add into the𝒳(𝑁) in exactly the
same way, as given by𝒳[𝑛], guaranteeing𝒳 is unchanged under grain identity permutations

10So in contrast to the expectation value formula, this time the expression is familiar from quantum
physics, where the spatial density of quanta in some mode of motion 𝜓𝑚(𝒓) is given by 𝜓†𝑚(𝒓)𝜓𝑚(𝒓).
This makes sense, because it derives not from how to interpret 𝑃 versus how to interpret 𝜓 but from
the algebra of creation/annihilation operators, which is the same in both cases
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and will, when passed to a covector, sum all of their components. Let the probability
covector read

⟨𝑃|

finite
dimen-
sionally=

(
𝑃1 𝑃2 𝑃3 ⋯ 𝑃𝑚

)

The expectation value formula now, perhaps, is more accessible and understandable:

⟨𝑃| 𝑋 |sum⟩

finite
dimen-
sionally=

(
𝑃1 𝑃2 𝑃3 ⋯ 𝑃𝑚

)
⎛
⎜
⎜
⎜
⎜
⎝

𝒳1
𝒳2

𝒳3
⋱

𝒳𝑚

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

1
1
1
⋮
1

⎞
⎟
⎟
⎟
⎟
⎠

=
(
𝑃1𝒳1 𝑃2𝒳2 𝑃3𝒳3 ⋯ 𝑃𝑚𝒳𝑚

)
⎛
⎜
⎜
⎜
⎜
⎝

1
1
1
⋮
1

⎞
⎟
⎟
⎟
⎟
⎠

= 𝑃1𝒳1 +⋯+ 𝑃𝑚𝒳𝑚

where in the case of continuumdegrees of freedom, such as the configurations (𝒙1, … , 𝒙𝑁)
the sum has to be replaced by an a more general (measure-theoretical) integral.

That |sum⟩ is the means by which expectation values are computed has conse-
quences that are surprising for anyone only used to the quantum use of operator-
techniques. |sum⟩ has the property (shown in appendix A.3)

𝑎(𝒓) |sum⟩ = |sum⟩ (4.65)

i.e. it can absorb (and dispense) an arbitrary amount of 𝑎(𝒓) factors. Hence, for ex-
ample, even though the proper operatorization of active grain density is𝐴†(𝒓)𝐴(𝒓), as
soon as it comes to taking averages

𝜌𝐴(𝒓, 𝑡) = ⟨𝒜(𝒓)⟩ = ⟨𝑃(𝑡)||| 𝐴†(𝒓) 𝐴(𝒓) |sum⟩
⏟⎴⎴⏟⎴⎴⏟

=|sum⟩

= ⟨𝑃(𝑡)||| 𝐴†(𝒓) |sum⟩
(4.66)

and, in fact, the 𝑛-point density for any combination of active and inactive grains be-
comes

𝜌(𝑛)𝑎1,…,𝑎𝑛(𝒓1, … , 𝒓𝑛, 𝑡) = ⟨𝑃(𝑡)||| 𝑎
†
1(𝒓1)⋯𝑎†𝑛(𝒓𝑛) 𝑎1(𝒓1)⋯𝑎𝑛(𝒓𝑛) |sum⟩⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

=|sum⟩

= ⟨𝑃(𝑡)||| 𝑎
†
1(𝒓1)⋯𝑎†𝑛(𝒓𝑛) |sum⟩

(4.67)

Closing Remarks on the Formalism Basics I want to close this presentation by
reiterating that this is not a map to a quantum system, but expresses aMarkov process
in operator language11. This methodology for describing moving grains undergoing

11Here it will allow us to express the otherwise clumsy Master-equation concisely, with every term
in 𝑄 very legibly introducing one simple to imagine process. Contrast this with eq. (4.23)
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reactions that only occurwhen they are close enough (and possibly changing the grain
number) merely happens to be very similar to many-body quantum physics (which,
similarly, permits the creation and destruction of quanta). 𝑄 does not have to be sym-
metric at all (just consider all𝑄 defined in the present text, say eq. (4.21) featuring the
decay 𝐴 → 𝐼), let alone self-adjoint, since it is not supposed to conserve the sum of
absolute squares

∑
𝑖 |𝜓𝑖|

2 = 1 (or more generally the 2-norm), but the sum of proba-
bilities

∑
𝑖 𝑃𝑖 = 1 (or more generally ∫ d𝑃 = 1). In matrix terms, the first one requires

the generator to be anti-hermitian, such as (−𝑖𝐻)† = −(−𝑖𝐻) in the Schrödinger-
equation, while the other requires the generator’s rows to sum to zero

∑
𝑗 𝑄𝑖𝑗 = 0.

That quantum and statistical descriptions should be so closely related at all may
come as a surprise. If so, perhaps this circumstance becomes less surprising after
considering that the quantum wave function 𝜓(𝜔) on a measurement outcome space
Ω = {𝜔} has the same arguments as a probability function 𝑃(𝜔) on that same outcome
space. Readers familiar with density functional theory, originally conceived to study
the ground state of many-electron systems (Hohenberg and Kohn 1964; Kohn and
Sham 1965), may also find it interesting to learn that it has a thermodynamic pendant
introduced by Mermin (1965), which is used to theoretically study not just electrons
at finite temperature, but has actually been very successfully applied to the study of
classical-statistical physics of fluids (see the lecture notes Roth (2006)12 for example).
Onemay also recall the field theory techniques from section 2.2 or section 3.2 to study
phase transitions, which many physicists are more familiar with from quantum field
theory. In this view, Doi (1976a) and Doi (1976b) fit in as another example of theories
of collective behaviour and theoretical quantum physics sharing techniques.

4.3.3 Mimicking Random Organization

(a) decay to inactivity 𝑄𝜇 (b) activation of pairs 𝑄𝜆 (c) active grain diffusion 𝑄𝐷

Figure 4.4: Pictorial representation of the behaviour generated by each term of a
reaction-system approximating time-continuous random organization

The lessons learned in the simplified two-grain case discussed in section 4.3.1 were,
that if the system is to mimick the instantaneous activation of time-continuous ran-
dom organization eq. (4.13), we need both the rate of activation 𝜆 and decay 𝜇 to be
much larger than the rate of motion 𝐷𝜎−2 and we need 𝜆 ≫ 𝜇 (see fig. 4.3). This is
very unfortunate for anyone eager to apply the common perturbation techniques for

12https://bytebucket.org/knepley/cdft-git/wiki/papers/Lecture_Notes_on_DFT_
_Roland_Roth.pdf, last visited on 25.09.2025 at 14:35

https://bytebucket.org/knepley/cdft-git/wiki/papers/Lecture_Notes_on_DFT__Roland_Roth.pdf
https://bytebucket.org/knepley/cdft-git/wiki/papers/Lecture_Notes_on_DFT__Roland_Roth.pdf
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small coupling constants that work so effectively for theories like quantum electro-
dynamics, which has the small fine-structure constant, or the diffusion-controlled
reaction Ψ + Ψ → Ψ from Doi (1976b), which assumes a comparatively low reaction
rate. I postpone addressing these concerns to a later, more convenient time however,
with the hope of finding, for example, systematic asymptotic expansions in 𝜆−1, 𝜇−1
and (𝜆∕𝜇)−1. It is however already possible to formulate a ‘wishlist’ for our approxi-
mation scheme (section 4.3.5), which should help narrowing down the possibilities
later.

I argued for the form of the decay (fig. 4.4a) and activation (fig. 4.4b) terms already
in section 4.3.1. By furthermore deciding that during any reaction the grains will not
experience instantaneous teleportation and that the reaction rate does not depend on
location or time, the only possible form for the reaction generators reads

𝑄†
𝜆 =

𝜆
2 ∫ d𝑑𝑟1 d𝑑𝑟2Θ(𝜎 − |𝒓1 − 𝒓2|)⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

spherical grain shape

∑

𝑎1,𝑎2

(
𝐴†(𝒓1)𝐴†(𝒓2) − 𝑎†1(𝒓1)𝑎

†
2(𝒓2)

)
𝑎1(𝒓1)𝑎2(𝒓2)

𝑄†
𝜇 = 𝜇 ∫ d𝑑𝑟

(
𝐼†(𝒓) − 𝐴†(𝒓)

)
𝐴(𝒓)

(4.68)

where the spherical shape of the grains expresses itself in the Heaviside-function ex-
pression Θ(𝜎 − |𝒓1 − 𝒓2|). In principle one could insert any other form factor here;
spheres are just arguably the simplest. Note that we could also choose to omit the
reaction 2𝐼 → 2𝐴 for simplicity in case we have reason to neglect inactive-inactive-
overlaps. I am yet to investigate this possibility.

Finally diffusion of active grains (fig. 4.4c) is generated by the following expression
(reminiscent of the second-quantized kinetic term in the Schrödinger equation)

𝑄†
𝐷 = ∫ d𝑑𝑟 𝐴†(𝒓) 𝐷∇2𝐴(𝒓) (4.69)

(compareDoi 1976a, eq. 66). That this indeed generates diffusion is legibly showcased
by considering the ket with just a single grain

𝑄†
𝐷 |𝑎, 𝒙⟩ = ∫ d𝑑𝑟 𝐴†(𝒓) 𝐷∇2

𝒓 𝐴(𝒓) 𝑎†(𝒙)⏟⎴⎴⏟⎴⎴⏟
[𝐴(𝒓),𝑎†(𝒙)]
+𝑎†(𝒙)𝐴(𝒓)

|0⟩

= ∫ d𝑑𝑟 𝐴†(𝒓) 𝐷∇2
𝒓 𝛿𝐴,𝑎𝛿(𝒓 − 𝒙) |0⟩

P.I.
= 𝛿𝐴,𝑎 ∫ d𝑑𝑟 𝛿(𝒓 − 𝒙)𝐷∇2

𝒓𝐴†(𝒓) |0⟩

= 𝛿𝐴,𝑎 𝐷∇2 |𝑎, 𝒙⟩

(4.70)

where we used partial integration,
[
𝐴(𝒓), 𝑎†(𝒙)

]
= 𝛿𝐴,𝑎𝛿(𝒓−𝒙) and𝐴(𝒓) |0⟩ = 0. This

checks out, because imagine a one-grain probability distribution

⟨
𝑃(1)|||| =

∑

𝑎
∫ d𝑑𝑥 𝑃(𝑎, 𝒙) ⟨𝑎, 𝒙| (4.71)
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Then if
⟨
𝑃(1)|||| is evolved with the generator of diffusion

𝜕
𝜕𝑡
⟨
𝑃(1)(𝑡)|||| =

⟨
𝑃(1)(𝑡)|||| 𝑄𝐷 (4.72)

we find that the probability distribution it translates to evolves with

𝜕
𝜕𝑡𝑃(𝑎, 𝒙, 𝑡) =

= 𝜕
𝜕𝑡
⟨
𝑎, 𝒙||||𝑃

(1)(𝑡)
⟩

= ⟨𝑎, 𝒙| 𝑄†
𝐷
||||𝑃

(1)(𝑡)
⟩

= ⟨𝑎, 𝒙|
∑

𝑎′
∫ d𝑑𝑥′ 𝑃(𝑎′, 𝒙′, 𝑡) 𝑄†

𝐷
|||𝑎′, 𝒙′⟩⏟⎴⏟⎴⏟

=𝛿𝐴,𝑎′ 𝐷∇2
𝒙′ |𝑎

′,𝒙⟩′

=
∑

𝑎′
𝛿𝐴,𝑎′ ∫ d𝑑𝑥′ 𝑃(𝑎′, 𝒙′, 𝑡) 𝐷∇2

𝒙′ ⟨𝑎, 𝒙
|||𝑎′, 𝒙′⟩⏟⎴⎴⏟⎴⎴⏟

=𝛿𝑎,𝑎′𝛿(𝒙−𝒙′)

= 𝛿𝐴,𝑎 𝐷∇2𝑃(𝑎, 𝒙, 𝑡)

(4.73)

which reads as: 𝑃(𝑎, 𝒙, 𝑡) is not changed by diffusion if it describes the probability
density of the inactive component 𝑃(𝐼, 𝒙, 𝑡), but evolves with the diffusion equation
when 𝑎 = 𝐴.

