
Master’s Thesis
in Physics

Classical Density Functional Theory
for Active Particles

Jonas Buba

Supervisor: Prof. Dr. Michael Schmiedeberg

Chair for Theoretical Physics I

Submission date: 10 November 2025



Abstract

Active matter systems, composed of self-driven agents, display a wide range of emergent
behaviours such as collective motion, clustering, and motility-induced phase separation.
Active Brownian particles constitute a minimal model for such self-propelled systems
that exhibit complex nonequilibrium behaviour. Understanding the microscopic dynam-
ics of particle collisions is important for linking individual motion to collective effects.
In this work, the collision process of active Brownian hard disks is studied within the
framework of dynamical density functional theory. Each particle is represented by a
Gaussian density peak, introducing positional uncertainty. In this field-based descrip-
tion, the particle interaction is modelled via fundamental measure theory.

The analysis of the motion of density peaks throughout the course of individual col-
lisions allows to quantify the center of mass delay of interacting particles. The results
show that the time delay scales approximately as ∆t ∝ v0 with the self-propulsion ve-
locity v0. The increase in the delay with the Gaussian width σ is faster than ∝ σ−1, and
the dependence on the offset h follows a roughly Gaussian shape. The self-propulsion
velocity mainly influences the diffusive relaxation after a collision, while the overall posi-
tional delay remains nearly independent of v0. Furthermore, it is demonstrated that the
post-collision density profile can be approximated by a convolution of the initial profiles,
suggesting a route toward a coarse-grained description of active collisions.

Future work may focus on performance improvements of the numerical implementation
to enable larger-scale simulations. Furthermore, the connection to a waiting-time-based
model may be possible.
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1. Introduction

Robert Brown first described the type of stochastic motion exhibited by suspended
pollen in the year 1827 [1]. Nearly one hundred years later, Albert Einstein provided the
theoretical explanation for this phenomenon in one of his famous 1905 papers [2]. He
connected the macroscopic diffusion constant D to the microscopic quantities of particles
coupled to a thermal bath through the so-called Einstein relation

D =
µ

β
, (1)

where µ is the mobility and β = (kBT )
−1 involves the Boltzmann constant kB and

temperature T . This idea was formalised by Langevin shortly afterward in the now
so-called Langevin equation

mv̇ = −γv +
√
2Dξ(t), (2)

where γ is the friction coefficient and ξ is Gaussian white noise. Furthermore, it led to
the experimental confirmation of the molecular nature of matter by Perrin [3].

1.1. Active Brownian particles

Many systems in nature are not purely passive but continuously consume energy from
their surroundings to generate motion. This is true for biological systems like birds, fish,
and bacteria, but also for suspended colloids that show phoretic motion [4,5]. One way
to describe such phenomena is by the widely used [6–8] active Brownian particle (ABP)
model. In this model, activity is represented by a persistent self-propulsion force acting
on each particle. It can be formulated as follows: Consider a system of N particles at
positions rN = {r1, r2, . . . , rN}. Each particle is active, meaning it is self propelled in
the direction uN = {u1,u2, . . . ,uN} with amplitude f0. The self-propulsion can also
be quantified in terms of the self-propulsion velocity v0 = f0/α with friction α. The
inverse of the friction α−1 is the mobility µ. The corresponding overdamped 1 Langevin
equation then reads

dri
dt

= µFi(r
N) + v0ui +

√
2Dξi(t). (3)

Here, Fi(r
N) is the force on particle i due to interactions with other particles or other

sources. ξi(t) is white noise, i.e. it fulfils ⟨ξαi (t)ξ
β
j (t

′)⟩ = δijδαβδ(t− t′) (α, β ∈ {x, y}) 2.
The orientation itself may undergo orientational diffusion according to θ̇i =

√
2Drηi(t),

where θ̇i is the angle of orientation with respect to an arbitrary axis, Dr is the rotational
Diffusion constant, and ηi(t) is again white noise. The ratio of the persistence length
lp = v0/Dr to the particle diameter 2R defines the Péclet number

Pe =
vo

2RDr

, (4)

1Overdamped means that momentum relaxation occurs much faster than position changes. This allows
us to drop the inertial term mv̇ in eq. 2.

2The angle brackets ⟨ ⟩ denote the correlation function
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which quantifies the level of activity in the system [7].

1.2. Motility induced phase separation

If both the activity and particle density are sufficiently high, ABP systems can undergo
a phenomenon called motility induced phase separation (MIPS). In this state, coexisting
dilute and dense regions emerge even in the absence of attractive particle interactions
[6,9]. This occurs because particles are slowed down by collisions, locally reducing their
motility, which increases their residence time and thereby promotes further accumulation
through a positive feedback loop. If the rotational Diffusion Dr is high in comparison
to the self-propulsion velocity, the particles reorient quickly, suppressing slowdown and
thus hindering motility-induced cluster formation [7, 8].

A minimal kinetic model that captures this slowdown mechanism of colliding par-
ticles was proposed by Schieck [10]. The model he proposes uses penetrable particles
that experience a waiting time upon collision, which depends on the local density. He
demonstrated that this is sufficient for the occurrence of phase separation.

In this work, we aim to quantify the collision delay for a system of hard disks by
means of dynamical density functional theory (DDFT), which is a continuum model
widely employed for studying the collective dynamics of active particles [11–14]. The
specifics of the employed model will be outlined in the following section.
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2. Model for active hard disks

In this section, we will begin with the description of a theoretical model for active
Brownian particles in the overdamped limit. We consider a two-dimensional system
of hard disks as Brownian particles that cannot overlap. In the first step, a dynamical
equation for the density field is derived by means of dynamical density functional theory.

2.1. Dynamical density functional theory

The following derivation is primarily based on [15]. As far as activity is concerned,
inspiration was taken from [12, 16], and the final form of the model in [13] in the over-
damped limit was reproduced. The starting point is the overdamped Langevin equation
in 3, where the force on particle i due to external and interaction forces can be writ-
ten as Fi(r

N) = −∇i

(∑
j V (ri − rj) + Vext(ri)

)
with the external potential Vext(ri)

and interaction potential V (ri − rj). An equation for the partial density operator
ρ̂i(r, t) := δ(ri − r) can be derived, following the procedure in [15]:

∂ρ̂i(r, t)

∂t
=D∇2ρ̂i(r, t) + µ∇

[
ρ̂i(r, t)

(∫
dr′ [ρ̂(r′, t)∇V (r − r′)] +∇Vext(r)

)]
− v0ui∇ρ̂i(r, t) + ξi(t)∇ρ̂i(r, t).

This equation depends on a continuous spatial coordinate, with the positions of the
particles represented by the delta-distributions. By using the total density operator
ρ̂(r, t) =

∑
i ρ̂i(r, t) and the total orientation operator û(r, t) :=

∑
i uiρ̂i(r, t), one finds

∂ρ̂(r, t)

∂t
=D∇2ρ̂(r, t) + µ∇

[
ρ̂(r, t)

(∫
dr′ [ρ̂(r′, t)∇V (r − r′)] +∇Vext(r)

)]
− v0∇û(r, t) +∇ξ(r, t)

√
ρ̂(r, t).

To arrive at a deterministic, noise-independent equation for the total density, we average
over possible realisations of the random noise. The resulting equation for the density
field reads

∂ρ(r, t)

∂t
=D∇2ρ(r, t) + µ∇

[
ρ(r, t)∇Vext(r) +

∫
dr′⟨ρ̂(r, t)ρ̂(r′, t)⟩∇V (r − r′)

]
− v0∇ρ(r, t)P (r, t), (5)

with the two-point equal-time correlation function ⟨ρ̂(r, t)ρ̂(r′, t)⟩ and the relation ρ(r, t)P (r, t) =∑
i uiρi(r, t) for the total orientation field P . Analogously to [15], one can now introduce

the Helmholtz free energy functional

F [ρ] = Fid[ρ] + Fexc[ρ] = β−1

∫
drρ(r) [ln (Λρ(r))− 1] +

∫
drρ(r)Vext(r) + Fexc[ρ] (6)

with β = 1
kBT

(temperature T and Boltzmann constant kB), and thermal wavelength Λ.
The first term Fid[ρ] in equation 6 is the contribution from an ideal gas in an external
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potential, and the last term Fexc[ρ] captures the interaction between particles. We do
not consider any external potentials Vext in this work, so this term will be dropped in
the remainder of this work. Consequently, one finds that the diffusion term in equation
5 can be written in terms of the ideal gas term of the free energy:

D∇2ρ(r, t) = Dβ ∇
[
ρ(r, t)∇δFid[ρ(r, t)]

δρ(r, t)

]
. (7)

We assume in the following that both the stochastic noise and particle mobility originate
from coupling to a thermal bath,in which case the Einstein relation (eq. 1) holds. Thus,
the prefactor Dβ = µ of the diffusion, written in terms of a free energy functional, is
the same as the prefactor of the interaction term.

