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Abstract

The U(1)-symmetry enriched toric code is investigated. It was shown before by using
quantum Monte Carlo simulations that this model has a number of peculiar properties,
like UV/IR mixing and Hilbert space fragmentation. In this thesis, a perturbative
approach to the model was taken. By introducing an anisotropic star coupling, a new
Hamiltonian called checkerboard U(1)-toric code is introduced that is exactly solvable
in one limit and reproduces the U(1)-symmetry enriched toric code in another limit.
Degenerate perturbation theory is used to study the model from the exactly solvable
limit. Only diagonal corrections to the exactly solvable Hamiltonian are found and in
fourth order perturbation theory, the ground state degeneracy is lifted and a global
ground state is found. The excitations in this global ground state are investigated, and
a non-topological phase of confined fractons is found. On finite systems, we investigate
if the excitations found in the U(1)-symmetry enriched toric code still behave like
fractons. The results are consistent with fractonic excitations.
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| Introduction

The Landau theory of phase transitions is one of the most important cornerstones of
modern condensed matter physics. In this theory, phase transitions are characterized
by spontaneous symmetry breaking and a local order parameter that allows one to
distinguish the different phases [I]. For a long time, this paradigm was applicable to
all phase transitions. But the discovery of the fractional quantum Hall effect in 1982
changed this perception. The phase transitions to the fractional quantum hall states
cannot be described by a local order parameter. Aside from this, the phases have
many other exotic properties, like anyonic excitations that have a wave function that
is neither symmetric nor anti symmetric under exchange of particles and a ground
state degeneracy depending on the genus of the space the system is put on [2]. The
system is in a so called topologically ordered phase [3]. The discovery of the fractional
quantum Hall effect has sparked this new field of research, and both the experimental
discovery by Daniel Tsui and Horst Stormer and the large progress in the theoretical
description of this phase by Robert Laughlin were honored with the Noble Prize in
1998. The fractional quantum Hall effect is still an active research area, but the notion
of topologically ordered phases has much further reaching impact.

The possibility of creating a system with non Abelian anyons, excitations where even
the order of exchanging the particle is important, led the physicist Alexei Kitaev to the
idea of building a quantum computer stable to local decoherence using the braiding
properties of these exotic particles [1],[5]. It was also Kitaev who had the idea for a
quantum stabilizer code, the toric code [5]. This model is topologically ordered and
could be used for quantum error correction, but it is hard to realize in experiments
since it has four-body interactions that are not found in nature. 20 years after its
discovery, experiments have been performed to create the ground state of this model on
quantum hardware [(], but an implementation of the model in a real physical system
is still not possible. One possible way to create systems like the toric code is by using
a symmetry principle called combinatorial gauge symmetry [7]. Here the fact is used
that the commutation algebra of a spin system is not only invariant under @; SU;(2)
transformations, but also under the exchange of different spins. In this way, a large
class of Hamiltonians similar the toric code can be realized. An example of a model
that can be realized in this way is the so-called WXY model [¢]. The WXY model is
hard to study numerically due to a sign problem and a large unit cell. In order to study
the model, a simpler model with the same key properties, a global U(1) symmetry, a
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local Zy symmetry and a similar structure, but without a sign problem was introduced.
This model is the U(1)-symmetry enriched toric code [J]. In their work, Kai-Hsin
Wu et. al. found evidence for a topologically ordered gapped quantum spin liquid
with a lot of peculiar properties like UV /IR mixing and Hilbert space fragmentation.
Theses findings are based on nummerical quantum Monte Carlo simulations, since the
U(1)-symmetry enriched toric code is not exactly solvable as its conventional counter
part.

In this thesis, the U(1)-symmetry enriched toric code is studied. First, a perturbative
approach is taken to the model by going into a still exactly solvable limit. By using
this approach, we find a non-topological phase with exotic excitations called fractons
[10, 11]. These fractons are confined and cannot exist as single excitations but only
as bound states. We discuss the possibility of a quantum phase transition to the
topologically ordered phase. By using exact diagonalization, we study the properties
of certain excitations in the U(1) toric code phase and find results in line with the
possibility of fractonic excitations in that phase as well.