4.3.4 Time Evolution of Density
We nowwant to derive dynamical equations for the one-body densities of either grain
species 𝜌𝐴(𝒓, 𝑡) and 𝜌𝐼(𝒓, 𝑡). Doing so involves simply executing

𝜕𝜌𝑎(𝒓, 𝑡)
𝜕𝑡 = 𝜕

𝜕𝑡 ⟨𝑃(𝑡)
||| 𝑎†(𝒓) |sum⟩

= ⟨𝑃(𝑡)||| 𝑄𝑎†(𝒓) |sum⟩
= ⟨𝑃(𝑡)|||

([
𝑄, 𝑎†(𝒓)

]
+ 𝑎†(𝒓)𝑄

)
|sum⟩

= ⟨𝑃(𝑡)|||
[
𝑄, 𝑎†(𝒓)

]
|sum⟩

(4.74)

where we used conservation of probability 𝑄 |sum⟩ = 0. We can by linearity separate[
𝑄,𝐴†(𝒓)

]
=
[
𝑄𝐷, 𝐴†(𝒓)

]
+
[
𝑄𝜇, 𝐴†(𝒓)

]
+
[
𝑄𝜆, 𝐴†(𝒓)

]
so computing the commutator

can be done term by term.

One-Body Terms 𝑄𝐷 and 𝑄𝜇 are relatively simple to evaluate. Because inactive
grains do not propagate by design, there is no factor of 𝐼 anywhere in 𝑄𝐷, so its com-
mutator with 𝐼†(𝒓) is zero [

𝑄𝐷, 𝐼†(𝒓)
]
= 0 (4.75)

For the case 𝑎 = 𝐴, note that from [𝐴(𝒓), 𝐴(𝒓′)] = 0 and ∇2
𝒓′ not acting on the argu-

ment 𝒓 follows that it is possible to pull out ∇2
𝒓′𝐴(𝒓

′) from the commutator:
[
𝐴(𝒓, 𝑡), 𝐴†(𝒓′, 𝑡)∇2

𝒓′𝐴(𝒓
′, 𝑡)

]
=
[
𝐴(𝒓, 𝑡), 𝐴†(𝒓′, 𝑡)

]
∇2
𝒓′𝐴(𝒓

′, 𝑡) (4.76)
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Recalling
[
𝐴(𝒓), 𝐴†(𝒓′)

]
= 𝛿(𝒓 − 𝒓′) shows that the commutator with the diffusion

term reads [
𝑄𝐷, 𝐴†(𝒓)

]
= 𝐷∇2𝐴†(𝒓) (4.77)

Next, the spontaneous decay of activity 𝐴 → 𝐼 at rate 𝜇 is, like the diffusion term, a
one-body term given by eq. (4.68)

𝑄𝜇 = ∫ d𝑑𝑟′ 𝜇 ⋅ 𝐴†(𝒓′) (𝐼(𝒓′) − 𝐴(𝒓′)) (4.78)

The commutator is even easier to compute than for diffusion, since
[
𝑎(𝒓),

(
𝐼†(𝒓′) − 𝐴†(𝒓′)

)
𝐴(𝒓′)

]
=
[
𝑎(𝒓),

(
𝐼†(𝒓′) − 𝐴†(𝒓′)

)]
𝐴(𝒓′)

because [𝑎(𝒓), 𝐴(𝒓′)] = 0 and

[
𝑎(𝒓),

(
𝐼†(𝒓′) − 𝐴†(𝒓′)

)]
= {

𝛿(𝒓 − 𝒓′) 𝑎 = 𝐼
−𝛿(𝒓 − 𝒓′) 𝑎 = 𝐴

resulting in
[
𝑄𝜇, 𝐴†(𝒓)

]
= −𝜇𝐴†(𝒓)

[
𝑄𝜇, 𝐼†(𝒓)

]
= +𝜇𝐴†(𝒓)

(4.79)

We can inert these back into eq. (4.74) and see that the evolution equation for the
active- and inactive-grain-densities are of the form

𝜕𝜌𝐴(𝒓, 𝑡)
𝜕𝑡 = 𝐷∇2𝜌𝐴(𝒓, 𝑡) − 𝜇𝜌𝐴(𝒓, 𝑡) + (⋯)

𝜕𝜌𝐼(𝒓, 𝑡)
𝜕𝑡 = +𝜇𝜌𝐴(𝒓, 𝑡) + (⋯)

(4.80)

Two-Body Interaction Term In contrast to the former two 𝑄𝜆 contains two-body
terms and hence introduces correlations between grains locations into the system.
According to eq. (4.68) it reads

𝑄𝜆 =
𝜆
2 ∫ d𝑑𝑟1 d𝑑𝑟2Θ(𝜎 − |𝒓1 − 𝒓2|)

∑

𝑎1,𝑎2

𝑎†1(𝒓1)𝑎
†
2(𝒓2) (𝐴(𝒓1)𝐴(𝒓2) − 𝑎1(𝒓1)𝑎2(𝒓2))

(4.81)
andwewant to compute

[
𝑄𝜆, 𝑎†(𝒓)

]
. Pulling past the integrals ∫ d𝑑𝑟1 d𝑑𝑟2 and past the

multiplication by the form factorΘ(𝜎−|𝒓1−𝒓2|) by linearity, this reduces to computing
[
𝑎†1(𝒓1)𝑎

†
2(𝒓2) (𝐴(𝒓1)𝐴(𝒓2) − 𝑎1(𝒓1)𝑎2(𝒓2)) , 𝑎†(𝒓)

]
(4.82)

Since all creation operators 𝑎†(𝒓) commute with each other, we can pull 𝑎†1(𝒓1)𝑎
†
2(𝒓2)

out of the commutator

𝑎†1(𝒓1)𝑎
†
2(𝒓2)

[
𝐴(𝒓1)𝐴(𝒓2) − 𝑎1(𝒓1)𝑎2(𝒓2), 𝑎†(𝒓)

]
(4.83)
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Using the identity [𝐴𝐵, 𝐶] = 𝐴[𝐵, 𝐶] + [𝐴, 𝐶]𝐵 we split the remaining commutator
further

[
𝐴(𝒓1)𝐴(𝒓2), 𝑎†(𝒓)

]
= 𝐴(𝒓1)

[
𝐴(𝒓2), 𝑎†(𝒓)

]
+
[
𝐴(𝒓1), 𝑎†(𝒓)

]
𝐴(𝒓2)

eq. (4.47)
= 𝐴(𝒓1)𝛿𝐴,𝑎𝛿(𝒓2 − 𝒓) + 𝛿𝐴,𝑎𝛿(𝒓1 − 𝒓)𝐴(𝒓2)

[
𝑎1(𝒓1)𝑎2(𝒓2), 𝑎†(𝒓)

]
= 𝑎1(𝒓1)

[
𝑎2(𝒓2), 𝑎†(𝒓)

]
+
[
𝑎1(𝒓1), 𝑎†(𝒓)

]
𝑎2(𝒓2)

eq. (4.47)
= 𝑎1(𝒓1)𝛿𝑎2,𝑎𝛿(𝒓2 − 𝒓) + 𝛿𝑎1,𝑎𝛿(𝒓1 − 𝒓)𝑎2(𝒓2)

(4.84)

The entire sought commutator hence is equal to

[
𝑄𝜆, 𝑎†(𝒓)

]
= 𝜆
2 ∫ d𝑑𝑟1 d𝑑𝑟2Θ(𝜎 − |𝒓1 − 𝒓2|)

∑

𝑎1,𝑎2

𝑎†1(𝒓1)𝑎
†
2(𝒓2)(

𝐴(𝒓1)𝛿𝐴,𝑎𝛿(𝒓2 − 𝒓) + 𝛿𝐴,𝑎𝛿(𝒓1 − 𝒓)𝐴(𝒓2)⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
(I)

−𝑎1(𝒓1)𝛿𝑎2,𝑎𝛿(𝒓2 − 𝒓) − 𝛿𝑎1,𝑎𝛿(𝒓1 − 𝒓)𝑎2(𝒓2)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

(II)

)

(4.85)

There is a lot of reduction to be made: both of the terms ∼ 𝛿𝐴,𝑎 will end up looking
the same after the integration is executed: in either of them one of the integration
variables 𝒓𝑗 will be identified with 𝒓-dependence; in either of them, the 𝐴(𝒓𝑖) factor
depends on the other integration variable 𝒓𝑗 ≠ 𝒓𝑖. Hence, for example the first of the
two terms evaluates to

𝛿𝑎,𝐴
𝜆
2 ∫ d𝑑𝑟1Θ(𝜎 − |𝒓1 − 𝒓|)

∑

𝑎1,𝑎2

𝑎†1(𝒓1)𝑎
†
2(𝒓)𝐴(𝒓1)

where we may still rename variables still carrying unnecessary indices to emphasize
that they only serve as dummies; both of them together amount to

(I) = 𝛿𝑎,𝐴 𝜆 ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)
∑

𝑎1,𝑎2

𝑎†1(𝒓)𝑎
†
2(𝒓′)𝐴(𝒓′) (4.86)

where the dummy variables 𝑎1 and 𝑎2 have to be swapped for one of them in order
to unify the terms. A similar treatment can be given to the remaining two terms,
which also evaluate to the same operator: in either of the terms, one of the 𝑎𝑗 dummy
variables is replaced by 𝑎 and its associated integrarion variable 𝒓𝑗 by 𝒓. Once again,
under appropriate renaming of dummy variables (and by using that creation operators
mutually commute), they sum to

(II) = −𝜆 ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)𝑎†(𝒓)
∑

𝑎′
𝑎′†(𝒓′)𝑎′(𝒓′) (4.87)

Note that both eq. (4.86) and eq. (4.87) are trailed by annihilation operators. While
very relevant for the value of the commutator, as soon as it comes to taking averages



4.3. Many-Body Reaction System 79

these trailing annihilation operators will be absorbed into |sum⟩:

(I) = 𝛿𝑎,𝐴𝜆 ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)
∑

𝑎1,𝑎2

⟨𝑃(𝑡)||| 𝑎
†
1(𝒓)𝑎

†
2(𝒓′) |sum⟩⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

=𝜌(2)𝑎1,𝑎2 (𝒓,𝒓
′,𝑡)

(II) = −𝜆 ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)
∑

𝑎′
⟨𝑃(𝑡)||| 𝑎†(𝒓)𝑎′

†(𝒓′) |sum⟩

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
=𝜌(2)𝑎,𝑎′ (𝒓,𝒓

′,𝑡)

(4.88)

Wemake a case distinction between 𝑎 = 𝐴 and 𝑎 = 𝐼. When 𝑎 = 𝐴, 𝛿𝑎,𝐴 = 1 and term
(I) contributes to

[
𝑄𝜆, 𝑎†(𝒓)

]
. (I) contains the sum over all two-point density functions

𝜌(2)𝑎1,𝑎2(𝒓, 𝒓
′, 𝑡), respectively denoting the density of pairs per unit two-body configura-

tion space volume d𝑑𝑟 d𝑑𝑟′ where the grain at 𝒓 has activity state 𝑎1 ∈ {𝐴, 𝐼} and the
one at 𝒓′ has activity state 𝑎2 ∈ {𝐴, 𝐼}. Two of these, 𝜌(2)𝐴,𝐴(𝒓, 𝒓′, 𝑡) and 𝜌

(2)
𝐴,𝐼(𝒓, 𝒓

′, 𝑡) get
cancelled by their negative counterpart in (II). The result is that the 𝑄𝜆 contribution
to the time evolution of 𝜌𝐴(𝒓, 𝑡) reads

𝜕𝜌𝐴(𝒓, 𝑡)
𝜕𝑡 = (⋯) + 𝜆 ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)

∑

𝑎
𝜌(2)𝐼,𝑎(𝒓, 𝒓′, 𝑡) (4.89)

In the second simpler case 𝑎 = 𝐼 term (I) vanishes, since now 𝛿𝑎,𝐴 = 0. Hence the
contribution of 𝑄𝜆 to 𝜌𝐼(𝒓, 𝑡) reads

𝜕𝜌𝐼(𝒓, 𝑡)
𝜕𝑡 = (⋯) − 𝜆 ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)

∑

𝑎
𝜌(2)𝐼,𝑎(𝒓, 𝒓′, 𝑡) (4.90)

which is precisely the negative of the contribution to 𝜌𝐴(𝒓, 𝑡), ensuring overall conser-
vation of grain number.