Next, we need to find a way to approximate ⟨ρ̂(r, t)ρ̂(r′, t)⟩ =: ρ2(r, r′, t) to include
the particle interaction. In equilibrium, this is encoded in the excess term Fexc[ρ] of the
Helmholtz free energy functional.

For every density profile ρ0(r), there exists an external potential u(r) such that ρ0(r)
is the equilibrium density distribution. Thus, one can relate ρ2(r, r′, t) to the excess free
energy: ∫

dr′ρ20(r, r
′)∇V (r − r′) = ρ0(r)

δFexc[ρ0(r)]

δρ0(r)
. (8)

We can always find a ρ0(r) = ρ(r, t). If we approximate ρ2(r, r′, t) with the equilibrium
two-point correlation ρ20(r, r

′). We can insert this back into equation 5 to find

∂ρ(r, t)

∂t
= D∆ρ(r, t) + µ∇ρ(r, t)∇δFexc[ρ(r, t)]

δρ(r, t)
− v0∇ρ(r, t)P (r, t)

⇔ ∂ρ(r, t)

∂t
= ∇

[
ρ(r, t)

(
µ∇δF [ρ(r, t)]

δρ(r, t)
− v0P (r, t)

)]
. (9)

This has the form of a continuity equation ∂ρ
∂t
+∇ ·j = 0 with the particle flux j = ρv =

ρ
(
−µ∇ δF [ρ]

δρ
+ v0P

)
. The quantity in parentheses defines the effective velocity field v.

An equation for the ensemble average can also be derived for each particle, resulting
in

∂ρi(r, t)

∂t
= D

[
∆ρi(r, t) +∇ρi(r, t)∇β

δFexc[ρ(r, t)]

δρ(r, t)

]
− v0ui∇ρi(r, t), (10)

where δFexc[ρ]
δρ(r,t)

still depends on the total density. However, it only acts on the partial
density ρi(r, t). The equation for the total density can be recovered by taking the sum
over all partial densities.

In this framework of partial densities, a single hard disk at position ri can be repre-
sented by a normalised Gaussian

ρi,peak(r) =
1

2πσ2
exp

(
−(r − ri)

2

2σ2

)
, (11)

where the width σ of the peak is a measure for the positional uncertainty of the disk.
The following section will discuss how the excess free energy functional can be formu-

lated for the interaction of hard disks.
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2.2. Fundamental measure theory

Fundamental measure theory (FMT) was first introduced by Rosenfeld in 1989 [17]
as a density functional theory for hard sphere liquids. To improve thermodynamic
consistency, the White Bear (I) and later White Bear II functionals were introduced
[18, 19]. The inclusion of tensorial weight functions by Tarazona (2000) [20] improved
the description of densely packed fluids by accounting for anisotropies. In this work, a
two-dimensional version of the tensorial FMT for hard spheres is employed, following
the formulation described by Roth (2012) [21]. The works [22–24] provided valuable
methodological insights for the numerical implementation of the functional.

The key idea of the FMT is that the interaction between hard particles can be rep-
resented in terms of their geometric measures. In particular, correlations of the charac-
teristic functions of the particles yield fundamental geometric quantities, such as area
and circumference. When such characteristic functions are combined through cross-
correlation 3, one obtains overlap measures between particles, which form the basis of
the theory. For hard disks, these correlations are particularly useful, since the overlap
of two characteristic functions directly encodes whether two particles intersect or not.

The underlying physical problem in FMT is to model the interaction between identical
hard disks of radius R. Their interaction potential is given by

Vhard(ri, rj) =

{
∞, |ri − rj| < 2R

0, otherwise.
(12)

From this, one defines the Mayer function depending on r = |ri − rj| as

f(r) = exp(−βV (r))− 1 =

{
−1, r < 2R

0, otherwise.
. (13)

This can be expressed in terms of the Heaviside function f(r) = −Θ(2R−r) 4. Therefore,
the Mayer function simply indicates whether two disks overlap. Now, one can decompose
the Mayer function in terms of cross correlation. For hard disks, this approximately reads

−f(r) ≈ ω2 ⊗ ω0 + ω0 ⊗ ω2 +
π

2
ω1 ⊗ ω1 − ω1 ⊗ ω1 −

π

4
←→ω 1 ⊗←→ω 1. (14)

In even dimensions, this decomposition has an infinite number of terms; thus, one has
to truncate the decomposition at some point. The corresponding weight functions ων

3The cross correlation between two functions f(r) and g(r) is defined as

(f ⊗ g)(r) :=

∫
Rn

f(r′)g(r′ + r)dr′.

4The Heaviside function Θ is defined as

Θ(r) :=

{
1, r > 0

0, r ≤ 0
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take the following form:

ω2(r) = Θ(R− r) (15)
ω1(r) = δ(R− r) (16)

ω0(r) =
1

2πR
δ(R− r) (17)

ω1(r) =
r

r
δ(R− r) (18)

←→ω 1(r) =
rrT

r2
δ(R− r). (19)

Here, one can see that weights represent fundamental geometric measures of the disks,
such as area (ω2(r)), circumference (ω1(r)), and the number of particles (ω0(r)).

By the use of convolutions 5 the weighted densities

nν(r) = (ρ ∗ ων)(r) (21)

can be defined. With them, we can construct the free energy density:

Φ({nν(r)}) = −n0 ln(1− n2) +
1

4π(1− n2)

(
19

12
n2
1 −

5

12
n1 · n1 −

7

6
Tr
(←→n 2

1

))
. (22)

This finally allows us to write the excess free energy as the integral over the free energy
density:

βFexc[ρ(r)] =

∫
R2

Φ({nν(r)})dr. (23)

In the previous section, we have seen that we need the functional derivative of the
excess free energy to insert into the dynamical equation for the partial/total density
(equations 10 and 9, respectively). In the first step, we define another set of weights
Tν(r) =

δΦ
δnν(r)

for which we find

T2(r) =
n0

1− n2

+
1

4π(1− n2)2

(
19

12
n2
1 −

5

12
n1 · n1 −

7

6
Tr
(←→n 2

1

))
(24)

T1(r) =
19

24π(1− n2)
n1 (25)

T0(r) = − ln(1− n2) (26)

T1(r) = −
5

24π(1− n2)
n1 (27)

←→
T 1(r) = −

7

6π(1− n2)

(
1
2
(←→ω 1)xx (←→ω 1)xy
(←→ω 1)yx

1
2
(←→ω 1)yy

)
. (28)

5The convolution of two functions f(r) and g(r) is defined as

(f ∗ g)(r) :=
∫
Rn

f(r′)g(r − r′)dr′ (20)
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We can now write the functional derivative of the excess free energy as a sum of convo-
lutions

β
δFexc[ρ(r)]

δρ(r)
=
∑
ν

ξν(Tν ∗ ων)(r), (29)

where the chain rule for functional derivatives was used. The factor ξν is +1 for sym-
metric and −1 for antisymmetric weight functions ων .

To summarise, we derived a way to represent the derivative of the excess free energy
functional β δFexc[ρ(r)]

δρ(r)
by multiple consecutive convolutions of the weights ων with the

total density ρ(r, t). This provides all the necessary equations for a numerical imple-
mentation.
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3. Numerical implementation

In this chapter, we will discuss how the previously derived model is numerically imple-
mented to simulate the dynamics of the system. The implementation of the simulation
box, the region of space where the dynamical equation is solved, and the equations from
fundamental measure theory are strongly influenced by the Bachelor thesis of M. Hoff-
mann [24], which was based on [23], [25], and [26]. All code was written in C++, where
the Eigen3 library [27] was used for convenient array handling.

3.1. Rescaling

As a first step towards a numerical implementation, the dynamical equation is rescaled
so that only independent parameters remain. The length scale of the system can be
defined with respect to the radius of the hard interaction R. Similarly, R2/D has the
dimension of time, and D/R has the dimension of velocity. This means we can define the
time and the self-propulsion velocity in terms of these quantities. Thus, after applying
the scaling rules

r → r

R
,

t→ D

R2
t,

v0 →
R

D
v0,

the dynamical equation (for the partial densities) reads

∂ρi
∂t

= ∆ρi +∇
(
ρi∇β

δFexc[ρ]

δρ

)
− v0ui∇ρi. (30)

The self-propulsion velocity v0 is the only remaining free parameter that allows us to
vary the activity of the system.