This thesis is structured as follows: In chapter 2 the conventional toric code is
introduced and the exact solution is presented. Than the different properties of the
model are discussed, while focusing on the ones relevant for the U(1)-toric code. In
chapter 3 the U(1)-toric code is introduced and the findings and discussion of Ref. [Y]
are summarised. In chapter 4 a new Hamiltonian is introduced that reproduces the
U(1)-toric code for suited parameters but is still solvable in another limit. Starting
from this still exactly solvable limiting case, perturbation theory is applied and a non
topological phase with confined fractons is found. The possibility of a phase transition
to a topological order phase is discussed. In chapter 5 heuristic arguments for the
existence of fractons in the U(1)-toric code are presented and exact diagonalisation is
used to check this reasoning.



Il Toric Code

The toric code is an exactly solvable spin model introduced by Alexei Kitaev in Ref.[5].
The model is the simplest known model exhibiting topological order and has inspired
tremendous research since it was discovered. In this chapter, we will introduce the
model, show how it can be solved exactly, and then discuss some key properties,
focusing on the ones that are relevant for the analysis of the U(1)-toric code.

11.1 Hamiltonian

The toric code was originally defined on a square lattice in two dimensions. We stick
to this definition even though generalizations to different lattices [12, 13] and higher
dimensions [11, 15] are possible. The spin degrees of freedom are placed on the links
of the square lattice. Stars and plaquettes are defined as the spins closest to a vertex
or on the site of a plaquette of the lattice, as seen in Figure I1.1.

The Hamiltonian consists of star and plaquette operators (also called charges and
fluxes). They are defined as

Ag = Hof, B, = H o;, (IL.1)
iES iEp
where the product runs over the four indices of a star or a plaquette and o*/# are the

usual Pauli matrices.

The toric code Hamiltonian is then defined to be
Hrc ==Y A, B, (IL.2)
s P

with the sums running over all stars s and plaquettes p.

The important property that makes the model solvable are the vanishing commutators
[As, Ay] = [Bp, By| = [As,Bp] =0 Vs,p, s, p'. (I1.3)

The first two commutators vanish trivially. The third one vanishes because plaquettes
and stars share an even number of sites (see Figure I1.2). Using this and o*¢”* = —o% 0~
1.3 follows.
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Figure II.1: Definition of Figure I1.2: Plaquettes and
stars and plaquettes on the stars share two sites

square lattice

Since the Hamiltonian is a sum of A; and B, the commutator of the Hamiltonian
with Ag and B, gives

[HTC: AS] = [HTc, Bp] = 0 Vs,p. (11.4)

Because (0')% = 1

2 _ p2
A2=B2=1 (IL5)

5

holds.

From Equation IL.5, one can deduce that the eigenvalues of A, and B, which we
denote as and by, respectively, can only be £1. With I[.4, we see that there is a basis
in which Hrq, As, and B, are simultaneously diagonal. Choosing periodic boundary

conditions we find that
T4 =1IB, =1 (I1.6)
s P

because on every spin, two star or plaquette operators act on.

Identity I1.6 shows that not all as and b, can be independent since fixing NV — 1 star
eigenvalues ag fixes the last a;, when N is the number of stars in the lattice. The
analogous statement is true for b,. So, A5 and B, do not give a complete set of
conserved quantities since the number of degrees of freedom N exceeds the number
of eigenvalues. There are two more independent conserved quantities, with which Ag
and B, completely determine the eigenstate of the toric code. These are Wilson loop
operators

Wz =]]o; (IL7)

ey



11.2 Ground state manifold

where 7y is a non-contractible loop on the torus. On the torus, there are two topologically
non-equivalent, non-contractible loops. Each of these gives an additional independent
conserved quantity because W can not be represented by a product of B, operators
(since ~ is non-contractible) and

[Hro, W] = 0. (IL.8)

One recognizes that this operator commutes trivially with all B,, and every non-
contractible loop shares an even number of sites with the A, operators. Following the
same argument as in the derivation of Equation I1.3, we find Identity II.8.