Discussion of the Evolution Equation Putting all parts together, the full equa-
tions read

( 𝜕𝜕𝑡 − 𝐷∇2) 𝜌𝐴(𝒓, 𝑡) = −𝜇𝜌𝐴(𝒓, 𝑡) + 𝜆 ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)
∑

𝑎
𝜌(2)𝐼,𝑎(𝒓, 𝒓′, 𝑡)

𝜕𝜌𝐼(𝒓, 𝑡)
𝜕𝑡 = +𝜇𝜌𝐴(𝒓, 𝑡) − 𝜆 ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)

∑

𝑎
𝜌(2)𝐼,𝑎(𝒓, 𝒓′, 𝑡)

(4.91)

Defining total grain density 𝜌(𝒓, 𝑡) = 𝜌𝐴(𝒓, 𝑡)+𝜌𝐼(𝒓, 𝑡) and summing the two equations
yields

𝜕𝜌(𝒓, 𝑡)
𝜕𝑡 = 𝐷∇2𝜌𝐴(𝒓, 𝑡) (4.92)

which both enforces the conservation of grain number (since the integral over the
laplacian of of 𝜌𝐴, which has to vanish towards infinity rapidly enough to integrate to
the finite number 𝑁𝐴 of active grains in the system, will be zero) and demonstrates
that matter transport happens only by means of grain diffusion. The interpretation of
the activation term can be made more apparent after splitting

𝜌(2)𝑎,𝑎′(𝒓, 𝒓
′) ≕ 𝜌𝑎(𝒓)𝜌𝑎′(𝒓′) 𝑔𝑎,𝑎′(𝒓, 𝒓′) (4.93)
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where 𝑔𝑎,𝑎′(𝒓, 𝒓′) is the two-point distribution function for an 𝑎-grain 𝒓 and an 𝑎′-grain
at 𝒓′:
𝜕𝜌𝐴(𝒓, 𝑡)

𝜕𝑡 =
(
𝐷∇2 − 𝜇

)
𝜌𝐴(𝒓, 𝑡) + 𝜆𝜌𝐼(𝒓, 𝑡) ∫ d𝑑𝑟′Θ(𝜎 − |𝒓 − 𝒓′|)

∑

𝑎
𝜌𝑎(𝒓′, 𝑡) 𝑔𝐼,𝑎(𝒓, 𝒓′, 𝑡)

(4.94)

𝐷∇2𝜌𝐴(𝒓, 𝑡) causes diffusion of the active grain density field and −𝜇𝜌𝐴(𝒓, 𝑡) decays
activity.

𝜕𝜌𝐴(𝒓, 𝑡)
𝜕𝑡 = (𝐷∇2 − 𝜇)𝜌𝐴(𝒓, 𝑡)

is trivially solved, most easily in Fourier-space

𝜌̃𝐴(𝒌, 𝑡) = 𝑒−(𝐷𝒌
2+𝜇)𝑡𝜌̃𝐴(𝒌, 0)

or Fourier-Laplace-space

∫
∞

0
d𝑡 𝑒−𝑠𝑡𝜌̃𝐴(𝒌, 𝑡) =

1
𝑠 + (𝐷𝒌2 + 𝜇)

⋅ 𝜌̃𝐴(𝒌, 0)

Hence diffusion and decay together constitute the free behaviour, as in free of pair (or
higher) interactions. +𝜆𝜌𝐼(𝒓, 𝑡) ∫ d𝑑𝑟′Θ(𝜎− |𝒓−𝒓′|)

∑
𝑎 𝜌𝑎(𝒓

′, 𝑡) 𝑔𝐼,𝑎(𝒓, 𝒓′, 𝑡) increases
activity the more inactive grains are involved in overlaps; overall changes in the density
profile 𝜕𝜌(𝒓, 𝑡)∕𝜕𝑡 are effected exclusively by active grain diffusion.

Finding the evolution of the active grain density fieldwas amatter of executing the
commutators appearing in

[
𝑄, 𝑎†(𝒓)

]
. This recipe in principle works for computing

arbitrarily high 𝑛-point densities (which are, to the very least, significantly trickier to
just guess than eq. (4.94))

𝜕
𝜕𝑡 ⟨𝑃(𝑡)

||| 𝑎
†
1(𝒓1)⋯𝑎†𝑛(𝒓𝑛) |sum⟩ = ⟨𝑃(𝑡)|||

[
𝑄, 𝑎†1(𝒓1, 𝑡)⋯𝑎†𝑛(𝒓𝑛, 𝑡)

]
|sum⟩ (4.95)

As Doi (1976a) remarks, the family of 𝑛-body evolution equations is not unlike the
(significantly more well known) Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hi-
erarchy for classical fluids, as in that the 𝑛-body density equation is closed by provid-
ing an expression for the (𝑛 + 1)-body density.

4.3.5 Critical Density Estimation
Just like random organization, the dynamics specified in section 4.3.3 that approxi-
mate it experience an absorbing state transition with infinitely many absorbing states:
when the system is very dilute (and 𝐷𝜎−2 < 𝜇 such that Brownian motion is not too
fast), therewill be barely any overlaps that could cause 𝑎1+𝑎2 → 2𝐴with a lot of space
to resolve them, which the overlap-less active grains cannot traverse before they get
struck by 𝐴 → 𝐼. Without overlaps and active grains, the state is absorbing. When
the system is so dense that overlaps could not possibly be resolved, there are necessar-
ily overlaps, hence reliably (and indefinitely) active grains and with them (indefinite)
diffusion. These two regimes must be separated by a transition, that is qualitatively a
lot like random organization. In the following, I will (1) present a few of my findings
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Figure 4.5: Snapshot of a small scale (𝑁 = 150) simulation of the dynamics defined
in section 4.3.3 (at Φ = 40%, (𝜆∕𝜇) = 5 and (𝜇∕𝐷) = 100𝜎−2). From left to right,
the snapshots are from the beginning, transient period and steady-state respectively.
Bright, orange grains are active, dark purple ones inactive. One can see multiple
grains with overlaps that are not active and many grains without overlaps that are
active. However, mostly the activation state lines up with the overlaps. Images were
rendered with Ovito (https://www.ovito.org/, last visited 25.11.2025)

on how the reaction system behaves as the limits 𝜆 ≫ 𝜇 ≫ 𝐷𝜎−2 are approached
and (2) report three ultimately not unsuccessful but instructive attempts at finding an
approximation.

For simplicity, I will discuss only the case of a homogeneous system 𝜌(𝒓, 𝑡) ≡ 𝜌, in
which case eq. (4.94) simplifies to

d𝜌𝐴
d𝑡 = −𝜇𝜌𝐴 + 𝜆𝜌𝐼

∑

𝑎
𝜌𝑎 ∫ d𝑑𝑟 Θ(𝜎 − 𝑟) 𝑔𝐼,𝑎(𝑟) (4.96)

To better understand the system I also performed small scale simulations of the dy-
namics defined in section 4.3.3. A brief description of what exactly I did can be found
in appendix B.

Rate Dependence of Critical Density The critical density changes with 𝜇 and 𝜆.
To start with the most obvious effect: because deactivation is not instantaneous (in-
stead gradually generated by 𝐴 → 𝐼 with rate 𝜇) an active grain has a certain ‘coyote
time’13 𝜇−1 during which it can still diffuse despite ‘hanging in the air’ without over-
laps. In that time the diameter of the volume that can still potentially be diffusively
explored by the grain’s center is 2

√
2𝐷𝜇−1. Add onto half of that the grain’s diameter

to get a larger radius of activation (fig. 4.7) that may be thought of as an effectively
larger active grain diameter 𝜎eff𝐴

𝜎eff𝐴 = 𝜎 +

√
2𝐷
𝜇 (4.97)

that converges to 𝜎 as (𝜇∕𝐷) → ∞. Similarly, during an activation 𝐴 + 𝐼 → 2𝐴, the
active grain will penetrate a distance (2𝐷𝜆−1)1∕2 before the 𝐼-grain first notices its new

13Used heremetaphorically, see https://en.wiktionary.org/wiki/coyote_time (last visited on
20.11.2025): a grace period in platform game design for jumping mid-air off ledges

https://www.ovito.org/
https://en.wiktionary.org/wiki/coyote_time
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Figure 4.6: Active grain fraction 𝑓𝑎(𝑡) asmeasured from a small (𝑁 = 150) simulation
in 𝑑 = 2 of the dynamics defined in section 4.3.3 at Φ = 40% (which is most probably
in the active phase, sinceΦ far above the critical packing density of random organiza-
tion given byWilken et al. 2021, whose protocol is more similar to the instantaneous-
activation limit of the present reaction system) with (𝜆∕𝜇) = 5 and (𝜇∕𝐷) = 100𝜎−2.
Time is in units of 𝜇−1. One can observe a decay to some steady state value; fitting the
data to 𝑓𝑎(𝑡) = 𝑓∞𝑎 +(1−𝑓∞𝑎 )𝑒−𝑡∕𝜏𝑡−𝛿 (compare Corté et al. 2008, eq. 1) in a log-log-plot
yields 𝑓∞𝑎 = 0.5981 ± 0.010, though the error should not be taken very literally, given
the rest of the fit is not very good: 𝜏 = 17 ± 15 and 𝛿 = 0.72 ± 0.13; the mismatch for
short times is also very visible.

overlap, effectively reducing 𝐼-grain diameter by

𝜎eff𝐼 = 𝜎 −
√

2𝐷
𝜆 (4.98)

also with 𝜎eff𝐼 → 𝜎 as the rate of activation is taken to 𝜆 → ∞. Averaging the two
arguably renders an effective interaction distance

𝜎eff = 𝜎 + 1
2
⎛
⎜
⎝

√
2𝐷
𝜇 −

√
2𝐷
𝜆
⎞
⎟
⎠

(4.99)

and hence an effective packing density by Φ ∼ 𝜎𝑑

Φeff

Φ =
⎛
⎜
⎝
1 + 1

√
2

⎛
⎜
⎝

√
𝐷𝜎−2
𝜇 −

√
𝐷𝜎−2
𝜆

⎞
⎟
⎠

⎞
⎟
⎠

𝑑

(4.100)

Recall furthermore that any grain with overlap flip-flops between being active and
inactve, being activated with rate 𝑧𝜆, where 𝑧 is the number of overlap partners, and
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Figure 4.7: Illustration of the effective active grain diameter eq. (4.97). The black
central cirle is of diameter

√
2𝐷𝜇−1 and is the area diffusively explored by the grain

before it decays to inactivity. The bigger, grey circles have diameter 𝜎 and stand for
possible locations the grain could have after its randomwalk of duration 𝜇−1. The red
doted circumference has diameter 𝜎eff𝐴 .

deactivated with rate 𝜇. Hence the expected fraction 𝑓𝐴 of time that a grain with 𝑧
overlap partners spends activated is given by how short themean time 𝜇−1 until decay
(spent active) is compared to the mean time (𝑧𝜆)−1 until activation (spent inactive)

𝑓𝐴 =
𝜇−1

𝜇−1 + (𝑧𝜆)−1
= 𝑧
𝑧 + 𝜇∕𝜆

(4.101)

This means that, even deep into the active phase, diffusion is slower than 𝐷 would
let one believe, since only 𝑓𝐴 of the time a grain overlaps is spent actually diffusing:
given 𝑧 overlaps, one may choose 𝐷eff

𝑧 such that (2𝐷eff
𝑧 ⋅ 𝑡)1∕2 = (2𝐷 ⋅ 𝑓𝐴 ⋅ 𝑡)1∕2 then

average 𝐷eff
𝑧 with the distribution 𝑃 (𝑧 overlaps) for overlap count 𝑧

Deff

𝐷 =
∑

𝑧
𝑃 (𝑧 overlaps) ⋅ 𝑧

𝑧 + 𝜇∕𝜆 (4.102)

Note that Deff → 𝐷 in the limit (𝜆∕𝜇) → ∞.
It is important to clarify, that all of these intuitions apply only to a steady state with

non-vanishing activity near critical point, where the system is close to being as dilute
as possible while still maintaining activity (as opposed to a high density, overcrowded
situation where essentially all grains have overlaps).

ApproximationAttempt 1: UncorrelatedPositions Before discussingwhatmore
complicated approximations could look like, we first want to see what happens when
we neglect all spatial correlation by assuming all 𝑔𝐼,𝑎(𝑟) ≡ 0. Since we work in a ho-
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mogeneous system 𝐷∇2 terms vanish and eq. (4.96) reduces to

d𝜌𝐴
d𝑡 = −𝜇𝜌𝐴 + 𝜆𝜌𝐼 (𝜌𝐴 + 𝜌𝐼)𝐵𝑑𝜎𝑑⏟⎴⎴⎴⏟⎴⎴⎴⏟

=2𝑑Φ

(4.103)

where 𝐵𝑑 is the volume of a 𝑑-dimensional unit sphere. Multiplying the entire equa-
tion with 𝐵𝑑(𝜎∕2) to work with active- and inactive grain densityΦ𝐴 andΦ𝐼 = Φ−Φ𝐴
respectively yields

dΦ𝐴

d𝑡 = −𝜇𝜌𝐴 + 𝜆(Φ − Φ𝐴)2𝑑Φ

= (𝜆 2𝑑Φ − 𝜇)Φ𝐴 + 𝜆 2𝑑Φ2
(4.104)

where one can define 𝜂 = 𝜆2𝑑Φ − 𝜇 and 𝜅 = 𝜆2𝑑Φ2∕𝜂 followed by separating the
variables to find the solution |||||||

Φ𝐴(𝑡) + 𝜅
Φ𝐴(0) + 𝜅

|||||||
= 𝑒𝜂𝑡 (4.105)

which displays a transition of behaviour when Φ crosses Φc = 2−𝑑𝜇∕𝜆: when 𝜂 < 0,
then 𝜅 < 0 and the supposed active grain density decays to the steady state value
Φ𝐴(𝑡) → −𝜅 = |𝜅|. As Φ ↑ Φc we get |𝜅| ∼ (1∕|Φc − Φ|) → ∞ which links up with
the regime Φ > Φc where 𝜂 > 0 and Φ𝐴 grows indefinitely with 𝑒|𝜂|𝑡. Obviously this is
completely off the behaviour of the exact model. And not only that, when going to the
limit 𝜆 ≫ 𝜇 where we expected to get time continuous-random organization, we get
a trivial critical density Φc = 2−𝑑𝜇∕𝜆 → 0 for any dimension 𝑑, which is also wrong.