3.2. Simulation box

Next, we have to set up the simulation box. A convenient choice is a quadratic box with
periodic boundaries built from a regular grid. The necessary quantities to set this up
are shown in table 1.

box parameters
Number of sites in x, y direction Nx = Ny

particle number N
vacancy concentration nvac

box length L

Table 1: Parameters of the simulation box
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Further, the following relations for the box volume V , the grid spacing ∆x,∆y, and
the mean density ρbulk hold:

V = L2, (31)

∆x =
L

Nx

,∆y =
L

Ny

, (32)

ρbulk =
N(1− nvac)

V
=

1

V

∫
box

drρ(r). (33)

(34)

From these quantities, one can calculate the packing fraction

η =
πR2

V
N(1− nvac) = πR2ρbulk. (35)

Due to the periodic boundary conditions and the finite grid spacing, only the discrete
wavenumbers kn,x/y = 2πn

Lx/y
are possible. Therefore, the spacing of the wave numbers is

∆kx/y =
2π

Lx/y
.

3.3. Initial density field

As discussed in section 2.1, we initially want to use Gaussian peaks to represent particles
with some positional uncertainty (see eq. 11). The total density is then

ρ(r) =
∑
i

ρi,peak(r) + ρbg, (36)

where the background density ρbg has been added for reasons we will see later. By using
equation 34 and the fact that the peak density ρi,peak(r) is normalised, one finds

ρbg =
−Nnvac

V
. (37)

We see that the vacancy concentration can be used to add some density if chosen nega-
tively. This is opposite to the usual use case of removing some density due to vacancies.
When considering the partial densities, the background density is equally split, yielding
ρi,bg = ρbg/N , which results in the partial density

ρi(r) = ρi,peak(r)−
nvac

V
. (38)

From the fact that we are considering hard disks follows that the local density must
be less than 1. This is also directly visible from T0 in 28. We can use this to find
an upper bound for the background density. For sharp peaks, nearly all the mass is
concentrated within one radius R around the peak position; hence, the contributions

12



from the background and other peaks are limited. If only particle i contributes because
no other particle is close, one needs to solve∫

|r|<R

ρi,peak(r, r0 = 0) + ρbgdr < 1

and thus finds

ρbg <
1

π
exp

(
− 1

2σ2

)
(39)

⇔ nvac > −
V

N
exp

(
− 1

2σ2

)
. (40)

Additionally, when particles are represented by Gaussian peaks, the vacancy concen-
tration cannot be chosen to be nvac > 0, because that would introduce a background
density ρbg < 0, leading to an unphysical negative density when not at a peak.

Furthermore, a condition for the grid spacing can be derived by requiring that the
density change from one pixel to another is significantly smaller than the peak height

∆xmax |∂xρi,peak(r)| < a · ρi,peak(r = 0)

∆x <
√
eaσ

where a controls the maximum density change and should be < 1/3. We can use
L = ∆xNx to find

Nx >
L√
eaσ

. (41)

Fulfilling this condition ensures that, for a given box length L, the number of sites is
large enough to sufficiently resolve the Gaussian peak.

3.4. Implementation of the orientation

One option for the type of model used is to derive a separate dynamical equation for
the orientation field, which can be solved in parallel [13, 14]. However, because neither
orientational diffusion nor interaction is considered in this work, two different approaches
were investigated.

3.4.1. Total orientation field

If the Gaussian peaks do not overlap significantly (ρi·ρj ≈ 0), the region of the orientation
field corresponding to one density peak can be set to the orientation of the respective
particle. So, every pixel must be attributed to some particle, at least if the density there
is greater than a threshold ρth ≥ ρbg. This is done using a steepest ascent algorithm,
which is outlined in the following:
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1. Start from one pixel with ρ > ρth.

2. Check, which of the four neighbouring pixels has the largest density. Continue
with that pixel.

3. Repeat (2) until a local maximum or a pixel included in a previous path is found.

4. Attribute all sites on the path to the maximum (or the maximum associated with
the previous path).

5. Repeat from step (1) with the next pixel until all pixels with ρ > ρth have been
checked.

At t = 0, the density field is a superposition of Gaussian peaks; thus, each local
maximum corresponds to the center of a peak, which makes it straightforward to identify
the associated particle. When the peaks evolve in time, their motion can be tracked by
linking each maximum at time t2, denoted by rmax,j(t2)}, to the closest maximum from
the previous set {rmax,j(t1)} at an earlier time t1 < t2. This way of linking peak positions
to particles is unambiguous only if the distances between peaks within {rmax,j(t2)} are
larger than the distances that the peaks have moved. Good temporal resolution is
required to ensure this is the case. However, Gaussian peaks might become distorted
due to interactions. Therefore, it is possible for multiple local maxima to form from
one Gaussian. The particle areas (determined by steepest ascent) surrounding these
maxima must be associated with the particle of the original peak. Thus, after applying
the previously described procedure, there are now multiple maxima associated with one
particle. However, we track only maxima that are large enough, which means we only
consider them for the association check at the next time t3. This allows the splitting of
one Gauss peak into multiple (distanced) peaks, while reducing the probability that a
small local maximum at the border of a particle area falsely overtakes areas of another
particle. It was found that ρth ≈ 2...3ρbg is a good range. For smaller thresholds, a
depletion zone is created behind the particle, resulting in an increasing integral of the
density over the region of a single particle. On the other side, for larger ρth, the integral
of the density decreases by leaving density behind. To conclude, the procedure described
in this section allows to update the orientation field by tracking the area of one particle
and setting the orientation field in this area to the orientation of that particle.
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(a) ρth = 0.1ρbg. (b) ρth = 2ρbg (c) ρth = 10ρbg

Figure 1: Comparison of the effect of different ρth.

3.4.2. Partial densities

Another option is to treat the total density as the sum of the partial densities. By using
the partial density fields ρi (with ρi(r, t = 0) = ρi,peak(r) + ρi,bg), there is no longer the
need for an orientation field. The orientation ui of each particle can be used directly
instead of the orientation field. This makes the implementation of the orientation trivial
at the cost of having to solve N equations, connected by the excess free energy term.

In the following, equations involving the dynamical equation will be formulated in
terms of partial densities ρi and the total density ρ. One can easily recover the case
equations for the total density field by taking the sum over all particles i.

3.5. Fourier transformation

For a well performing Fourier transform, the implementation of the discrete Fourier
transform from the FFTW3 library [28] is used. However, this implementation is not
normalised. Here, we chose to place the normalisation factor in the forward transform
so that the (inverse) discrete Fourier transform then reads

DFT [f(rn)](kj) =
1

NxNy

∑
rn

f(rn) exp(−ikjrn) = f̂(kj) (42)

DFT−1[f̂(kj)](rn) =
∑
kj

f̂(kj)e
ikjrn = f(rn), (43)

where {rn} are the sites and {kj} are the possible wavevectors of the box. Using the
(inverse) continuous Fourier transform

F [f(r)](k) =
∫
R2

f(r)e−ikrdr = f̃(k) (44)

F−1[f̃(k)](r) =
1

2π

∫
R2

f̃(k)eikrdk = f(r) (45)
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we find the relation between them:

DFT [f(r)](k) ≈ 1

∆x∆yNxNy

F [f(r)](k) = 1

V
F [f(r)](k). (46)

So, every time we initialise a function in Fourier space, we have to divide the analytical
expectation by the volume of the box V .

The convolution theorem states that a convolution, as defined in equation 20, becomes
a multiplication in k-space:

F [f ∗ g] = F [f ] · F [g]. (47)

By applying the relation for the discrete Fourier transform, we have

V ·DFT [f ∗ g] = V 2 ·DFT [f ] ·DFT [g] (48)
⇔ DFT [f ∗ g] = V ·DFT [f ] ·DFT [g]. (49)

So, when using discrete Fourier transforms to calculate a convolution, we have to mul-
tiply by V . This is one drawback of putting the normalisation in the forward trans-
form. We essentially normalised one time more than necessary. This slightly worsens
the performance of the fast Fourier transform by NxNy more operations. However,
this is only linear in the number of sites, while the fast Fourier transform scales with
NxNy log(NxNy). Therefore, it was decided to trade that performance penalty for the
convenience of the k = 0 Fourier component being the mean of the transformed real
field.