11.2 Ground state manifold

To construct the ground state manifold of the toric code, all a; and b, have to be
fixed to +1. One can construct a state that fulfills these constrains by starting with a
reference state completely polarized in z direction |{}). Such a state clearly fulfills

By ) = 1) (IT.9)

To create a state with ay; = +1 for all stars, one can use that % is a projector to
the eigenspace with eigenvalue a, = +1. That 1A= is a projector to the eigenspace
as = +1 is easily checked by calculating (%)2 = % and AS% = %ﬂ using
Equation I1.5. Hence,

1+ A
NTT=522 1) = les) (IL.10)

gives a ground state with ay = +1 and b, = +1 for all stars and plaquettes with a
normalization constant N.
Calculating the product in Equation I1.10 gives

NI+ A+ D> AAN)+ ) = [gs) (IL.11)

s'<s

which is an equal-weight superposition of all states of the form [] . As [1) where M
is a subset of stars on the lattice. The action of ¢* on a ¢* product state is a spin flip,
ie. o”[T) =1]). As acting on a |f}) flips all spins on the star s. The flipped spins form
a contractible loop on the torus, as it can be seen in Figure 11.3. The ground state is
then an equal weight superposition of all those contractible loop states.

Because [%, I'Vfﬂ] vanishes V ’fﬂ |gs) = + |gs) holds. To construct the other ground
states, an operator W7 = [[;c,, of where « is a non-contractible loop around the torus
on the dual lattice can be defined. W7 = [[;c, 0f commutes with the B}, and A,
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Figure I1.3: An example for a loop state in ¢* basis. The red dots show all the stars
s Ag acted on, and the red lines visualize the loop of flipped spins

for all s and p but changes the eigenvalue of one of the Wilson loops Wfﬂ. By this
construction, one can obtain all four ground states: |gs, 1,1), |gs, —1,1),|gs, 1, —1) and
lgs, —1, —1) where the last two arguments give the eigenvalues of le/z- This way, one
sees that the ground state degeneracy is 49 where g is the number of non-contractible
loops on the manifold (the genus of the manifold). This is an important property of
topological ordered phases.

1.3 Mutual anyonic statistics

The spin statistics theorem states that spin % particles have an anti-symmetric wave
function under particle exchange, and spin one particles have a symmetric wave func-
tion under particle exchange. Further, in three or more spatial dimensions, it also
states that the wave function has to be symmetric or anti symmetric. In two spatial
dimension there is a loophole in the theorem, which results in a much richer theory and
leads to fascinating new excitations called anyons. Abelian anyons get a phase factor
when exchanged. In this section, we derive the symmetry of the toric code exitations
and find that the excitations are indeed Abelian anyons [1].

10



I1.3 Mutual anyonic statistics

We can only have an excitation in the toric code if one of the constraints b, = 1 or
as = 1 is violated. With condition 1.6, we find that creating only one excitation is
impossible on the torus. Creating two excitations can be done by acting with the
string operators S*(t) = [[;¢; 0%, S(t') = [,y 0" t is a path on the lattice and the
excitations are induced on the stars ¢ is a path on the dual lattice and the excitations
are on the plaquettes. In Figure I1.4 an example for the creation of two excitations is
shown. Acting with S*(t) on the ground state gives

50 s) = 50 T[22 ) =

1— Ay, 1 — A, 0 1+ 4,

. s ()

57#£81,82

where s, and s are the stars on which the loop ¢ ends and the only stars that share
only one spin with the open string t. ]1_,2‘43 is a projector on the eigenvalue —1 for
the star s. With the analog argument, one sees that S*(¢') |gs) is the state with two
plaquettes excitations at the end of string #'. With this construction, W* can be
interpreted in this particle picture as creating two excitations and moving them around
a non-contractible loop before annihilating them again.

We discuss the statistics of the particles now. The star excitations behave as bosons
when they are exchanged with another star excitation. This is also true for the
plaquette excitations. The mutual exchange statistic is more interesting.

To discuss the mutual Abelian statistic, we look at an excited state S*(t)S*(t') |gs)
with both types of excitation (for example, the state in figure I1.4). Now the star
excitation can be moved around the plaquette excitation by acting with S#(v). The
loop v winds around the plaquette excitation like illustrated in I1.5. Since t’ and ~
have to share an uneven number of sites, we find

S*()S*()ST(t) |gs) = —S7(1)S™(¢)S*(7) |gs) = —S*(1)S™(t') |gs) , (I1.13)

where we used in the last step that every contractible loop can be represented by a
product of B, operators and B, |gs) = |gs). Moving the particles around each other is
equivalent to exchanging them twice. With this argument, we find that exchanging
the particles once gives a factor of ¢/2. So we find Abelian anyonic statistics.