Approximation Attempt 2: No 𝐼-𝐼-overlaps and no 𝐼-𝐴-correlation With view
to the limit 𝜆 ≫ 𝜇, just assuming 𝑔𝐼,𝐼(𝑟) ≡ 1 looks like the most blatantly bad assump-
tion in approximation attempt 1. The most simplistic remedy would be to skip right
to the expected limit of 𝑔𝐼,𝐼(𝑟) = 0 at 𝑟 < 𝜎 while keeping 𝑔𝐼,𝐴(𝑟) ≡ 1, resulting in
eq. (4.96) becoming

d𝜌𝐴
d𝑡 = −𝜇𝜌𝐴 + 𝜆𝜌𝐼 (𝜌𝐴 ⋅ 1 + 𝜌𝐼 ⋅ 0)𝐵𝑑𝜎𝑑⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

=2𝑑Φ𝐴

(4.106)

where we again will multiply the equation by 𝐵𝑑(𝜎∕2) to state it in terms of packing
densities

dΦ𝐴

d𝑡 = −𝜇Φ𝐴 + 𝜆(Φ − Φ𝐴)2𝑑Φ𝐴

= (𝜆2𝑑Φ − 𝜇)Φ𝐴 − 𝜆2𝑑 Φ2
𝐴

(4.107)

In this one can recognize the homogeneous mean-field theory of DP and CDP from
eq. (2.41) or eq. (3.1), the solution of which has already been discussed in section 2.2.3.
Takeaways from the latter for the present discussion are

• There is a transition that happens when 𝜆2𝑑Φ𝜇 = 0 at Φc = 2−𝑑𝜇∕𝜆
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• There is active/percolating phase for Φ > Φc where the steady state active grain
density is

Φ∞
𝐴 = lim

𝑡→∞
Φ𝐴(𝑡) = Φ − 2−𝑑(𝜇∕𝜆)

and hence Φ∞
𝐴 ∼ |Φ − Φc| from the active phase, giving the mean-field order

parameter exponent 𝛽 = 1

• At Φ = Φc the active grain density asymptotically goes like ∼ 𝑡−1, giving it an-
other mean-field exponent 𝜈∥ = 1

• An absorbing phase for Φ < Φc, where Φ𝐴 decays to zero with characteristic
time 𝜏 = (𝜆2𝑑Φ − 𝜇)−1

However, while the qualitative behaviour is not totally off, it breaks in the limit (𝜆∕𝜇) →
∞ to time-continuous random organization. Amongst other things 𝜏 → 0 (which al-
ready demonstrates that it has nothing to do with the relaxation time of random or-
ganization) and, even more damningly, the critical packing density becomes trivial
again Φc → 0.

I suggest the following interpretation: uncorrelated positions means ignoring cor-
relations stemming, ultimately, from relative positioning of typical grain pairs, leaving
the transition of activity to inactivity entirely up to the balance of 𝜆 and 𝜇. In the limit
𝜆 ≫ 𝜇, this must lead toΦc equalling to zero: assuming 𝑔𝐼,𝐴(𝑟) and 𝑔𝐼,𝐼 are not deplet-
ing within 𝑟 < 𝜎 as time progresses to 𝑡 → ∞ is tantamount to claiming there will
always be some overlap and hence always some activity unless there are no grains at
all. This makes evident, that the stationary 𝑔𝐼,𝑎(𝑟) need to be depleted within 𝑟 < 𝜎
(in a way will depend at least on Φ and the rates 𝜆, 𝜇).

Pause: when is critical density even non-trivial? Suppose a system has reached
its stationary state in the active phase Φ > Φc, where the rate of change of 𝜌𝐴(𝑡) van-
ishes. This turns eq. (4.96) into a steady-state equation

𝜇𝜌𝐴 = 𝜆𝜌𝐼
∑

𝑎
𝜌𝑎 ∫ d𝑑𝑟 Θ(𝜎 − 𝑟) 𝑔𝐼,𝑎(𝑟) (4.108)

which reads conveniently as decay 𝐴
𝜇
→ 𝐼 and proliferation 𝑎1 + 𝑎2 → 2𝐴 striking

a balance. Notice that we only need to understand the behaviour for 𝑟 ≤ 𝜎. Antici-
pating that we want to let (𝜆∕𝜇) → ∞ eventually, we can divide both sides by 𝜇 and
find that for any sort of successful approximation we need (𝜆∕𝜇) ∫ d𝑑𝑟 Θ(𝜎 − 𝑟) 𝑔𝐼,𝑎(𝑟)
or ∫ d𝑑𝑟 Θ(𝜎 − 𝑟) (𝜆∕𝜇)𝑔𝐼,𝑎(𝑟) to converge to some finite number as (𝜆∕𝜇) → ∞. The
result of this limit14 will be some function 𝐺𝐼,𝑎(𝜌) of density (the last remaining inde-
pendent15 control parameter)

𝜌𝐴 = (𝜌 − 𝜌𝐴)
∑

𝑎
𝜌𝑎𝐺𝐼,𝑎(𝜌) (4.109)

14I want to remind at this point, that in the limit 𝜆 ≫ 𝜇 ≫ 𝐷𝜎−2 any overlapping grains should be
active, and hence 𝑔𝐼,𝑎(𝑟) = 0 for all 𝑟 < 𝜎. This interestingly means, that the information on Φc lies
in the manner in which 𝑔𝑎,𝑎′(𝑟) responds to 𝜆 and 𝜇 changing relative to 𝐷𝜎−2, despite the former two
being entirely auxiliary in purpose.

15By rescaling time we can eliminate one of the rates, say by non-dimensionalizing time with 𝐷𝜎−2
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Imagine now we can expand the density dependences of 𝐺𝐼,𝑎(𝜌) in a well-behaved
power series

∑∞
𝑛=0 𝑌

(𝑛)
𝐼,𝑎𝜌𝑛 of 𝜌

𝜌𝐴 = (𝜌 − 𝜌𝐴)
∞∑

𝑛=0

(
(𝜌 − 𝜌𝐴)𝑌

(𝑛)
𝐼,𝐼 + 𝜌𝐴𝑌

(𝑛)
𝐼,𝐴

)
𝜌𝑛 (4.110)

At the critical point active grain density vanishes and

0 = 𝜌2
∞∑

𝑛=0
𝑌(𝑛)
𝐼,𝑎𝜌𝑛 (4.111)

We see that if only one of the terms is non-vanishing, then the equation becomes
0 = 𝜌𝑛+2, i.e. again trivial critical density. We conclude that at least two terms in the
power series expansion, if existent, would have to be non-vanishing and we can rule
out a homogeneous dependence 𝜌𝑝 of

∑
𝑎 𝜌𝑎𝐺𝐼,𝑎(𝜌) on density.

It is generally true though, thatweneed the limit of
∑

𝑎 𝜌𝑎𝐺𝐼,𝑎(𝜌) as𝜌𝐴 → 0 to be an
expression in terms of 𝜌 with a non-trivial roots 𝜌∗ ≠ 0 which would be our value for
the critical number density 𝜌c (related to critical packing density by Φc = 𝐵𝑑(𝜎∕2)𝑑𝜌c).

Involving Motion In hindsight it is not surprising that either of the previous at-
tempts resulted in a trivial critical density: the limit towards time-continuous ran-
dom organization is not just 𝜆 ≫ 𝜇, it is 𝜆 ≫ 𝜇 ≫ 𝐷𝜎2. Without involving motion,
quantified by 𝐷, into our equations (like attempts 1 and 2 did), we have little basis for
expecting any sensible relation to space, the very thing that the grains are packed in:
by neglecting any positional information, also neglect the role of motion, as quanti-
fied by the rate 𝐷𝜎−2. Its value should affect how the 𝑔𝑎,𝑎′(𝑟) look, since it relates the
characteristic timespans 𝜆−1 and 𝜇−1 over which reactions occur to the volume of a
patch of space diffusively explored by an active grain ∼ (2𝐷𝜇−1)𝑑∕2.

Because the diffusion term 𝐷∇2𝜌𝐴 vanishes in a homogeneous system, the only
way in which grain diffusion expresses itself in the steady state equation eq. (4.108)
is through the shape of the 𝐼-𝑎 pair distribution functions 𝑔𝐼,𝑎(𝑟). From very small-
scale simulations of the dynamics I performed to get a better intuition for the reaction
system (see fig. 4.8 and fig. 4.9a), one can make the educated guess that 𝑔𝐼,𝐼(𝑟) ≈ 0
compared to 𝑔𝐼,𝑎(𝑟) (see fig. 4.8b). We also see verification (fig. 4.8a) that the diffusion-
related length scales defined in eq. (4.97) and eq. (4.98) are indeed characteristic length
scales for the behaviour of 𝑔𝐼,𝐴(𝑟) around the activation-distance 𝑟 = 𝜎.

The probably crudest imitation one could give of 𝑔𝐼,𝐴(𝑟) = 𝑔𝐴,𝐼(𝑟) as seen fig. 4.9b
is some 𝑟 < 𝜎 plateau value 𝑔0𝐼,𝐴, followed by a linear rise (beginning at about 𝑟 =
𝜎 − (2𝐷𝜆−1)1∕2) to the expected 𝑟 → ∞ 𝑔𝐼,𝐴(𝑟)-plateau value of

𝑔∞𝐼,𝐴 ≔
1
4 (4.112)

(reached at about 𝑟 = 𝜎+(2𝐷𝜇−1)1∕2). The crudest approximation for the |𝒓2−𝒓1| < 𝜎
plateau of 𝑔𝐼,𝐴(𝒓1, 𝒓2) should be product of the respective likelihoods for an overlap-
ping pair of grains at 𝒓1 and 𝒓2, that the 𝒓1-grain is inactive (which has probability
1 − 𝑓𝐴) and that the 𝒓2-grain is active (which has probability 𝑓𝐴)

𝑔𝐼,𝐴(𝑟 < 𝜎eff𝐼 ) ≈ 𝑔0𝐼,𝐴 ≔ 𝑓𝐴(1 − 𝑓𝐴) =
𝜇∕𝜆

𝑧 + 𝜇∕𝜆
⋅ 𝑧
𝑧 + 𝜇∕𝜆

(4.113)
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where 𝑧 is the mean number of overlaps of the 𝒓2-grain (by spatial homogeneity the
same for all grains). However, this cannot be enough, since, as just discussed, the
resulting expression needs at least two powers of density to not yield trivial critical
density. This is not to mention, that in the limit 𝜇 ≫ 𝐷𝜎−2, which we need to take
first, the sloped section of 𝑔𝐼,𝐴(𝑟) vanishes, leaving only the plateau 𝑔0𝐼,𝐴.