3.6. Excess free energy

It was shown in section 2.2 that the excess free energy term in the dynamical equation
30 can be calculated using convolutions involving the density field and the weight func-
tions. The convolutions, as well as the discrete Fourier transforms needed for them, are
calculated as in section 3.5. The first step is the calculation of the weighted densities
nν(r) = (ρ ∗ ων)(r) = F−1 [[F [ρ(r)] · F [ων(r)]]. Due to the discontinuous nature of the
weight functions ων , the initialisation of the weight functions cannot easily be done in
real space. Analytic calculations of F [ων ] show

F [ω2(r)](k) =
2πR

k
J1(kR) (50)

F [ω1(r)](k) = 2πRJ0(kR) (51)
F [ω0(r)](k) = J0(kR) (52)

F [ω1(r)](k) = −ik
2πR

k
J1(kR) (53)

F
[←→ω 1(r)

]
(k) = −2πRkkT

k2
J2(kR) + 2π

I

k
J1(kR). (54)
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with Jn(kR) the Bessel functions of the first kind 6. These can now be directly plugged
into the calculation of the weighted densities

nν(r) = (ρ ∗ ων)(r) = DFT−1

[
V ·DFT [ρ] · 1

V
F [ων ]

]
(r)

and into the derivative of the excess free energy

β
δFexc[ρ(r)]

δρ(r)
=
∑
ν

ξν(Tν ∗ ων)(r) =
∑
ν

ξνDFT−1

[
V ·DFT [Tν ] ·

1

V
F [ων ]

]
(r).

Now that we know how to calculate the excess free energy term, we can address the
numerical implementation of solving the dynamical equation.

3.7. Time evolution

Probably, the simplest option is Euler discretisation, where the updated density field is
computed by using a first order approximation of the time derivative:

ρn+1
i − ρni
∆t

=
∂ρni
∂t

(55)

with
∂tρ

n
i = ∆ρni +∇

(
ρni ∇

δFexc[ρ
n]

δρn

)
− voui∇ρni , (56)

where ρni is the density field of particle i at time step n. To investigate under which
conditions this Euler discretisation scheme is stable, we consider the case of an advected
ideal gas where δFexc[ρ]

δρ
= 0. This is sufficient as long as no collision happens (e.g., for

a freely moving density peak). We can insert eq. 56 into 55 and transform into Fourier
space to find

ρ̃n+1
i = ρ̃ni +∆t

(
−k2ρ̃ni − ivouikρ̃

n
i

)
, (57)

where the identity F [∇nf ] = (ik)nf̃ was used. For every Fourier mode, the amplification
from time step n to step n+1 is therefore given by

ζi(k) =
ρ̃n+1
i

ρ̃ni
= 1−∆t

(
k2 + ivouik

)
. (58)

A discrete scheme is called stable when |ζi(k)| ≤ 1∀k [29](p. 192-194), which means
that no modes grow unconditionally. Using that also |ζi(k)|2 ≤ 1, yields the following
condition:

∆t ≤ 2

k2 + v20
, (59)

6The Bessel function of first kind is defined as

Jn(x) =

∞∑
l=0

(−1)l
(
x
2

)2l+1

l!Γ(l + n+ 1)

with the gamma function Γ(x) =
∫∞
0

e−ttx−1dt.
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where kui ≤ |k||ui| was used. Hence, for equation 57 to be stable, equation 59 needs to
be satisfied. This means that the time step is limited by both advection and diffusion.
To remove the diffusion bound, one can treat that part implicitly, as will be shown in
the subsequent chapter.

In the case of separate densities, the orientation does not vary spatially. Then, the
advection term can also be solved implicitly, completely removing the advection bound.
If one wants to consider an orientation field P (r), one could, in principle, also improve
on the advection bound by using a higher order time discretisation, such as Runge-Kutta
methods [30] [31]. While they can increase the possible time step, they require multiple
evaluations of ∂tρi. Due to the large number of required FFTs to calculate the excess free
energy term, this becomes computationally expensive quickly. As soon as constraints
other than advection become limiting, they do not provide any advantage in the time
step. On the contrary, they make it more difficult to estimate those other constraints,
potentially making it necessary to recalculate the entire time step. For this reason, no
higher order time discretisation was used.

Another option would be to treat spatial derivatives in the advection term in real space
via an upwind scheme such as [32]. However, a first order upwind scheme suffers from
numerical dissipation (adding artificial diffusion), while a 3rd order scheme like in [32]
introduces numerical dispersion (resulting in depletion zones in front of and behind
density peaks). In principle, they can be combined to be positivity preserving [33],
avoiding the formation of depletion zones. It is also possible to match artificial and
physical diffusion. This, however, depends on the specific properties of the simulation
box and cannot be easily estimated. To avoid the tuning of this for every box, this
ansatz was omitted.

3.7.1. Semi-implicit Euler scheme

The idea of the semi-implicit Euler method is to split ∂tρi into a linear part L[ρi] = ∆ρi

and a non-linear part N [ρi, ρ] = ∇
(
ρi∇ δFexc[ρ]

δρ

)
− voui∇ρi. Using the same time

discretisation as before and solving for ρn+1
i

ρn+1
i = ρni +∆t

(
L[ρn+1

i ] +N [ρni , ρ
n]
)

(60)

⇔ ρn+1
i = (I −∆tL)−1∆tN [ρni , ρ

n] (61)

= F−1

[
∆t

1 + ∆tk2
F [N [ρi, ρ]]

]
(62)

we find the update rule for the density field. Here, the linear part is evaluated at time step
n+1, which is why it is called implicit. The non-linear term is still evaluated explicitly
at time n. After computing F

[
ρi∇ δFexc[ρ]

δρ

]
, 2/3-dealiasing is applied to remove spurious

high-wavenumber components generated by the multiplication of ρi and ∇ δFexc[ρ]
δρ

in real
space.

In order to see that the semi-implicit Euler scheme actually removes the diffusion
bound on the time step, a stability analysis analogous to the one for the explicit Euler

18



discretisation in the previous section was performed. In Fourier space, the equation 62
reads

ρ̃i
n+1 =

∆t

1 + ∆tk2
(−ivouikρ̃

n
i ) . (63)

For the amplification factor, we find

ζi(k) =
ρ̃i

n+1

ρ̃ni
=
−i∆tuik

1 + ∆tk2
, (64)

which results in the constraint on the maximum possible time step

∆t ≤ 2

v20
. (65)

Comparing this to the result in equation 59, we see that it was actually possible to
remove the k2, which allows a larger time step.

3.7.2. Time step

One constraint on the time step was already derived in the previous section by using the
stability condition, resulting in

∆t ≤ ∆tstab =
2

v20
. (66)

Another limitation arises from the fact that the density must remain positive every-
where. The linear (diffusive) term in equation 62 only smooths the density field and does
not create any sinks; therefore, it can be neglected here. Hence, the following equation
must be fulfilled.

0 ≤ ρn+1
i (x) = ρni (x) + ∆tN [ρi, ρ] (x)∀x

It is sufficient to consider all x where the density decreases, meaning that N < 0.
From this, we find

∆t ≤ ∆tpos = min
x∈{x:N (x)<0}

ρni (x)

−N [ρi, ρ] (x)
. (67)

Further, because we consider hard disks, it is required that the weighted density
n2[ρ](x) does not exceed 1 at any x. Again, the diffusive term can be neglected. So we
have to solve

1 ≥ n2[ρ
n+1]

=
∑
i

n2 (ρ
n
i +∆tN [ρni , ρ

n])

= n2[ρ
n] + ∆t

∑
i

n2 (N [ρni , ρ
n])

= n2[ρ
n] + ∆t∆n2,
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where the linearity of n2 was used and ∆n2 :=
∑

i n2 (N [ρni , ρ
n]). By solving for ∆t we

find the 3rd constraint

∆t ≤ ∆tn2 = min
x∈{x:∆n2(x)>0}

1− n2[ρ
n]

∆n2

(68)

Every iteration step, the size of the time step is chosen adaptively as

∆t = 0.1min(∆tstab,∆tpos,∆tn2) (69)

where an additional safety factor of 0.1 has been added.

3.8. FMT ripples

In section 3.7.1 it was shown that the semi-implicit Euler iteration is stable without
the FMT term. However, in the case of a collision (or generally high local density),
this term cannot be neglected. When considering equilibrium density fields, it causes
crystallisation above some critical density threshold, while for collisions, it results in
additional density displacement. Both cases lead to the growth of some modes, so
|ζi(k)| > 1 for some k. This is, in principle, expected and wanted behaviour. However,
when treating steep gradients or discontinuous functions like the weights ων in the excess
free energy term via discrete Fourier transforms, over- and undershoots, so-called Gibbs
ripples [34], occur due to the limited resolution. Hence, the density is pushed towards

Figure 2: Gibbs ripples visible at the top and bottom, as well as to the left and right of
two interacting density peaks.

0 at some sites close to the Gauss peak resulting in the time step vanishing due to the
positivity constraint. To tackle this, three approaches were tested:
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1. Addition of a small density background to the Gaussian density peaks.

2. Setting the density to a threshold ρmin if it falls below that threshold. Subsequently,
the density field has to be rescaled for mass conservation to be fulfilled.

3. Applying local smoothing where ρ < ρmin

Option one merely delays the vanishing time step a little until the ripples build up.
A larger background can, in principle, delay this further, but this is neither limitless
possible with the density implementation outlined in sec. 3.3 nor wanted from a physical
perspective because the background might alter the collision dynamics. So, this approach
on its own is not sufficient; however, it can provide a little more margin and will therefore
be used in combination with the other options.