11
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1l U(1) symmetry enriched toric code

The U(1) symmetry enriched toric code (also called U(1) toric code) is a new model
introduced by Kai-Hsin Wu et al. in [J]. In this chapter, we follow their work and show
how to derive the Hamiltonian from the usual toric code. Then we give a summary of
their numerical findings and a discussion of those.

I11.1 Enriching the toric code by a U(1) symmetry

The model can be introduced by altering the usual star operator
Ay = ojoy050] (IT1.1)

so it is invariant under U(1) symmetry transformations. One introduces a new angle-
dependent Pauli matrix ¢¥ = cos (§)0® + sin (f)o? and a new star operator

AP =T o7, I11.2
5 T
PEs

where the sites lie on the star like in the usual toric code. These operators still commute
with the B, operators and each other. The new U(1) symmetry is now introduced by
integrating over all angles

2w
A, = A0 = ofofos0; +oyoy0f0; +0f 050505 +h.c. (IT1.3)
0

* = M The Hamiltonian is then given by

Hyy= -2 As—Ag) B, (T11.4)
s p

with o

where Ay,p > 0. First, we notice [B), Ag] = 0 still holds true for all s and p, but
[Ag, AL] # 0 if s and s’ share a site. This makes it impossible to solve the system in
any obvious analytical way. We now check how the U(1) symmetry enters the system.
We introduce the action of the U(1) symmetry group

U, = exp(—i%ﬁ{z) (IIL5)

13



III U(1) symmetry enriched toric code

with the total magnetization in z-direction M, = ) ; o7. The action of the symmetry

on o’ is

U.oc?Ul = g%, (111.6)

so we obtain . .
ULAUT = f U, A°UTdo — / A%aqy — A, (ITL.7)
0 0

The action of U on B,, is trivial, so we obtain that Hy;(y) is invariant under these trans-
formations. Like every symmetry, this symmetry has an associated conserved quantity.
Here, this quantity is the total magnetisation M.. As we have seen above, all the B, still
commute with the Hamitonian, so the eigenvalues b, are also conserved. In addition,
the Wilson loops defined for the toric code fulfill [Hy; (), W] = 0 so they give con-
served quantities as well. With all these conserved quantities, we can block-diagonalize
the system with blocks labeled by the eigenvalues of the operators { M., Wi, Wy, { B, }}.

Another property of the Hamiltonian is that it exhibits Hilbert space fragmentation.
This property was described first in Refs. [10, 17]. For systems with this property, the
Hamiltonian has a block diagonal structure even inside each symmetry sector. The
blocks are so called Krylov sectors. These Krylov sectors are not explained by any
(obvious) symmetry since the operators with whom one would explain them are highly
nontrivial and nonlocal projectors on those blocks, which cannot be constructed easily.
Systems exhibiting this property are known to violate the eigenstate thermalization
hypothesis (ETH) [1%]. The ETH is a condition most Hamiltonians obey under which
equilibrium statistical mechanics is recovered from quantum systems in isolation. Other
examples of systems that violate ETH are those with quantum scars or many body
localisation [1%]. There are two types of Hilbert space fragmentation: strong and weak
fragmentation [19]. For strong fragmentation, Dy ax/Deomplete — 0 for L — oo while
for weak fragmentation, Dyax/Deomplete — 1 for L — 00. Dyax is the dimension of
the largest Krylov subspace in the symmetry sector, while Deopplete is the dimension of
the whole symmetry sector, and L is the system size. The dynamics of the symmetry
sector (+,+) can be mapped to a model that is known to exhibit weak Hilbert space
fragmentation [20, 21, 22]. For the other subsectors, this was established numerically
in Ref [9]. In Figure I11.3 an example of how this fragmentation manifests can be seen.