Hence, I conclude that, before suggesting even more involved empirically moti-
vated shapes for 𝑔𝐼,𝐴(𝑟), it is probably best to try and obtain a more systematic ap-
proximation attempt that involves multiple powers of 𝜌. Judging by experiences from
fluid theory, I expect to obtain by neglecting the existence of 𝑛-fold overlaps. Unfor-
tunately, without anything at hand that resembles the Boltzmann-Gibbs distribution,
this expansion has to be built from the ground up and will hence be the subject of
future research.
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Figure 4.8: Measured 𝐴-𝐼 (fig. 4.8a) and 𝐼-𝐼 (fig. 4.8b) radial distribution functions as
measured from a small two-dimensional simulation (𝑁 = 150) in the steady state of
the dynamics defined in section 4.3.3 atΦ = 40%with (𝜆∕𝜇) = 5 and (𝜇∕𝐷) = 100𝜎−2.
In (a) one can see that (2𝐷𝜇−1)1∕2 and (2𝐷𝜆−1)1∕2 are characteristic length scales of
spatial 𝐼-𝐴-correlation, more specifically for the width of the transition from closer
than the reaction distance 𝑟 ≪ 𝜎 to outside of reaction range 𝑟 ≫ 𝜎. Note that it
does not plateau to 1 for large 𝑟; this is actually correct, since 𝑔(𝑟) plateaus to 1 and
splits into 𝑔(𝑟) =

∑
𝑎,𝑎′ 𝑔𝑎,𝑎′(𝑟). In (b) one can see that 𝑔𝐼,𝐼(𝑟) is depleted at. In either

image there seem to be significantly larger 𝑔𝐼,𝑎(𝑟) values towards 𝑟 → 0. While a rise of
𝑔𝐼,𝑎(𝑟) towards 𝑟 = 0 cannot be entirely ruled out, there is also no clear evidence for it
here, because fluctuations of the histograms underlying these curves are significantly
amplified by multiplication with 𝑟−(𝑑−1) close to 𝑟 = 0.
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(a) 𝑟 ∈ [0, 2𝜎] showing the depletion of 𝑔𝐼,𝐴(𝑟) + 𝑔𝐴,𝐼(𝑟) within
𝑟 < 𝜎 with rising (𝜆∕𝜇)
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(b) 𝑟 ∈ [0, 5𝜎] showing the plateauing of 𝑔𝐼,𝐴(𝑟) + 𝑔𝐴,𝐼(𝑟) to 0.5

Figure 4.9: Radial distribution 𝑔𝐼,𝐴(𝑟) + 𝑔𝐴,𝐼(𝑟) of 𝐴-𝐼 grain pairs measured from a
very small scale (𝑁 = 50) two-dimensional simulation of the dynamics defined in
section 4.3.3 at different reaction rate ratios (𝜆∕𝜇) = 2, 5, 10.





5 Summary and Outlook

Literature work In summary, I have given a rudimentary presentation of the the-
ory of continuous phase transitions (chapter 2). I started by introducing the concept
of an order-parameter in the context of field theories for critical points (like the Curie
point and DP) as well as simulations (like random organization). I proceeded to ex-
plain, that phase transitions exhibit scaling-behaviour at criticality, which which de-
pends only on very general physical properties (like symmetries), and divides con-
tinuous transitions on only a handful of universality classes. In the pursuit of under-
standing the literature on randomorganization, I researched the field theory approach
to phase transitions as pioneered by Wilson (1971b) and applied to non-equilibrium
transitions by works like Janssen (1976). This included getting an idea on how these
field theories are justified and how they relate to the commonly encountered space-
and time-resolved Langevin equations, in which an appropriate noise term is added
onto a mean-field theory in order to arrive at a description of the universality class of
interest.

As presented in chapter 3, I concluded from my literature work that analytical
study of theManna transition is dominated by abstract field theories of the entire uni-
versality class, geared towards the renormalization (semi-)group procedure, including
only few relevant couplings. The determination of (highly model dependent) critical
thresholds on the other hand is being attacked with simulation studies, like the intro-
ductory Corté et al. (2008) or Milz and Schmiedeberg (2013) and Wilken et al. (2021).
The latter two placed random organization on a spectrum of overlap reducing proto-
cols that has common protocols for the production of athermally jammed states on
the other end.

Finally, I dove into the literature of applying the many-body operator formalism,
typically used inmany-body quantumphysics, to classical physical systems like chem-
ical reactions whose outcome is highly dependent on the spatial correlation; pioneer-
ing works on this are Martin, Siggia, and Rose (1973) and Doi (1976a). These two also
turn out to be seminal contributions to the study of dynamical phase transitions with
field theory techniques.

Own investigations I presentedmy trial and error process towards finding analyti-
cal models of random organization that might be used to calculate the critical packing
density analytically. The first challenge was to find a proper language for describing
the random organization system.

To this end I made a very crude discrete time calculation (presented in section 4.1)
in which, for tractability, I had to neglect the spatial correlations of grains (making it
a mean-field theory). The thus obtained critical densities for 𝑑 = 2 and 𝑑 = 3 were



92 5. Summary and Outlook

not extremely accurate, but surprisingly close to the critical densities of the random
organization protocols of Milz and Schmiedeberg (2013) andWilken et al. (2021) (see
table 4.1).

Therewas however no clearway to improve these calculations, that did not involve
assuming some radial distribution a priori, which would have been self-defeating.
Hence I turned to many-body descriptions. I quickly found that time-continuous
models are both easier to write down and closer to physicists’ core skill sets. The first
of thesewas eq. (4.13), a Fokker-Planck equation in all grain positions (𝒙1, … , 𝒙𝑁), that
checks for every grain if it has any overlaps with an appropriate indicator function;
by multiplying the probability distribution 𝑃(𝒙1, … , 𝒙𝑁) by said indicator, diffusion of
grain 𝑘 is then conditioned on 𝑘 having overlaps. While a direct translation of ran-
dom organization to continuous time, this approach has the downside that it comes
with arbitrarily high 𝑛-body terms in the generator alone; I could not identify a way
to salvage this directly.

However, I next pursued the idea of relaxing the requirement that a particle has
to be registered as active or inactive immediately after respectively gaining an overlap
or loosing all overlaps. Inspired by theories that had reaction-diffusion models of the
reaction pair 𝐴 + 𝐼 → 2𝐴 and 𝐴 → 𝐼 beyond mean field as their frame of reference
(like Wijland, Oerding, and Hilhorst (1998)), sought out frameworks for implement-
ing these in a concise manner (section 4.3.1) and found Doi (1976a) and Doi (1976b),
which implements among other things diffusion controlled reactions beyond mean-
field calculations in the operator language typical of many-body quantum theory. I
explained the formalism and formulated a random organization mimicking model
(section 4.3.3), that had the aforementioned reactions and a diffusion term exclusively
for active grains. I derived from it the time evolution equation of the active-grain and
inactive-grain density fields (eq. (4.94)) as well as outlined the algorithmbywhich one
may in principle derive a hierarchy of 𝑛-body densities akin to the BBGKY hierarchy
(eq. (4.67)). The evolution equations of the density fields involved the radial distribu-
tions 𝑔𝑎,𝑎′(𝑟) (where 𝑎, 𝑎′ ∈ {𝐼, 𝐴} are the two grain species / activation states) which
respectively are analogous to the radial distribution function, with the difference that
they quantify distance distributions conditioned on one grain being in activation state
𝑎 and the other in activation state 𝑎′. I analysed the model by inserting (unsuccess-
fully) three very simple assumptions for the 𝑔𝑎,𝑎′(𝑟); how they failed points the way
to better approximations, with non-trivial critical density: (1) assuming uncorrelated
grain locations in any way leads to predicting a critical trivial density and (2) 𝑔𝐼,𝐴(𝑟),
the radial distribution of pairs where one partner is active an the other inactive, can-
not depend on a single power 𝜌𝑝 of density, but must depend at least on two.

Outlook It should be noted that, despite the good (albeit hand-waving) arguments
for random organization to be in the conserved directed percolation class, the lack of a
unifying frame-work for far from equilibrium universal phenomena can make it am-
biguouswhat constitutes a universality class. RGfixed point analysis wouldmake this
clear, but for it to apply one would have to first establish a rigorous link between any
given model and the field theory. Furthermore, the error bars on critical exponents
measured from simulation and experiment can be debatable and hence the sorting
of models in one universality class or another on less solid foundations than meets
the eye. This also applies to sorting random orgainzation into the Manna versus DP
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class. In section 3.2.2 I discussed the great similarities betweenDP andMannamodels
(absorbing state transition, similar field theories). I also discussed an important dif-
ference: proliferation of activity in random organization is limited by having to draw
from the (overall conserved) pool of grains in the system, which constrains and hence
correlates activations at any given time step (not the case in directed percolation prob-
lems). However, as stated at the end of section 3.2.2, given a packing structure, a DP
problem may help to understand how activity propagates.

The remainder of the outlook concerns itself with the many-body reaction model
(defined in section 4.3.3). I have not reached a final conclusion on how well the re-
action system is suited to finding the random organization density analytically. The
experimentationwith the formalism towards the end of the thesis left interesting loose
ends:

• It is an option to just insert empirically determined expressions for 𝑔𝑎,𝑎′(𝑟). Of
course, it is neither guaranteed to be easy nor is it desirable: a priori structure
defeats the purpose of a predictive theory. However, to begin to asses the self-
consistency of this description, it would be interesting to check this

• As is characteristic for purely non-equilibrium statistical physics problems, our
lack of an explicit expression for the stationary probability distribution (given
by the implicit condition ⟨𝑃∞| 𝑄 = 0 for steady states) means that, for a full
characterization of the system under study, not only do we have to approximate
our observables of interest from our probability distribution, a challenge that
makes equilibrium statistical physics very rich in itself, but we additionally need
to approximate 𝑃∞. I do not mean to say, that I rule out such an expression with
certainty, just that I do not expect one. From my view, it remains to be seen
how accessible 𝑃∞ is. Besides, a successful approximative scheme might very
well not be in need of the full distribution anyway; there may be asymptotic
expansions in 𝜆−1 and 𝜇−1, for example.

• The link of random organization to athermal jamming is of physical interest to
the latter. Note that one could introduce repulsions between active particles like
in Milz and Schmiedeberg (2013) and Wilken et al. (2021), by just adding onto
the rate operator 𝑄 a term generating drift between grain pairs, for example

𝑄𝑣 =
𝑣
2 ∫ d𝑑𝑟1 d𝑑𝑟2Θ(𝜎 − |𝒓1 − 𝒓2|)𝐴†(𝒓1)𝐴†(𝒓2) (𝒓̂21∇1 + 𝒓̂12∇2) 𝐴(𝒓1)𝐴(𝒓2)

(5.1)
where 𝒓̂21 = (𝒓2 − 𝒓1)∕|𝒓2 − 𝒓1|,∇𝑘 is the gradient with respect to 𝒓𝑘 and 𝑣 is the
drift velocity. This changes the time-evolution and steady state of the two-point
density 𝜌(2)𝑎,𝑎′(𝒓, 𝒓′), changing the predicted critical density Φc (moving it at least
towards the athermal jamming Φ𝐽). Hence, if the random organization calcu-
lations bear fruit, approaching time-continuous biased random organization is
on the table.

Despite the abstractness and even without the link to jamming, studying of models
such as random organization is methodically interesting: the tools necessary to at-
tack them and the ideas central to solving them can point the way for obtaining other
results in the theoretical study of phenomena emergent from complexity.





A LongerOperatorFormalismCom-
putations

A.1 Commutator with Creation Operator
Lemma 1. Commutators between strings of annihilation operators in the left argument
and a creation operator in the right argument (which by taking adjoints can also be
transferred to having an annihilation operator in the left and a string of creation opera-
tors in the right argument) evaluate to

[
𝑎1(𝒓1)⋯𝑎𝑛(𝒓𝑛), 𝑎′

†(𝒓′)
]
=

𝑛∑

𝑘=1
𝛿𝑎𝑘 ,𝑎′𝛿(𝒓𝑘 − 𝒓′)

𝑛∏

𝑙=1
𝑙≠𝑘

𝑎𝑙(𝒓𝑙) (A.1)

i.e. the sum over all possibilities to replace, in the string of annihilation operators in the
left-argument, exactly one annihilation operator 𝑎𝑘(𝒓𝑘) by the product of the Kronecker-
Delta 𝛿𝑎𝑘 ,𝑎′ and the Dirac-Delta 𝛿(𝒓𝑘 − 𝒓′)

Proof. Starting from the base case of the commutation relations eq. (4.47), which read
[
𝑎(𝒓), 𝑎′†(𝒓′)

]
= 𝛿𝑎,𝑎′𝛿(𝒓 − 𝒓′)

and is the trivial case of there only being one operator to replace by 𝛿𝑎,𝑎′𝛿(𝒓 − 𝒓′), we
can see inductively by [𝑋𝑌, 𝑍] = 𝑋[𝑌, 𝑍] + [𝑋, 𝑍]𝑌 that

[𝑎1(𝒓1)⋯𝑎𝑛+1(𝒓𝑛+1), 𝑎′
†(𝒓′)]

=
[
𝑎1(𝒓1)⋯𝑎𝑛(𝒓𝑛), 𝑎′

†(𝒓′)
]

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
∑𝑛

𝑘=1 𝛿𝑎𝑘,𝑎′𝛿(𝒓𝑘−𝒓
′)
∏𝑛
𝑙=1
𝑙≠𝑘

𝑎𝑙(𝒓𝑙)

𝑎𝑛+1(𝒓𝑛+1)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
replacement of all factors except for

𝑎𝑛+1(𝒓𝑛+1) by 𝛿𝑎𝑘,𝑎′𝛿(𝒓𝑘−𝒓
′)

+𝑎1(𝒓1)⋯𝑎𝑛(𝒓𝑛)
[
𝑎𝑛+1(𝒓𝑛+1), 𝑎′

†(𝒓′)
]