The second option suffers from one major problem: the need to globally rescale the
density field. By setting the density to ρmin, if it is undercut, one effectively adds mass.
So, the density around the peak (where the ripples occur) increases, while the peaks
decrease in height due to the rescaling. This global impact can potentially become large
if a significant amount of mass is added, altering the collision dynamics. Hence, one
has to limit the amount of mass added (e.g., to 1% of the peak mass) by choosing ρmin

sufficiently small. This, however, leads to ∆t becoming impractically small.
Option three essentially works by filling low density sites with mass from neighbouring

(high density) sites, smoothing the ripples. This has the advantage of introducing only
local perturbations away from the density peaks, so they are less likely to interfere
with the collision dynamics. The threshold for the smoothing was chosen at ρi,min =
0.5ρi,bg. If this is undercut at one pixel, 1/8 of the density of all for neighbouring sites
is redistributed to that pixel. Consider an oscillation in the x-direction with a period
of two pixels and an amplitude ∆ρ satisfying 0.5ρi,bg < ∆ρ ≤ ρi,bg, centered around
the background densityρi,bg. In this configuration, the minimum is sufficiently small for
the redistribution rule to be applied. In the y-direction, the minima exchange equal
amounts of mass, so there is no net contribution. In contrast, in the x-direction, one
eighth of the mass from each neighbouring maximum is redistributed toward the central
minimum. As a result, the new minimum value lies between 0.5ρi,bg (for ∆ρ = ρi,bg) and
(7/8)ρi,bg (for ∆ρ = 0.5ρi,bg). Correspondingly, the new maximum value lies between
1.5ρi,bg and (9/8)ρi,bg. This demonstrates that the scheme effectively damps oscillations
while conserving mass by construction. In combination with the first option, this allows
for time steps of practical size.
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4. Particle collision

In this chapter, we discuss the dynamics of the collision of two or more peaks in different
configurations from a qualitative perspective. Furthermore, the effects of the different
tunable parameters will be discussed. When setting up the initial density field, it is
important to start with a configuration where the peaks of the different particles do not
overlap. For Gaussian peaks with standard deviation σ, as in equation 11, the initial
distance between two peak centers was required to be larger than max(10σ, 2R). For
very sharp peaks, we are limited by the hard disk radius. However, σ was always chosen
so that 5σ ≥ R since very sharp peaks are hard to simulate with finite resolution. The
same vanishing peak overlap has to be true for the final configuration to ensure that the
collision process is complete.

4.1. Two-particle collision

For the two-particle collision, the initial configuration is quite simple. The two peaks
are positioned at xi = L/2 ± 5σ and yi = L/2 ± h with orientation ui = ∓(1, 0)T, as
depicted in fig. 3. The offset h controls how frontally the particles collide. For an offset
h > R we expect no interaction, while the collision should take longer the smaller h.
For the peaks to fully lose contact after the collision without colliding another time,
a box length of L = 45σ proved to be sufficient. This results in a number of sites of
Nx ×Ny = 256× 256 by using eq. 41 with a = 1/8 and rounding up to the next power
of 2 for efficiency of the Fourier transform. After the particles have collided once, we
want to stop the simulation before they collide a second time. So we allow them to move
the distance d = L/2 − 2.5σ = 20σ. This way, we take the broadening of the peak up
to +50% through diffusion into account. The limit on the diffusion is not a problem,
since we want the interaction and advection to be dominant. By considering the time
evolution of the width of a Gauss peak under diffusion

σ(t) =
√
σ2 + 2t (70)

we find a constraint for the time the particle can take to move the distance d:

tfinal ≤
5

8
σ2. (71)

Hence, the self propulsion velocity has to fulfil

v0 ≥
d

tfinal
=

32

σ
. (72)

4.1.1. Collision for different orientation implementations

First, the two implementations of the orientation have to be tested. Therefore, the
movement of two density peaks with the following parameters was simulated: The self
propulsion velocity was chosen at two times the lower limit derived in the previous
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Figure 3: Initial configuration for the two-particle collision

σ 0.5
v0 64/σ = 128
ρbg 0.1ρbg,max

ρth 2ρbg

Table 2: Parameters for the comparison of the orientation implementations.

section. For an offset of h ≈ 2 the peaks pass each other with significant distance,
not influencing each other. This case of freely moving particles is shown in figure 4 for
both orientation implementations. One can see that both translate the Gauss peaks
reasonably well. However, the flanks of the peak stay smoother for the coupled density
fields (fig. 4b), while the implementation via steepest has a sharper cut-off due to the
orientation only being set down to ρth. This also leads to the orientation area for each
peak extending over time in front of the particle. Also, some density is left behind at
the flanks because of the cut-off. The deviations from the original Gaussian form stay
small in this case of a large offset, so the steepest ascent implementation would be a
feasible option, especially when considering the lower computational effort.

This, however, changes when considering a collision with offset h = 2∆x ≈ 0.18.
The need to track multiple local maxima per particle, in combination with the direct
contact of the two peaks, makes it possible for regions to switch particle association.
This process can be seen in figure 5 and results in the right particle overtaking nearly
the entire left particle, while only a small portion of the density continues to move to
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the right. But the total mass with one orientation direction should stay constant at ≈ 1.
So this behaviour is clearly unphysical.

(a) Orientation via steepest ascent. Orientation field visualised by black arrows.

(b) Orientation via partial density fields.

Figure 4: Freely moving density peaks for different implementations of the orientation.
The bottom peak is moving to the right, the top one to the left.

To better understand what happens when the 2 peaks collide, we can analyse the
evolution of the individual densities shown in figure 6. Up to around t = 0.01, the peaks
move freely before they come into contact. During the collision process between roughly
t = 0.01 and 0.03, the individual densities have a non vanishing overlap, as shown in the
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third column of images in figure 6. This behaviour cannot be captured by the steepest
ascent implementation of the orientation because each pixel is assigned to either one
particle or the other. For that reason, only the implementation via individual density
fields was used for the remainder of the work.

Figure 5: Collision of two peaks with offset h ≈ 0.18. Orientation is determined by
steepest ascent and indicated by black arrows. The density is plotted logarith-
mically for better visualisation of effects at the particle borders.
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Figure 6: Collision of two peaks with offset h ≈ 0.18. Orientation implemented via
coupled density fields. The individual densities ρi are shown in the first two
columns. In the third column the overlap ρ1 · ρ2 is plotted.
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In figure 6m we can further see that some of the density of the left particle is pushed up
or downm resulting in a crescent shape. For the right particle, this happens analogously,
only mirrored. The wider tail on the bottom, where most of the density is pushed to,
aligns with the offset direction. When interpreting the density field as a probability
density, the chance that the disks move around each other in offset direction is the
largest. However, due to the finite width of the peak, there is also a probability to find
the left disk at a higher y than the right one. In that case, the left disk will move around
the right disk at the top, despite the peak being offset towards the bottom. This results
in the slim upper tail. At some point, enough density was pushed to the side so that
the remaining density can pass each other. To verify that the peaks are moving with
the expected velocity v0 one can compare the actual with the expected peak position.
This, and an indication 4σ(t) in front, can be seen in figure 7. In case of a collision, as
depicted in figure 8, the tails of the half moon stay within the expected range behind
the 4σ(t)-line. However, most of the density peak is pushed slightly behind the expected
center position.

Figure 7: Time Evolution of ρ1 at h ≈ 2. The center of the Gaussian peak stays well at
the expected position indicated by the black line. The peak also decays visibly
before the dashed black line indicating a 4σ(t) distance to the center.
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Figure 8: Time Evolution of ρ1 at h ≈ 0.18. The black line indicates the expected posi-
tion of the peak center, while the dashed black line indicates a 4σ(t) distance
to the center.

Additionally, one can look at the different contributions to the density change. For
that purpose, the mean value of the absolute excess free energy and activity term are
plotted in fig. 9. One can clearly see that the excess term only contributes significantly
during the collision process. This validates the previous assumptions for the stability
analysis in section 3.7.1.
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Figure 9: Contribution of the excess and activity term to the density change for
the collision of two peaks with h ≈ 0.18. The plotted excess term is
mean(|∇

(
ρ1∇

δF⌉§⌋[ρ]

δρ

)
|) and the activity term is mean(|vo∇(P1ρ1)|). The

collision happened between t ≈ 0.01 and 0.03.