I11.2 Previous numerical findings

In this section, some of the numerical findings by Kai-Hsin Wu et al. [9] are summarized.
They used exact diagonalization (ED) and Stochastic Series Expansion Quantum
Monte Carlo (SSE QMC) for their numerical study. They choose Ay < Ap so that

14
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Figure I11.3: Example of states corresponding to the same symmetry sector but
different Krylov subspaces. The left state belongs to a one dimensional subspace, while
the left state belongs to a higher dimensional one. Rebuild version of Figure 7 from [9]

the global ground state is in the symmetry sector where all B, eigenvalues are +1.
The eigenvalue of M, was chosen to be m, = 0. This is the symmetry sector in which
the global ground state is expected. This is easy to see since this symmetry sector
has the highest dimension and the spread of eigenvalues is larger for larger random
matrices. This was verified for small systems. They used ED to verify the Hilbert space
fragmentation in all symmetry sectors and benchmark their QMC study. When fixing
all these quantities, the Wilson loops still remain. The symmetry sectors are labeled
by the sign of the corresponding eigenvalues of Wy 5 (+,+), (+,—), (=, +), and (—, —),
where the first entry is the sign of W, and the second of Wy. They studied different
compactifications. A compactification is a way of defining the periodic boundary
condition. The compactifications they studied all have the topology of a torus, so for
the usual toric code, one would see that the ground state degeneracy does not depend
on the compactification. For the U(1) toric code, a different behavior was found.

The different discussed compactifications are characterized by two coprime integers
a,b and the linear system size L. This then gives two compactification vectors:
L= (—b€r+a€,) and Ly = (a€p+béy). Any vector i'is identified with all F+mLi+nLs
for n,m € Z. The vectors (a,b) and (—b,a) are the shortest vectors with integer

15



III U(1) symmetry enriched toric code

Figure IT1.4: An example for a compactification with ¢ = 1, b = 2, and system size
L = 2. The black vectors are the compactification vectors El and fg and are identified
with the black dotted lines on the opposing side of the square. The yellow and violet
dotted lines are two independent non-contractible loops v1 and /+». The picture is a
rebuilt version of figure 1 in [9].

coefficients in the direction of the compactification vectors. An example of such a
compactification can be seen in II1.4. In their work, Kai-Hsin Wu et al. focused
especially on compactifications characterized by even linear system size L and the two
vectors (e = 1,b=1) and (a = 1,b = 0). These compactifications are called 0° and
45° compactification and are also the most relevant ones for this thesis.

The first and most important finding is the dependence of the ground state degeneracy
on the compactification. For the 0° compactification, the global ground states lie in the
symmetry sectors (+, +) and (—, —) for large and even L. These two ground states are
degenerated. The lowest energy states in the sectors (4, —) and (—,+) have a higher
energy with a gap of O(1) in system size L. In the 45° compactification, the global
ground states for large and even L lie in the symmetry sectors (+,+),(—,+), and
(+,—). The ground state in the symmetry sector (—, —) is an excited state again with
a gap of O(1) in system size L. To check if the system is gapped within each symmetry
sector, spin-spin correlations were calculated. Particularly, the expectation value of the
operators C(T) - %Z(‘t g§x+a€y0§'1+aé’y+r§c’ and Cd(r) = %Zﬂ' U§c+aé’5gygg'z+aé'ﬁy+ré'xy‘
The correlations decay to zero for r > 3 which is seen as strong evidence that the
system is gapped within each symmetry sector. Furthermore, the star-star correlation

16



I11.3 Ground state degeneracy

function (A;Ay) was calculated. By fixing s = (0,0) and plotting the correlation
function for s’ = (z,y) a checkerboard pattern was found like seen in Figure II1.5. This
indicates a breaking of translation symmetry, and due to this, there is an additional
two fold degeneracy within each symmetry sector. This additional degeneracy is not
topological and can be lifted by local perturbations.

0.50
0.45
0.40
-0.35
0.30

0.25

0 ] 10 15

Figure ITL.5: Plot of the correlation function (A A.) for linear system size L = 16
further motivating the approach later mentioned in the thesis. The plot is taken from

Ref. [9].

1.3 Ground state degeneracy

In this section, we follow the discussion of Chapter 4 in Ref. [J] on the ground state
degeneracy and their heuristic argument to explain it. Later in the thesis, this argument
are put in the context of fractonic excitations.