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝛿𝑎𝑛+1,𝑎′𝛿(𝒓𝑛+1−𝒓

′)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
replacement of 𝑎𝑛+1(𝒓𝑛+1) by 𝛿𝑎𝑛+1,𝑎′𝛿(𝒓𝑛+1−𝒓

′)

=
𝑛+1∑

𝑘=1
𝛿𝑎𝑘 ,𝑎′𝛿(𝒓𝑘 − 𝒓′)

𝑛+1∏

𝑙=1
𝑙≠𝑘

𝑎𝑙(𝒓𝑙)

(A.2)
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A.2 Manipulating Kets with Operators
As can be read off (the adjoint version of) eq. (A.1), applying an annihilation operator
𝑎(𝒓) to a configuration ket ||||𝑎

′
1, … , 𝑎

′
𝑛′ , 𝒓

′
1, … , 𝒓

′
𝑛′
⟩
works out to

𝑎(𝒓) ||||𝑎
′
1, … , 𝑎

′
𝑛′ , 𝒓

′
1, … , 𝒓

′
𝑛′
⟩

= 𝑎(𝒓)𝑎′1
†(𝒓′1)⋯𝑎′𝑛′

†(𝒓′𝑛′) |0⟩

=
[
𝑎(𝒓), 𝑎′1

†(𝒓′1)⋯𝑎′𝑛′
†(𝒓′𝑛′)

]

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
∑𝑛

𝑘=1 𝛿𝑎,𝑎′𝑘
𝛿(𝒓−𝒓′𝑘)

∏
𝑙=1
𝑙≠𝑘

𝑛 𝑎′𝑙
†(𝒓′𝑙 )

|0⟩ + 𝑎′1
†(𝒓1)⋯𝑎′𝑛′

†(𝒓𝑛′) 𝑎(𝒓) |0⟩⏟ ⏟ ⏟
=0

=
∑

𝑘∈{1,…,𝑛′}
𝛿𝑎,𝑎′𝑘𝛿(𝒓 − 𝒓′𝑘)

||||{(𝑎
′
𝑙 , 𝒓

′
𝑙)}𝑙∈{1,…,𝑛}⧵{𝑘}

⟩

(A.3)

(used, for example, used in eq. 25 from Doi 1976a). In this sense, applying the anni-
hilation operator 𝑎(𝒓) to a configuration ket reduces the number of grains by one if
therewas a grain exactly at 𝒓 (vanishing the ket otherwise). Applying two annihilation
operators accordingly results in

𝑎1(𝒓1)𝑎2(𝒓2)
||||𝑎

′
1, … , 𝑎

′
𝑛′ , 𝒓

′
1, … , 𝒓

′
𝑛′
⟩

= 𝑎2(𝒓2)
∑

𝑘1∈{1,…,𝑛′}
𝛿𝑎1,𝑎′𝑘1𝛿(𝒓1 − 𝒓′𝑘1)

||||{(𝑎
′
𝑙 , 𝒓

′
𝑙)}𝑙∈{1,…,𝑛′}⧵{𝑘1}

⟩

=
∑

𝑘1∈{1,…,𝑛′}

∑

𝑘2∈{1,…,𝑛′}⧵{𝑘1}
𝛿𝑎1,𝑎′𝑘1𝛿(𝒓1 − 𝒓′𝑘1) ⋅ 𝛿𝑎2,𝑎′𝑘2𝛿(𝒓2 − 𝒓′𝑘2)

× ||||{(𝑎
′
𝑙 , 𝒓

′
𝑙)}𝑙∈{1,…,𝑛′}⧵{𝑘1,𝑘2}

⟩

=
∑

(𝑘1,𝑘2)∈
𝐶2({1,…,𝑛′})

2∏

𝑚=1
𝛿𝑎𝑚 ,𝑎′𝑘𝑚𝛿(𝒓𝑚 − 𝒓′𝑘𝑚) ⋅

||||{(𝑎
′
𝑙 , 𝒓

′
𝑙)}𝑙∈{1,…,𝑛′}⧵{𝑘1,𝑘2}

⟩

(A.4)

wherewith𝐶𝑛(𝑀) Imean the set of all possible ordered choices1 of 𝑛 distinct elements
from the set 𝑀 (with 𝐶𝑛({1, … , 𝑛}) ≃ 𝑆𝑛 the set of permutations, and 𝐶𝑛(𝑀) = ∅ if
|𝑀| < 𝑛 since then there are not even 𝑛 options in 𝑀 to choose from); we interpret
ordered choices from 𝐶𝑛(𝑀) conveniently as tuples (𝑘1, … , 𝑘𝑛) when summing over
them. This inductively generalizes to:
Lemma 2. Applying 𝑛 annihilation operators to a configuration ket with 𝑛′ particles
results in

𝑎1(𝒓1)⋯𝑎𝑛(𝒓𝑛)
||||𝑎

′
1, … , 𝑎

′
𝑛′ , 𝒓

′
1, … , 𝒓

′
𝑛′
⟩

=
∑

(𝑘1,…,𝑘𝑛)∈
𝐶𝑛({1,…,𝑛′})

(
𝑛∏

𝑚=1
𝛿𝑎𝑚 ,𝑎′𝑘𝑚𝛿(𝒓𝑚 − 𝒓′𝑘𝑚))

||||{(𝑎
′
𝑙 , 𝒓

′
𝑙)}𝑙∈{1,…,𝑛′}⧵{𝑘1,…,𝑘𝑛}

⟩ (A.5)

with special case when 𝑛 = 𝑛′, where selection of

𝑎1(𝒓1)⋯𝑎𝑛(𝒓𝑛)
||||𝑎

′
1, … , 𝑎

′
𝑛, 𝒓′1, … , 𝒓

′
𝑛
⟩
=

∑

𝜋∈𝑆𝑛

𝑛∏

𝑘=1
𝛿𝑎𝑘 ,𝑎′𝜋(𝑘)𝛿(𝒓𝑘 − 𝒓′𝜋(𝑘)) |0⟩ (A.6)

1which is most elegantly understood as all injective maps {1, … , 𝑛} → 𝑀
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Corollary 1. The inner product of two configuration kets evaluates to

⟨
𝑎1, … , 𝑎𝑛, 𝒓1, … , 𝒓𝑛

||||𝑎
′
1, … , 𝑎

′
𝑛′ , 𝒓

′
1, … , 𝒓

′
𝑛′
⟩
= 𝛿𝑛,𝑛′

∑

𝜋∈𝑆𝑛

𝑛∏

𝑘=1
𝛿𝑎𝑘 ,𝑎′𝜋(𝑘)𝛿(𝒓𝑘 − 𝒓′𝜋(𝑘)) (A.7)

(see Doi (1976a, eq. 16) for a similar identity in the simpler case of a single particle
species)
Corollary 2. Applying the operator 𝑎†1(𝒓1)⋯𝑎†𝑛(𝒓𝑛)𝑎1(𝒓1)⋯𝑎𝑛(𝒓𝑛) to any configura-
tion ket ||||𝑎

′
1, … , 𝑎

′
𝑁, 𝒓

′
1, … , 𝒓

′
𝑁
⟩
results in2

𝑎†1(𝒓1)⋯𝑎†𝑛(𝒓𝑛)𝑎1(𝒓1)⋯𝑎𝑛(𝒓𝑛)
||||𝑎

′
1, … , 𝑎

′
𝑁, 𝒓

′
1, … , 𝒓

′
𝑁
⟩

= 𝑎†1(𝒓1)⋯𝑎†𝑛(𝒓𝑛)
∑

(𝑘1,…,𝑘𝑛)∈
𝐶𝑛({1,…,𝑁})

𝑛∏

𝑚=1
𝛿𝑎𝑚 ,𝑎′𝑘𝑚𝛿(𝒓𝑚 − 𝒓′𝑘𝑚)

||||{(𝑎
′
𝑙 , 𝒓

′
𝑙)}𝑙∈{1,…,𝑛′}⧵{𝑘1,…,𝑘𝑛}

⟩

=
∑

(𝑘1,…,𝑘𝑛)∈
𝐶𝑛({1,…,𝑁})

𝑛∏

𝑚=1
𝛿𝑎𝑚 ,𝑎′𝑘𝑚𝛿(𝒓𝑚 − 𝒓′𝑘𝑚)

||||𝑎
′
1, … , 𝑎

′
𝑁, 𝒓

′
1, … , 𝒓

′
𝑁
⟩

(A.8)
which turns out to be precisely the multiplication by the random variable of the 𝑛-point
density

𝜌(𝑛)𝑎1,…,𝑎𝑛(𝒓1, … , 𝒓𝑛) =
⟨ ∑

(𝑘1,…,𝑘𝑛)∈
𝐶𝑛({1,…,𝑁})

𝑛∏

𝑚=1
𝛿𝑎𝑚 ,𝑎′𝑘𝑚𝛿(𝒓𝑚 − 𝒓′𝑘𝑚)

⟩
(A.9)

as defined for𝑁-particle configurations.
Corollary 3. Using the notation |𝜔⟩ for 𝜔 ∈ Ω, where Ω is the outcome space, intro-
duced by eq. (4.54) and the measure d𝜔 introduced by eq. (4.53), we have the resolution
identity

𝟙 = ∫ d𝜔 |𝜔⟩ ⟨𝜔| (A.10)

Proof. For any 𝜔′ = ||||𝑎
′
1, … , 𝑎

′
𝑁′ , 𝒙′1, … , 𝒙

′
𝑁′

⟩
we get

∫ d𝜔 |𝜔⟩ ⟨𝜔|||𝜔′⟩ =
∞∑

𝑁=0
∫

d𝑑𝑥1⋯d𝑑𝑥𝑁
𝑁!

∑

𝑎1⋯𝑎𝑁

|||𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁⟩

×
⟨
𝑎1, … , 𝑎𝑁, 𝒙1, … , 𝒙𝑁

||||𝑎
′
1, … , 𝑎

′
𝑁′ , 𝒙′1, … , 𝒙

′
𝑁′

⟩

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝛿𝑁,𝑁′

∑
𝜋∈𝑆𝑁′

∏𝑁′
𝑘=1 𝛿𝑎𝑘,𝑎′𝜋(𝑘)

𝛿(𝒙𝑘−𝒙′𝜋(𝑘))

= 1
𝑁′!

∑

𝜋∈𝑆𝑁′

|||||𝑎
′
𝜋(1), … , 𝑎

′
𝜋(𝑁′), 𝒙

′
𝜋(1), … , 𝒙

′
𝜋(𝑁′)

⟩

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=|||||𝑎

′
1,…,𝑎

′
𝑁′ ,𝒙

′
1,…,𝒙

′
𝑁′

⟩
(i.e.: ket unchanged

under permutation of particle identities)

=
|𝑆𝑁′|
𝑁′! ⋅ ||||𝑎

′
1, … , 𝑎

′
𝑁′ , 𝒙′1, … , 𝒙

′
𝑁′

⟩

= ||||𝑎
′
1, … , 𝑎

′
𝑁′ , 𝒙′1, … , 𝒙

′
𝑁′

⟩

(A.11)

2When 𝐶𝑛({1, … ,𝑁}) = ∅ due to 𝑛 > 𝑁, the convention of empty sums vanishing
∑

𝑘∈∅(⋯) = 0
applies.
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where we used |𝑆𝑁| = 𝑁!; Since we decompose any bra/ket as integrals of these con-
figuration bras/kets, ∫ d𝜔 |𝜔⟩ ⟨𝜔| indeed acts like identity on all of them.

Corollary 4. With appendix 1, one can immediately see that

⟨𝑃|||𝑎1, … , 𝑎𝑁, 𝒓1, … , 𝒓𝑁⟩ =
∞∑

𝑁′=0
∫

d𝑑𝑟′1⋯d𝑑𝑟′𝑁′

𝑁′!
∑

𝑎′1⋯𝑎′𝑁′

𝑃(𝑁′)(𝑎′1, … , 𝑎
′
𝑁′ , 𝒓′1, … , 𝒓

′
𝑁′)

×
⟨
𝑎′1, … , 𝑎

′
𝑁′ , 𝒓′1, … , 𝒓

′
𝑁′
||||𝑎1, … , 𝑎𝑁, 𝒓1, … , 𝒓𝑁

⟩

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝛿𝑁,𝑁′

∑
𝜋∈𝑆𝑛

∏𝑁
𝑘=1 𝛿𝑎𝑘,𝑎′𝜋(𝑘)

𝛿(𝒓𝑘−𝒓′𝜋(𝑘))

= 𝑃(𝑁)𝑎1,…,𝑎𝑁(𝒓1, … , 𝒓𝑁)
(A.12)

where we used that

𝑃(𝑁)𝑎𝜋(1),…,𝑎𝜋(𝑁)(𝒓𝜋(1), … , 𝒓𝜋(𝑁)) = 𝑃(𝑁)𝑎1,…,𝑎𝑁(𝒓1, … , 𝒓𝑁)

for any permutation 𝜋 ∈ 𝑆𝑁 of the particle identities.