4.1.2. Role of the self propulsion velocity

In the given model, v0 allows for tuning the proportion of diffusion and particle inter-
action to activity. To investigate the influence of the self propulsion velocity on the
collision process, v0 was varied, while all other parameters were kept constant (see fig.
3). One can see in figure 10 that the final density distribution is more blurred the smaller
v0. This makes sense because the collision takes longer and therefore the influence of
diffusion is larger. The higher v0, the sharper the features become. However, as a
drawback, the amount of numerical artefacts from the excess free energy term increases,
visible especially for v0 = 1024 (fig. 10d) below and above regions of high density. Fur-
ther, the number of necessary time steps increases from 4168 at v0 = 128 to 174841 for
v0 = 2048. There are two reasons for this: The first is that the final time tfinal ∝ 1/v0
while ∆tstab ∝ 1/v20, thus the number of time steps to reach tfinal scales linearly with
v0. But the number of steps increased by the factor ≈ 42, while v0 only increased by
factor 16. This is due to the numerical artefacts at higher velocities that no longer get
balanced out by diffusion. These Gibbs ripples also limit the time step via the positivity
requirement. Consequently, one has to balance sharper features against more artefacts
and the higher computation time.

σ 0.25
h 5∆x ≈ 0.22
ρbg 0.9ρbg,max

Table 3: Parameters for the two peak collision with varying v0.
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(a) v0 = 128.

(b) v0 = 256.

(c) v0 = 512.

(d) v0 = 1024.

Figure 10: Two-particle collision for varying v0.
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Further, the question arises as to whether there is still a difference in final density
when they evolve up to the same time. For that, an additional simulation was run with
v0 = 256 and for v0 = 1024. The faster peak arrives at the target position earlier,
at which point the self propulsion velocity is set to zero. This allows the density to
evolve in place without the need for a larger simulation box to avoid further collisions.
The final densities are shown in figure 11. One can see in fig. 11b that more density
stays close to the initial trajectory for higher v0, while more density is spread out and
moves around the other particle for the lower v0. This is consistent with the view
that more diffusion occurs before and during the collision the lower the self propulsion
velocity. However, even though v0 changes by a factor 4, the change in the density is
only of order 10−2, while the density itself is at least one order of magnitude larger at
10−1 to 100. Consequently, one would need to change the velocity by a larger factor to
observe significant differences. Unfortunately, that is not easy to realise without diffusion
smoothing the density so much that barely any features are visible or introducing large
numerical artefacts. Due to this, only a fixed velocity of v0 = 512 was investigated
further, which was found to provide a good balance.

(a) Comparison of the final density field after a collision with v0 = 256 and v0 = 1024.

(b) Difference in the final density field after a collision with v0 = 256 and v0 = 1024 at
t = 0.0195.

Figure 11: Density field after a collision with v0 = 256 and v0 = 1024 at t = 0.0195.
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4.1.3. Role of the peak width

The width σ of the Gaussian density peak is a measure of the localisation of the respective
particle. For σ → 0, the position of the hard disk is exactly known. However, as the
width increases, the uncertainty also increases. The effect of the peak width on the
collision is shown in figure 12 for the parameters presented in table 4. One can see
that the collision has the strongest effect on the shape of the peak for the smallest width
tested of σ = 0.25, while for σ = 1, there is no visible effect. One might see a small effect
by choosing a smaller offset (e.g., h = 0), because that increases the (maximum) overlap;
however, that would be compensated by a slightly broader Gaussian peak. Consequently,
it is sufficient to simulate collisions up to σ = 1. Regarding the effect of the width on
the shape of the final density, one finds that the smaller σ, the more density is pushed
towards the direction of the offset. This is expected because the probability of the left
particle being at a y-coordinate larger than that of the right particle gets smaller with
decreasing σ.

(a) σ = 0.25.

(b) σ = 0.5.

(c) σ = 1.

Figure 12: Two-particle collision for varying σ.

32



v0 512
h ≈ 0.53
ρbg 0.9ρbg,max(σ = 0.25)

Table 4: Parameters for the two-particle collision with varying σ.

4.1.4. Role of the offset

Finally, the effect of the key parameter of interest, the offset h, is investigated. As in
the previous sections, the remaining parameters were fixed at the values shown in table
5, while h was varied in steps of ∆y. The collision for selected offsets is shown in figure
13.

As expected in the h ≈ 1.05 case, the density peaks pass each other without any
noticeable influence (see 13e). This is because the offset is equal to the hard disk radius
R = 1 and only a small amount of density being closer. Already at an offset of 0.88 (fig.
13d), some density starts to be pushed back and to the side during the collision. This
effect gets stronger at h ≈ 0.53, while there is even a small portion of density passing
on the opposite side of the offset direction due to the fact that some density of the left
particle started at a larger y-coordinate than a part of the right particle density. Over
the course of further decreasing offset, the density evolution becomes increasingly more
symmetrical, until, at h = 0 (fig. 13a), it is equally likely that one particle squeezes
around the other on the top or the bottom. An increase in the peak width decreases the
overall effects of the collision, as the more spread-out density reduces the probability of
the underlying hard disks colliding. This can be seen in the figures 27 and 28 in the
appendix.

σ 0.25
v0 512
ρbg 0.9ρbg,max

Table 5: Parameters for the two-particle collision with varying h.

33



(a) h = 0.

(b) h ≈ 0.35.

(c) h ≈ 0.53.

(d) h ≈ 0.88.

(e) h ≈ 1.05.

Figure 13: Two-particle collision for varying h. Parameters in tab. 5.
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4.2. Multi-particle collision

The delay of the density in the case of a two-particle collision was surprisingly low
(around 1R in the largest case) when considering that, in the particle dynamics view of
two colliding hard disks (without noise), the delay goes to infinity for h → 0. Due to
this, we also investigated multi-particle collisions to see if any of them get stuck for a
longer time.

4.2.1. Three-particle collision

The setup for the three-particle collision was very similar to the setup for two particles
in section 4.1. Without an offset, the peaks were placed at the corners of an equilateral
triangle with side length 10σ, with its centroid placed at the (L/2, L/2)T. The orientation
of each peak is towards the centroid. For the addition of an offset, each peak was
displaced by h orthogonal to its orientation and counter-clockwise with respect to the
centroid. This initial configuration is visualised in figure 14. Due to the fact that we
expect a larger delay, the box was chosen to be slightly larger at L = 55σ, while the
number of pixels was kept the same. This results in a slightly lower resolution of the
Gauss peaks. The travel distance for the peaks is now d = L/2− 2.5σ = 25σ.

Figure 14: Initial configuration for the three-particle collision

The collision process for varying offsets is visualised in figure 15. Simulation param-
eters are the same as in the two-particle case (see tab. 5). The first thing to note is
that there is now an effect up to h ≈ 1.1, instead of 0.9 in the two-particle case. This
occurs because the orientations (and offsets) of a pair of particles are no longer paral-
lel. Further, there is a larger high density region in the middle, forcing density to be
pushed further out. Additionally, due to the fact that there is now one more particle

35



contributing, more density has to be pushed to the sides, which takes longer, before the
remaining central density can move through each other. The larger number of particles
also leads to a larger effect for broader peaks, as can be seen in figure 29 and 30 in the
appendix.

(a) h = 0.

(b) h ≈ 0.38.

(c) h ≈ 0.75.

(d) h ≈ 1.18.

Figure 15: Three-particle collision for σ = 0.25 and varying h. Parameters in tab. 5.
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4.2.2. Four-particle collision

The initial configuration for the four-particle collision is shown in figure 16. It is very
similar to the configuration for the three-particle collision. The only real difference is
that a square, instead of a triangle, is used as the basis for the positions of the peaks.

Figure 16: Initial configuration for the four-particle collision

Also, the evolution of the density throughout the course of the collision follows a
similar pattern, as can be seen in figure 17. The parameters are kept the same as in the
two- and three-particle cases (see tab. 5). The onset of an effect is now at approximately
h ≈ 1.2. The density delay is even larger than that for the three-particle collision because
the necessary displacement is increased. Even for σ = 1, there is now a visible effect (at
least at small offsets). Plots for σ = 0.5 and 1 can be found in the appendix (fig. 31
and 32).
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(a) h = 0.

(b) h ≈ 0.38.

(c) h ≈ 0.75.

(d) h ≈ 1.18.

(e) h ≈ 1.4.

Figure 17: Four-particle collision for varying h. Parameters in tab. 5.
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5. Particle delay

In this section, a quantitative analysis of the delay in density due to the peak collision
is conducted. For that purpose, the data from section 4 for the two-, three-, and four-
particle collisions is analysed further. The goal is to obtain the dependence of the delay
on the offset.

5.1. Center of mass delay

As a first step, we can analyse how much the center of mass is delayed. The calculation
of center of mass ri,cms for each sub-density is straightforward as long as the density
peak does not extend over the borders of the simulation box. For it to be meaningful,
the density distribution must not span the entire box. To fulfil this, we must subtract
the background density ρi,bg from the respective partial density. Consequently, we have

ri,cms =

∑
r∈box r · (ρi(r)− ρi,bg)∑

r∈box(ρi(r)− ρi,bg)
= ∆x∆y

∑
r∈box

r · (ρi(r)− ρi,bg), (73)

where it was used that the partial densities are normalised without background. The
index i will be dropped in this section for better readability. The change of the center of
mass from the initial to final state is then ∆rcms = rcms(tfinal) − rcms(t = 0). However,
we are only interested in the delay in movement direction, so we have to project the
center of mass change onto the orientation direction using

∆rcms,u = (uuT)∆rcms (74)

with the orientation P . The positional delay is then given by

∆d = d−∆rcms,u, (75)

with the expected travelled distance d = L/2 − 2.5σ = v0/tfinal. This is done for all
partial densities separately and then averaged. One can easily calculate the temporal
delay ∆t = ∆d/v0 = ∆d/512. In section 4.1.2, it was discussed that the final density is
mostly independent of v0, except for the amount of diffusion. However, diffusion does not
change the center of mass. Therefore, the time delay scales approximately like ∝ v−1

0 .
When examining the positional delay for the two-particle collision in figure 18, we see

that for a large peak width of σ = 1, there is no delay. For σ = 0.5 and 0.25, we observe
an onset of delay around h = 0.8 and 1, respectively. The delay increases from the
point of onset up to h = 0, with a larger delay the narrower the peak. This is expected
because, in the case of an exactly localised particle (σ → 0), the delay should approach
d→∞ (at least without diffusion). Apparently, the increase follows a roughly Gaussian
dependence on h. Within the analysed parameter range, the delay also increases more
than linearly with the decrease of the peak width. In principle, datasets for different
σ are not directly comparable because of different tfinal. However, pure diffusion leaves
the center of mass invariant. Thus, the only difference might arise from diffusion before
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and during the collision, which does not significantly influence the resulting density
distribution (as discussed in section 4.1.2 in the context of varying v0). For three- and
four-particle collisions (figures 19 and 20), the curves appear very similar. The onset
shifts to slightly larger h, and the maximum of d at h = 0 increases as well.

Figure 18: Center of mass delay for two-particle collision. For the data corresponding to
σ = 0.25 and 0.5 also a Gaussian fit of the form a exp

(
− h2

2σ2
f

)
is shown.

Figure 19: Center of mass delay for three-particle collision.
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Figure 20: Center of mass delay for four-particle collision.

5.2. Convolutional representation

Further, we want to analyse whether there are different contributions to the delay. For
that purpose, the final density distribution ρi(r, tfinal) =: ρi,final(r) of the two-particle
collision shall be written as a convolution of the initial density ρi(r, 0) =: ρi,0(r) with
the delay kernel κ(r):

ρi,final(r) = (κ ∗ ρi,0)(r). (76)

We can try to write this in terms of Fourier transforms by using the convolution theorem
(stated in 47)

F [ρi,final](k) = F [κ](k) · F [ρi,0](k). (77)

Solving for F [κ](k) reveals that this is only well defined if F [ρi,0](k) ̸= 0∀k; all Fourier
modes are non-zero. In principle, this is the case for Gaussian peaks, due to the fact
that their Fourier transform is also a Gaussian. However, high k modes decay expo-
nentially. If the interaction term amplifies these high frequency components during the
collision process, we get extremely large F [ρi,final](k)/F [ρi,0](k), which results in a wildly
oscillating kernel

κ(r) = F−1

[
F [ρi,final]
F [ρi,0]

]
(r). (78)

Consequently, a different approach is necessary for the kernel to be interpretable.
If we are only interested in the delay in movement (x-) direction, we can integrate

out the orthogonal (y-) direction of the density field, yielding ρi(x, t). Additionally,
the final partial densities are shifted in the x-direction by the free movement distance
d: ρi,final(x − ui,xd). Therefore, if the collision had no effect, the initial and shifted
final densities would be equal. The initial and shifted partial densities are symmetrical,
so one partial density was mirrored before they were averaged, written as ρ̄0/final(x).
The density distributions also depend on the simulation parameters h and σ; therefore,
κ(x) = κ(x, h, σ) might depend on them too. To analyse how ρ̄final,σ(x, h) depends on
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the offset for a given peak width, we aim to calculate the 2-dimensional kernel

κσ(x, h) = F−1

[
F [ρ̄final,σ(x, h)]
F [ρ̄0,σ(x, h)]

]
(x, h). (79)

Here, only the x-dimension is periodic.
This is where free function fitting comes into play. There, one starts with an initial

guess for the kernel and iteratively updates it with a Markov chain Monte-Carlo sim-
ulation until a steady state is found. As the optimisation parameters θ, the value of
the kernel at every (x, h) was used. Both variables are required to be equally spaced
for it to be possible to calculate the convolution via Fourier transforms. To reduce the
number of free parameters, a lower resolution than that for the simulation itself of 4∆x
was chosen. For the offset, simulation data from h = 0 to h = 1 in steps of ∆h = 0.05
was utilised. We define the predicted final density as

ρ̄pred(x, h;θ) = (κθ ∗ ρ̄0)(x, h), (80)

where the index σ has been omitted for now. Then, the Likelihood L(θ) can be used to
measure how well the prediction fits the data. If we assume that the simulation results
are Gaussian distributed with variance v, we find

logL(θ) = − 1

2v

∑
x,h

(
ρ̄final,σ(x, h)− ρ̄pred(x, h;θ)

2
)
+ log

(
1√
2πv

)
, (81)

where log is the natural logarithm [35]. Furthermore, we can use the knowledge we have
about the kernel: it must be normalised in x to be mass conserving, and it should be
positive because it represents a mass redistribution. Additionally, it should be smooth
in both x and h to avoid encountering the same high frequency oscillations mentioned
earlier and to allow for interpretability. This can be encoded into a prior distribution
p(θ) that measures how well the kernel matches the expectations. Each constraint
adds another term to the logarithm of the prior that measures the deviation from the
expectation:

log pnorm(θ) =− λnorm

∑
h

(∑
x

κθ(x, h)− 1

)2

log ppos(θ) =− λpos

∑
x,h

min (κθ(x, h), 0)
2

log psmooth,x(θ) =− λx

∑
x,h

(κθ(x, h)− κθ(x−∆x′, h))
2

log psmooth,h(θ) =− λh

∑
x,h

(κθ(x, h)− κθ(x, h−∆h))2 ,

where the sums run over all valid grid points. The higher the deviation, the less likely
the respective kernel is. This results in the total log-prior

log p(θ) = log pnorm(θ) + log ppos(θ) + log psmooth,x(θ) + log psmooth,h(θ). (82)
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We now want to know the probability p(θ|data) for a specific kernel, given the simulation
result (data). By using Bayes’ theorem, we can write this as

p(θ|data) =
p(data|θ) · p(θ)

p(data)
. (83)

The simulation method is deterministic, so p(data) is unknown. However, it is not
needed if we want to maximise the posterior distribution p(θ|data) or its logarithm

log p(θ|data) = logL(θ) + log p(θ) + const., (84)

where p(data|θ) = L(θ) was used. The maximum cannot be easily computed, so another
approach is taken: A Markov chain is created by repeatedly sampling from the posterior.
Due to the fact that the probability of the target kernel is largest, we should slowly
converge towards it. After the chain converged, the expected kernel can be calculated as
the average over a number of samples. For the purpose of creating the Markov chain, the
Metropolis-Hastings algorithm is used [36, 37]. Here, the parameter space is explored
while maintaining detailed balance: The relation of the transition rates between two
states T (θ → θ′) is given by the relation of the probabilities of the target states

T (θ → θ′)

T (θ′ → θ)
=

p(θ′)

p(θ)
. (85)

This ensures that the stationary state of the Markov chain is the target kernel. The
steps of the algorithm are as follows:

1. Choose initial parameters. Here, for each offset h, a normal distribution around
µ = 0 with a width of σ = 2

√
2tfinal is used. The width corresponds to two

times the expected diffusion. Consequently, in the absence of an effect from the
collision, we expect a sharpening of the peak. For a strong effect of the collision,
a translation and reshaping of the kernel is expected.

2. Propose a new kernel from a sample distribution. Here, we use θ′ = θ + η, where
η is Gaussian noise with mean µ = 0 and variance σ2

η.

3. A step is accepted with the probability min(1, r), where r = p(θ′|data)
p(θ|data) is the

Metropolis–Hastings acceptance ratio. If rejected, the current kernel is kept.