A.3 Properties of |sum⟩
Averages in theDoi formalism are computed by sandwiching operators𝑋 correspond-
ing to random variables 𝒳 in between the probability distribution ⟨𝑃| and a special
vector |sum⟩ given by

|sum⟩ = exp (∫ d𝑑𝑟
∑

𝑎
𝑎†(𝒓)) |0⟩ (A.13)

This definition is very similar to coherent states in quantum physics and corresponds
to a vector containing only ones infinite-dimensionalMarkov chains (see section 4.3.2).
We now want to show that

Proposition 1. |sum⟩ absorbs any creation operator applied to it

𝑎(𝒓) |sum⟩ = |sum⟩ (A.14)

Proof. We can show it without loss of generality for only one creation operator type,
say active grains 𝐴(𝒓). We first define

𝑆† ≔ ∫ d𝑑𝑟
∑

𝑎
𝑎†(𝒓) (A.15)

and note that
[
𝐴(𝒓), 𝑆†

]
= ∫ d𝑑𝑟

([
𝐴(𝒓), 𝐴†(𝒓′)

]
⏟⎴⎴⎴⏟⎴⎴⎴⏟

=𝛿(𝒓−𝒓′)

+
[
𝐴(𝒓), 𝐼†(𝒓′)

]
⏟⎴⎴⏟⎴⎴⏟

=0

)

= ∫ d𝑑𝑟 𝛿(𝒓 − 𝒓′)

= 1

(A.16)
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such that one can see
[
𝐴(𝒓), (𝑆†)𝑛

]
= 𝑛(𝑆†)𝑛−1 inductively

[
𝐴(𝒓), (𝑆†)𝑛

]
= 𝑆†

[
𝐴(𝒓), (𝑆†)𝑛−1

]
⏟⎴⎴⎴⏟⎴⎴⎴⏟
=(𝑛−1)(𝑆†)𝑛−2 by
ind. assumption

+
[
𝐴(𝒓), 𝑆†

]
⏟⎴⏟⎴⏟

=1

(𝑆†)𝑛−1

= 𝑛(𝑆†)𝑛−1
(A.17)

We expand

𝐴(𝒓) |sum⟩ = 𝐴(𝒓) exp
(
𝑆†
)
|0⟩

=
∞∑

𝑛=0

1
𝑛!𝐴(𝒓)(𝑆

†)𝑛 |0⟩

=
∞∑

𝑛=0

1
𝑛!
([
𝐴(𝒓), (𝑆†)𝑛

]
+ (𝑆†)𝑛𝐴(𝒓)

)
|0⟩

=
∞∑

𝑛=1

1
𝑛! ⋅ 𝑛⏟⏟⏟
= 1
(𝑛−1)!

(𝑆†)𝑛−1 |0⟩

=
∞∑

𝑛=0

1
𝑛!(𝑆

†)𝑛 |0⟩

= |sum⟩

(A.18)





B Reaction System Simulation

The simulations were written in Python 3.13.3 with numpy 2.3.4. All analysis ad-
ditionally used scipy 1.16.3 for curve fitting and matplotlib 3.10.7 for plotting.
The purpose of writing these simulations was to observe the system in action and
gather ideas. They were used to challenge and ultimately support or discourage a few
speculations I had.

Simulation The small scale simulations of the dynamics specified section 4.3.3 that
I mentioned throughout section 4.3.5 was, implemented as follows: 𝑁 grains, which
each have the attributes position 𝒙𝑘 ∈ [0, 𝐿]𝑑 and activation state 𝑎𝑘 ∈ {𝐴, 𝐼}, are ini-
tially set to active and their positions randomly, independently and uniformly dis-
tributed throughout the box [0, 𝐿]𝑑.

The grain diameter 𝜎 is computed from the packing fractionΦ viaΦ = 𝑁𝐵𝑑𝜎𝑑∕𝐿𝑑,
where 𝐵𝑑 is the volume of the 𝑑-dimensional unit ball. Activation rate 𝜆, inactivation
rate 𝜇 and diffusion constant 𝐷 can also be set.

With periodic boundary conditions in place, I then repeatedly perform the follow-
ing update, terminating either when a certain maximum number of iterations is sur-
passed or an absorbing state is reached:

1. Determine all reactions that could possibly happen next. This always includes
𝐴 → 𝐼 for every grain; on top of that, any overlapping pair 𝑖 and 𝑗 is registered
as a potential next reaction 𝑎𝑖 + 𝑎𝑗 → 2𝐴

2. For every reaction 𝑅 registered in step 1, a duration 𝜏𝑅 is drawn from an ex-
ponential distribution ∼ 𝑒−𝛼𝑅𝑡 where 𝑟 is the reaction rate (𝛼𝑅 = 𝜆 when 𝑅 is
𝑎𝑗 + 𝑎𝑘 → 2𝐴 and 𝛼𝑅 = 𝜇 when 𝑅 is 𝐴 → 𝐼)

3. Only the reaction 𝑅 with the shortest duration 𝜏𝑅 is realized

4. In the duration 𝜏𝑅 all active grains would have diffused. To account for this,
every active grain is shifted by a random step drawn from an isotropic multidi-
mensional normal distribution with variance 2𝐷𝜏𝑅

5. Repeat from step 1 unless any of the stopping criteria (maximum number of
iterations is surpassed or an absorbing state is reached) is fulfilled.

For later analysis the activation states and positions of all grains in the systems are reg-
ularly dumped to a file in the .xyz format (see https://en.wikipedia.org/wiki/
XYZ_file_format, last visited 20.11.2025).

https://en.wikipedia.org/wiki/XYZ_file_format
https://en.wikipedia.org/wiki/XYZ_file_format
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Measurements While it is clear how to determine the active grain plotted infig. 4.6,
𝑔𝑎,𝑎′(𝑟) warrants explaining. They were obtained with the following steps

1. Determine from an 𝑓𝑎(𝑡) a ‘burn-in time’ 𝑇 after which the system is in the
steady state

2. Sample 𝑛 configurations from the steady state. For all pairs where one grain
has activation state 𝑎 and the other activation sate 𝑎′, sort all distances from all
samples into a histogram𝐻𝑎,𝑎′(𝑘) with bin width d𝑟 and bin centres {𝑟𝑘}

3. Average the histogram ℎ𝑎,𝑎′(𝑘) = 𝐻𝑎,𝑎′(𝑘)∕𝑛

4. Divide the averaged histogram ℎ𝑎,𝑎′(𝑘) by 𝜌2𝑆𝑑𝑟𝑑−1𝑘 d𝑟, where 𝑆𝑑 stands for the
(hyper-)surface area of a 𝑑-dimensional unit shell and 𝜌 = 𝑁∕𝐿𝑑 to obtain the
estimate for 𝑔𝑎,𝑎′(𝑟𝑘)



Bibliography

Adzhemyan, Loran Ts. et al. (2023). “Field-theoretic analysis of directed percolation:
Three-loop approximation”. en. In: Physical Review E 107.6, p. 064138. issn: 2470-
0045, 2470-0053. doi: 10.1103/PhysRevE.107.064138.

Baddeley,Adrian J. (2007). “Spatial Point Processes and theirApplications”. In: School
of Mathematics and Statistics, University of Western Australia.

Bardeen, J., L. N. Cooper, and J. R. Schrieffer (1957). “Theory of Superconductivity”.
In: Phys. Rev. 108 (5), pp. 1175–1204. doi: 10.1103/PhysRev.108.1175.

Bernal, J. D. and J. Mason (Dec. 1960). “Packing of Spheres: Co-ordination of Ran-
domly Packed Spheres”. en. In: Nature 188.4754, 910–911. issn: 0028-0836, 1476-
4687. doi: 10.1038/188910a0.

Broadbent, Simon and J. M. Hammersley (1957). “Percolation processes”. In:Mathe-
matical Proceedings of the Cambridge Philosophical Society 53, pp. 629 –641.

Brown, Harvey R., Wayne Myrvold, and Jos Uffink (2009). “Boltzmann’s H-theorem,
its discontents, and the birth of statistical mechanics”. In: Studies in History and
Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
40.2, pp. 174–191. issn: 1355-2198. doi: https://doi.org/10.1016/j.shpsb.
2009.03.003.

Cardy, J L and R L Sugar (1980). “Directed percolation and Reggeon field theory”.
In: Journal of Physics A: Mathematical and General 13.12, p. L423. doi: 10.1088/
0305-4470/13/12/002.

Chatterjee, Sayani, Arghya Das, and Punyabrata Pradhan (June 2018). “Hydrodynam-
ics, density fluctuations, and universality in conserved stochastic sandpiles”. en.
In: Physical Review E 97.6, p. 062142. issn: 2470-0045, 2470-0053. doi: 10.1103/
PhysRevE.97.062142.

Cheung,Anson (Jan. 2023).PhaseTransitions andCollective Phenomena. LectureNotes.
University of Cambridge.

Corté, Laurent et al. (May 2008). “Random organization in periodically driven sys-
tems”. en. In: Nature Physics 4.5, 420–424. doi: 10.1038/nphys891.

Coupette, Fabian (2023). “Percolation: Connecting the Dots”. en. In: doi: 10.6094/
UNIFR/236560.

Dantas, Wellington Gomes et al. (Sept. 2006). “Generalized Manna sandpile model
with height restrictions”. In: Brazilian Journal of Physics 36.3a, pp. 750–754. doi:
10.1590/s0103-97332006000500031.

Doi, Masao (1976a). “Second quantization representation for classical many-particle
system”. In: Journal of Physics A: Mathematical and General 9.9, p. 1465. doi: 10.
1088/0305-4470/9/9/008.

https://doi.org/10.1103/PhysRevE.107.064138
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1038/188910a0
https://doi.org/https://doi.org/10.1016/j.shpsb.2009.03.003
https://doi.org/https://doi.org/10.1016/j.shpsb.2009.03.003
https://doi.org/10.1088/0305-4470/13/12/002
https://doi.org/10.1088/0305-4470/13/12/002
https://doi.org/10.1103/PhysRevE.97.062142
https://doi.org/10.1103/PhysRevE.97.062142
https://doi.org/10.1038/nphys891
https://doi.org/10.6094/UNIFR/236560
https://doi.org/10.6094/UNIFR/236560
https://doi.org/10.1590/s0103-97332006000500031
https://doi.org/10.1088/0305-4470/9/9/008
https://doi.org/10.1088/0305-4470/9/9/008


104 Bibliography

Doi,Masao (1976b). “Stochastic theory of diffusion-controlled reaction”. In: Journal of
Physics A: Mathematical and General 9.9, 1479–1495. issn: 0305-4470, 1361-6447.
doi: 10.1088/0305-4470/9/9/009.

Doussal, Pierre Le and Kay JörgWiese (Mar. 2015). “An exact mapping of the stochas-
tic field theory for Manna sandpiles to interfaces in random media”. In: Physi-
cal Review Letters 114.11, p. 110601. issn: 0031-9007, 1079-7114. doi: 10.1103/
PhysRevLett.114.110601.

Ehrenfest, Paul and Tatyana Ehrenfest (1911). “Begriffliche Grundlagen der statis-
tischen Auffasung in der Mechanik”. In: Encyklopädie der mathematischen Wis-
senschaften Band IV, 2. Teil, 3–90.

Garcia-Palacios, J. L. (2007). Introduction to the theory of stochastic processes andBrow-
nian motion problems. arXiv: cond-mat/0701242 [cond-mat.stat-mech].

Grassberger, P. (Dec. 1982). “On phase transitions in Schlögl’s second model”. en. In:
Zeitschrift für Physik B Condensed Matter 47.4, 365–374. issn: 0722-3277, 1434-
6036. doi: 10.1007/BF01313803.

Grassberger, P. and K. Sundermeyer (1978). “Reggeon field theory and markov pro-
cesses”. en. In: Physics Letters B 77.2, 220–222. issn: 03702693. doi: 10.1016/
0370-2693(78)90626-3.

Hinrichsen, Haye (Nov. 2000). “Non-equilibrium critical phenomena and phase tran-
sitions into absorbing states”. In: Advances in Physics 49.7, 815–958. issn: 1460-
6976. doi: 10.1080/00018730050198152.

Hohenberg, P. andW.Kohn (Nov. 1964). “Inhomogeneous ElectronGas”. en. In: Phys-
ical Review 136.3B, B864–B871. issn: 0031-899X. doi: 10.1103/PhysRev.136.
B864.