4. Repeat this procedure from step 2 onwards to create a Markov chain of kernel
samples.

For practical implementation, the emcee python library was used [38]. During each run,
the variance of the noise was reduced when hitting a plateau and a low acceptance rate
(< 10%). The number of steps for each σ2

η, as well as the weighting factors for each
term in the prior, are shown in figure 6. The prior weights were chosen such that all
terms of the log-prior contribute similarly. The global prior scaling ensures log p(θ) and
logL(θ) are of the same order of magnitude as soon as the data is fitted sufficiently.
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phase steps σ2
η

1 500 000 10−8

2 1 000 000 10−10

3 2 000 000 10−12

prior weight value [105]
λnorm 40
λpos 200
λx 20
λh 1

Table 6: Parameters for running the Markov chain Monte Carlo simulation.

Figure 21: Contributions to the posterior. Chain run for a peak width of σ = 0.25.
Parameters can be found in tab. 6

Otherwise, the prior would have no or too much of an effect. An example plot of the
different contributions to the posterior p(θ|data) can be seen in figure 21.

For the collision of peaks with σ = 0.5, we see in figure 22 that the initial density
profile is independent of h because we integrated over the respective direction. However,
in the final density profile, we would expect the line to broaden (due to diffusion) but
remain at the same position due to the shift if there was no collision. Here, the effect of
the collision is clearly visible. The kernel, averaged over 1000 randomly chosen samples
within the last 500000 steps, is shown in figure 23 together with the difference between
the predicted and actual final density profile. The deviation of the prediction is very
small when compared to the magnitude of the density profiles in fig. 22. Hence, a
suitable kernel has been found. From the kernel, we can directly read off the delay: For
h > 0.75, there is no delay; the finite width simply corresponds to the diffusion. However,
for smaller h, a second line at ≈ −1 is formed. With decreasing h, the original line at
x = 0 is smeared, while the contribution of the new line increases. This corresponds to a
smaller amount of density being able to move around the opposing particle unhindered.
At the same time, more density is trapped in front of the opposing particle and is only
able to continue moving when enough density has moved at the flanks. It is surprising
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that the second line is at a constant x, while the delay increases with lower h The
expected increase results entirely from the changing contribution of the two lines.

Figure 22: Initial and final density profiles for σ = 0.5

Figure 23: Averaged kernel and difference between final and predicted density profiles
for σ = 0.5

This, however, changes in the σ = 0.25 case. Here, both lines are still present;
however, not at constant x, but they follow a roughly linear dependence on h for h < 0.8.
Consequently, both the delay of the density moving around the other particle as well
as the delay of the trapped density increase with a reduction in the offset. The quality
of the obtained kernel is even better than that for σ = 0.5, as can be concluded by
comparing the difference to the density profiles in figure 24.

Consequently, the explicit simulation of the collision process to obtain the post-
collision density profile can be substituted by the use of a translation and the convolution
with an appropriate kernel. The translation originates from self-propulsion, while the
kernel captures the effects of both diffusion and interaction. Consequently, the density
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Figure 24: Initial and final density profiles for σ = 0.25

Figure 25: Averaged kernel and difference between final and predicted density profiles
for σ = 0.25

profile after the collision can be written as

ρi,final(x, h) = (κ ∗ ρi,0)(x− ui,xv0tfinal, h), (86)

where ui,x is the x-component of u. The expression remains σ-dependent, despite not
explicitly stated.
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6. Conclusion

To summarise, we demonstrated a way to simulate the collision of active Brownian hard
discs by means of DDFT. Each particle was represented by a Gaussian density peak,
incorporating uncertainty in the position. The use of a total orientation field via motion
tracking of density peaks did not prove successful. However, the use of per particle
partial density fields yielded good results, as shown in section 4. Furthermore, it was
demonstrated that the self propulsion velocity v0 has no significant effect on the density
after the collision, apart from the occurring diffusion. Hence, the positional delay ∆d
of the center of mass is close to independent of v0. Therefore, the time delay scales like
∆tv−1

0 .
Additionally, the effect of the Gaussian peak width σ and the offset h was investigated

in 5. For the positional and, analogously, the temporal center of mass delay, nonlinear
relationships with σ and h were observed (see sec. 5.1. The delay increases faster than
σ−1 and the dependence on the offset h looks roughly Gaussian. This also holds true
for the investigated three- and four-particle collisions, merely the absolute value of the
delay increases.

Finally, it was discussed how the simulation of the collision process of two particles can
be substituted with an equivalent operation consisting of a translation and a convolution
with an appropriate kernel. At least when only the density profiles in the forward
direction are considered.

While we were able to simulate and analyse collisions of a few particles, there are
still open questions about how an implementation for larger systems can be realised and
what implications this yields for the occurrence of MIPS.
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7. Outlook

There is further research needed, both regarding the numerical implementation and
the data analysis. The limit for the number of particles simulated is currently in the
order of 10, due to the fact that each requires the solving of its dynamical equation
for the partial density. An example for 16 particles can be seen in figure 26. One can
improve this in multiple ways. First, one can change the normalisation convention of
the discrete Fourier transform to slightly improve the performance of the convolutions
needed for calculating the excess free energy term. However, this does not scale with
the particle number because the excess term is computed only once for the total density.
Furthermore, both the Fourier transform and the evaluation of the dynamical equations
can be parallelised. The first yields a significant speed-up when considering larger boxes
than 1000 × 1000 sites. Additionally, when a large number of particles (N > 100) is
simulated, one can coarse-grain the particle orientation, allowing the use of one density
for all particles of similar orientation. This limits the maximum number of necessary
dynamical equations, depending on the desired resolution in the orientation. On top of
that, one should implement the advection term implicitly, allowing larger time steps. An
additional improvement on the time step might also result from performing a stability
analysis on the excess free energy term and, consequently, find a more efficient way
to deal with the Gibbs ripples (or avoid them completely). This becomes even more
important for large systems, where collisions occur somewhere at all times.

Regarding the delay caused by collisions, one can consider many more interesting
configurations. All configurations investigated in this work are rotation-symmetric with
respect to the center of the simulation box. However, in the two-particle case, it might
also be of interest to analyse collisions with non anti-parallel orientation. For three and
four particles, one can also consider mirror-symmetric configurations, for example, with
an isosceles triangle or rhombus as the base shape.

Further investigations could focus on the precise dependence of the center of mass delay
on the relevant parameters. The time delay is expected to scale with the self-propulsion
velocity in a manner slightly different from ∝ v−1

0 . It would also be interesting to analyse
collisions for even smaller peak widths σ to determine if the faster-than-linear increase
of the delay with σ−1 continues. To deduce a functional form ∆t(v0, σ, h), the specific
dependence on σ must be determined. Additional work is needed to connect this to the
waiting time in Schieck’s thesis [10].

A further goal could be to replace the fundamental measure term in the dynamical
equation with an effective convolution kernel, thereby enabling large-scale, spatially
coarse-grained simulations. Section 5.2 demonstrated that the resulting density profile
after a single collision can indeed be represented as a convolution. The next step would
be to derive a two-dimensional, density-dependent version of such a kernel, allowing
the DDFT framework to capture collision-induced delays without explicitly resolving
individual particle collisions.
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Figure 26: Simulation of 16 particles with randomly initialised positions and orientations
for σ = 0.5, v0 = 512, and ρbg = 0.9 ρbg,max(σ = 0.25) in a box with L = 9
and Nx = Ny = 128
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A. Influence of the offset on peaks of different width

(a) h = 0.

(b) h ≈ 0.35.

(c) h ≈ 0.53.

(d) h ≈ 0.88.

(e) h ≈ 1.05.

Figure 27: Two-particle collision for σ = 0.5 and varying h. Other Parameters in tab. 5.
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(a) h = 0.

(b) h ≈ 0.35.

(c) h ≈ 0.53.

(d) h ≈ 0.88.

(e) h ≈ 1.05.

Figure 28: Two-particle collision for σ = 1 and varying h. Other Parameters in tab. 5.
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(a) h = 0.

(b) h ≈ 0.32.

(c) h ≈ 0.75.

(d) h ≈ 1.18.

(e) h ≈ 1.4.

Figure 29: Three-particle collision for σ = 0.5 and varying h. Other parameters in tab.
5.
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(a) h = 0.

(b) h ≈ 0.21.

(c) h ≈ 0.64.

(d) h ≈ 1.07.

(e) h ≈ 1.29.

Figure 30: Three-particle collision for σ = 1 and varying h. Other parameters in tab. 5.

57



(a) h = 0.

(b) h ≈ 0.32.

(c) h ≈ 0.75.

(d) h ≈ 1.18.

(e) h ≈ 1.4.

Figure 31: Four-particle collision for σ = 0.5 and varying h. Other parameters in tab.
5.
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(a) h = 0.

(b) h ≈ 0.21.

(c) h ≈ 0.64.

(d) h ≈ 1.07.

(e) h ≈ 1.29.

Figure 32: Four-particle collision for σ = 1 and varying h. Other parameters in tab. 5.
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