Jaeger, Gregg (May 1998). “The Ehrenfest Classification of Phase Transitions: Intro-
duction and Evolution”. In: Archive for History of Exact Sciences 53.1, 51–81. issn:
0003-9519, 1432-0657. doi: 10.1007/s004070050021.

Janssen, H. K. (1981). “On the nonequilibrium phase transition in reaction-diffusion
systems with an absorbing stationary state”. en. In: Zeitschrift für Physik B Con-
densedMatter 42.2, 151–154. issn: 0340-224X, 1434-6036. doi: 10.1007/BF01319549.

Janssen, H. K., Ue Kutbay, and K. Oerding (Mar. 1999). “Equation of state for directed
percolation”. In: Journal of Physics A:Mathematical andGeneral 32.10, 1809–1817.
issn: 0305-4470, 1361-6447. doi: 10.1088/0305-4470/32/10/003.

Janssen, Hans-Karl (Dec. 1976). “On a Lagrangean for classical field dynamics and
renormalization group calculations of dynamical critical properties”. en. In:Zeitschrift
für Physik B Condensed Matter and Quanta 23.4, 377–380. issn: 0340-224X, 1434-
6036. doi: 10.1007/BF01316547.

Janssen, Hans-Karl and Olaf Stenull (2016). “Directed percolation with a conserved
field and the depinning transition”. In: Phys. Rev. E 94 (4), p. 042138. doi: 10.
1103/PhysRevE.94.042138.

Janssen, Hans-Karl and Uwe C. Täuber (Jan. 2005). “The field theory approach to
percolation processes”. In:Annals of Physics 315.1, 147–192. issn: 0003-4916. doi:
10.1016/j.aop.2004.09.011.

Jensen, Iwan (1999). “Low-density series expansions for directed percolation: I. A new
efficient algorithm with applications to the square lattice”. In: Journal of Physics
A: Mathematical and General 32.28, 5233–5249. issn: 0305-4470, 1361-6447. doi:
10.1088/0305-4470/32/28/304.

https://doi.org/10.1088/0305-4470/9/9/009
https://doi.org/10.1103/PhysRevLett.114.110601
https://doi.org/10.1103/PhysRevLett.114.110601
https://arxiv.org/abs/cond-mat/0701242
https://doi.org/10.1007/BF01313803
https://doi.org/10.1016/0370-2693(78)90626-3
https://doi.org/10.1016/0370-2693(78)90626-3
https://doi.org/10.1080/00018730050198152
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1007/s004070050021
https://doi.org/10.1007/BF01319549
https://doi.org/10.1088/0305-4470/32/10/003
https://doi.org/10.1007/BF01316547
https://doi.org/10.1103/PhysRevE.94.042138
https://doi.org/10.1103/PhysRevE.94.042138
https://doi.org/10.1016/j.aop.2004.09.011
https://doi.org/10.1088/0305-4470/32/28/304


Bibliography 105

Kadanoff, Leo P. (June 1966). “Scaling laws for ising models near T c”. en. In: Physics
PhysiqueFizika 2.6, 263–272. issn: 0554-128X. doi: 10.1103/PhysicsPhysiqueFizika.
2.263.

Kohn, W. and L. J. Sham (Nov. 1965). “Self-Consistent Equations Including Exchange
andCorrelationEffects”. en. In:Physical Review 140.4A,A1133–A1138. issn: 0031-
899X. doi: 10.1103/PhysRev.140.A1133.

Lorenz, EdwardN. (1995).TheEssence ofChaos. eng. London:UCLPress. isbn: 9786610054848.
Lubeck, S. (Dec. 2004). “Universal scaling behavior of non-equilibrium phase transi-

tions”. In: International Journal of Modern Physics B 18.31n32, 3977–4118. issn:
0217-9792, 1793-6578. doi: 10.1142/S0217979204027748.

Manna, S.S. (1991). “Critical exponents of the sand pile models in two dimensions”.
In: Physica A: Statistical Mechanics and its Applications 179.2, pp. 249–268. issn:
0378-4371. doi: https://doi.org/10.1016/0378-4371(91)90063-I.

Martin, P. C., E. D. Siggia, and H. A. Rose (1973). “Statistical Dynamics of Classical
Systems”. en. In: Physical Review A 8.1, 423–437. issn: 0556-2791. doi: 10.1103/
PhysRevA.8.423.

Mermin, N. David (Mar. 1965). “Thermal Properties of the Inhomogeneous Electron
Gas”. en. In: Physical Review 137.5A, A1441–A1443. issn: 0031-899X. doi: 10.
1103/PhysRev.137.A1441.

Milz, Lars and Michael Schmiedeberg (Dec. 2013). “Connecting the random organi-
zation transition and jamming within a unifying model system”. en. In: Physical
Review E 88.6, p. 062308. issn: 1539-3755, 1550-2376. doi: 10.1103/PhysRevE.
88.062308.

Obukhov, S.P. (Apr. 1980). “The problem of directed percolation”. en. In: Physica A:
Statistical Mechanics and its Applications 101.1, 145–155. issn: 03784371. doi: 10.
1016/0378-4371(80)90105-3.

Onsager, Lars (1944). “Crystal Statistics. I. A Two-Dimensional Model with an Order-
Disorder Transition”. In: Phys. Rev. 65 (3-4), pp. 117–149. doi: 10.1103/PhysRev.
65.117.

O’Hern, Corey S. et al. (2003). “Jamming at zero temperature and zero applied stress:
The epitome of disorder”. en. In: Physical Review E 68.1, p. 011306. issn: 1063-
651X, 1095-3787. doi: 10.1103/PhysRevE.68.011306.

Pastor-Satorras, Romualdo and Alessandro Vespignani (Nov. 2000). “Field theory of
absorbing phase transitions with a nondiffusive conserved field”. In: Physical Re-
view E 62.5, R5875–R5878. issn: 1095-3787. doi: 10.1103/physreve.62.r5875.

Pine, D. J. et al. (Dec. 2005). “Chaos and threshold for irreversibility in sheared sus-
pensions”. en. In: Nature 438.7070, 997–1000. issn: 0028-0836, 1476-4687. doi:
10.1038/nature04380.

Reichl, Linda E. (2016). Amodern course in statistical physics. eng. Fourth revised and
updated edition. Weinheim, Germany: Wiley-Vch, Verlag GmbH und Co. KGaA.
isbn: 978-3-527-41349-2. doi: 10.1002/9783527690497.

Rossi, Michela, Romualdo Pastor-Satorras, and Alessandro Vespignani (Aug. 2000).
“Universality Class of Absorbing Phase Transitions with a Conserved Field”. en.
In: Physical Review Letters 85.9, 1803–1806. issn: 0031-9007, 1079-7114. doi: 10.
1103/PhysRevLett.85.1803.

Roth, Roland (Nov. 2006). Introduction to Density Functional Theory of Classical Sys-
tems: Theoy and Applications. English. Lecture Notes.

https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1142/S0217979204027748
https://doi.org/https://doi.org/10.1016/0378-4371(91)90063-I
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRevE.88.062308
https://doi.org/10.1103/PhysRevE.88.062308
https://doi.org/10.1016/0378-4371(80)90105-3
https://doi.org/10.1016/0378-4371(80)90105-3
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/physreve.62.r5875
https://doi.org/10.1038/nature04380
https://doi.org/10.1002/9783527690497
https://doi.org/10.1103/PhysRevLett.85.1803
https://doi.org/10.1103/PhysRevLett.85.1803


106 Bibliography

Taylor, G. I. (Jan. 1923). en. In: Philosophical Transactions of the Royal Society of Lon-
don. SeriesA,ContainingPapers of aMathematical or PhysicalCharacter 223.605–615,
289–343. issn: 0264-3952, 2053-9258. doi: 10.1098/rsta.1923.0008.

The Royal Swedish Academy of Sciences (June 2003). The Nobel Prize in Physics 2003:
Advanced Information. https://www.nobelprize.org/uploads/2013/06/
advanced-physicsprize2003.pdf. Accessed: 26.10.2025.

Tong, David (2017). Statistical Field Theory. Lecture Notes. University of Cambridge.
Wiese, Kay Jörg (Apr. 2016). “Coherent-state path integral versus coarse-grained ef-

fective stochastic equation of motion: From reaction diffusion to stochastic sand-
piles”. In: Physical Review E 93.4. issn: 2470-0053. doi: 10.1103/physreve.93.
042117.

— (Jan. 2020).Master Class: Advanced Statistical Field Theory. Accessed: 18.06.2025.
— (2024). “Hyperuniformity in the Manna Model, Conserved Directed Percolation

andDepinning”. In:Phys. Rev. Lett. 133 (6), p. 067103. doi: 10.1103/PhysRevLett.
133.067103.

Wijland, F. van (Oct. 2002). “Universality class of nonequilibrium phase transitions
with infinitelymany-absorbing-states”. In:Physical ReviewLetters 89.19, p. 190602.
issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.89.190602.

Wijland, F. van, K.Oerding, andH.J. Hilhorst (Mar. 1998). “Wilson renormalization of
a reaction–diffusion process”. In: Physica A: Statistical Mechanics and its Applica-
tions 251.1–2, 179–201. issn: 0378-4371. doi: 10.1016/s0378-4371(97)00603-1.

Wilken, Sam et al. (July 2021). “Random Close Packing as a Dynamical Phase Transi-
tion”. en. In: Physical ReviewLetters 127.3, p. 038002. doi: 10.1103/PhysRevLett.
127.038002.

Wilken, Sam et al. (2023). “Dynamical Approach to the Jamming Problem”. In: Phys.
Rev. Lett. 131 (23), p. 238202. doi: 10.1103/PhysRevLett.131.238202.

Wilson, K (Aug. 1974). “The renormalization group and the epsilon expansion”. In:
Physics Reports 12.2, 75–199. issn: 03701573. doi: 10 . 1016 / 0370 - 1573(74 )
90023-4.

Wilson, Kenneth G. (Nov. 1971a). “Renormalization Group and Critical Phenomena.
I. Renormalization Group and the Kadanoff Scaling Picture”. en. In: Physical Re-
view B 4.9, 3174–3183. issn: 0556-2805. doi: 10.1103/PhysRevB.4.3174.

— (Nov. 1971b). “Renormalization Group and Critical Phenomena. II. Phase-Space
Cell Analysis of Critical Behavior”. en. In: Physical Review B 4.9, 3184–3205. issn:
0556-2805. doi: 10.1103/PhysRevB.4.3184.

Ódor, Géza (Aug. 2004). “Universality classes in nonequilibrium lattice systems”. In:
Reviews ofModernPhysics 76.3, 663–724. issn: 1539-0756. doi: 10.1103/revmodphys.
76.663.

https://doi.org/10.1098/rsta.1923.0008
https://www.nobelprize.org/uploads/2013/06/advanced-physicsprize2003.pdf
https://www.nobelprize.org/uploads/2013/06/advanced-physicsprize2003.pdf
https://doi.org/10.1103/physreve.93.042117
https://doi.org/10.1103/physreve.93.042117
https://doi.org/10.1103/PhysRevLett.133.067103
https://doi.org/10.1103/PhysRevLett.133.067103
https://doi.org/10.1103/PhysRevLett.89.190602
https://doi.org/10.1016/s0378-4371(97)00603-1
https://doi.org/10.1103/PhysRevLett.127.038002
https://doi.org/10.1103/PhysRevLett.127.038002
https://doi.org/10.1103/PhysRevLett.131.238202
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/revmodphys.76.663
https://doi.org/10.1103/revmodphys.76.663


Declaration of Authorship

I hereby declare that the presented thesis is the result of my own independent work.
All sources used, whether directly or indirectly, have been properly acknowledged in
the given Bibliography. This thesis has not been submitted to any other examination
board and has not been published before.

Erlangen, 26.11.2025
Mishael Derla


	Introduction
	Continuous Phase Transitions
	Order Parameters
	First- and Second-Order Transitions in Equilibrium Physics
	Reversibility-Irreversibility and Directed Percolation

	Critical Behaviour and Universality
	Phenomenology of Critical Systems
	Large-Scale Field Theories for Dynamical Transitions
	Mean Field Theory
	Sketch of Renormalization Flow Analysis


	Random Organization Adjacent Literature
	Simulations
	Theory of Manna Class Critical Behaviour
	Phenomenological Field Equations
	Relationship to Non-Conserved Directed Percolation


	Attempts at Critical Packing Density
	Structureless Random Replacement
	Fokker-Planck Equation
	Many-Body Reaction System
	From Instantaneous Activation to Reactions
	Field Operator Language
	Mimicking Random Organization
	Time Evolution of Density
	Critical Density Estimation


	Summary and Outlook
	appendix
	Commutator with Creation Operator
	Manipulating Kets with Operators
	Properties of sum

	Reaction System Simulation