The numerical results for the ground state degeneracy are interesting for two reasons:
The first one is the dependency of the ground state degeneracy on the compactification.
The compactification is a detail of the lattice. The ground state degeneracy on the
other hand is a property predicted by the low energy effective field theory (a topological
quantum field theory for ususal topolgical order) that describes the phase (like the
doubled Chern-Simons theory also called BF theory [23] for the usual toric code). So
a detail of the lattice, which is relevant for short wavelengths (or equivalently high
energies), influences the low energy effective field theory, which determines the physics
at long wavelengths (or low energies). This phenomenon is known as UV/IR mixing
[24, 25]. UV/IR mixing is common for gapped fracton phases, but in those systems the
ground state degeneracy usually depends on the system size [0, 11]. A dependence
on the compactification is unusual.

17



IIT U(1) symmetry enriched toric code

The second reason why the ground state degeneracy is interesting is the three fold
topological ground state degeneracy in the 45° compactification. It is unusual to
get such a degeneracy from a time reversal symmetric Hamiltonian with Abelian
topological order. Topological quantum field theories usually have a ground state
degeneracy, which is either the square of an integer or a product of Pythagorean primes
(for time reversal symmetric U(1); Chern-Simons theories this was proven in ref.[20]).
3 is neither a square of an integer nor a Phythagorean prime. An explanation would
be that the time reversal symmetry is broken spontaneously.

Long range magnetic order provided no evidence for this possibility since the ground
state lie in the symmetry sector with M, = 0 and the spin-spin correlation functions
decay exponentially.

Motivated by this question, Kai-Hsin Wu et. al. took a phenomenological approach to
explain the ground state degeneracy. They proposed the existence of nonlocal tunneling
operators Ty and T, which change the eigenvalues of the Wilson loop operators Wy
and Wy. For the toric code, the analog construction would be the W operator. For
the U(1) toric code, these operators cannot be constructed explicitly. Considering the
45° compactification we call these operators T and T3°°. The three ground states
are then given by |(+,+)), T |(+,4)) = |(—, +)) and T4 |(+,+)) = |(+, —)). The
last state |(—, —)) was found to be an excited state. So T5° T} |(+,+)) is orthogonal
to the ground state manifold or, equivalently, 75°°T}>" annihilates |(+, +)) on the
ground state manifold.

The same situation is found in SU(2)2 topological order with Ising anyons as excitations
where one cannot insert anyons along both noncontractible loops without projecting
to 0 [27]. This observation led the authors of [J] to the conclusion that the 45°
compactification could host non abilian anyons.

Based on this phenomenological argument they proposed a heuristic argument to
explain the ground state degeneracy in the 0° compactification. Acting with T;‘E’U in
the 0° compactification the operator winds around +45° direction. In this direction
the operator changes both eigenvalues of the Wilson loop operators so we obtain
T |(+,+)) = |(—,—)). The states |(+,—)) and |(—, +)) are not accessible in this
way.

18



I11.3 Ground state degeneracy

Figure II1.6: The tunneling
operators act diagonally and
change both eigenvalues of W7y
and W3.

L
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4

=
e - @
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Figure II1.7: The tunneling
operators for the 45° compacti-
fication. The operator crosses
only one noncontractible loop,
W or W5 and changes its ei-
genvalue.
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IV Perturbation theory applied to the
checkerboard U(1) toric code

In this chapter, the perturbative approach introduced by Minoru Takahashi in Ref. [2]
is applied to study the U(1) toric code by introducing an anisotropic star coupling. After
choosing a suitable yet exactly solvable unperturbed Hamiltonian and calculating the
effective Hamiltonian up to fourth order, a confined fracton phase without topological
order is found.

IV.1 Unperturbed Hamiltonian and ground state 0° tilt

To use perturbation theory, a simple, exactly solvable unperturbed Hamiltonian is
needed. As seen in Chapter 3, the Hamiltonian for the U(1) toric code can not be
solved exactly due to the non-vanishing commutators [A.;l A,,] when s; and sy are
neighbors. But if s; and sy have no common site, [Ay,, Ay,] = 0 still holds. Motivated
by this, the stars can be separated into two bipartite sublattices, S’ and S”, where
every second star is in sublattice S’, and two new parameters are introduced, so the
strength of the stars on the sublattices differs. The new Hamiltonian reads

Hyycs = —2B ZB —da Y Ag—=dan Y Ay, (IV.1)

s'es’ s'res”

with new couplings A4/, Aq» > 0. This Hamiltonian we refer to as the checkerboard
U(1) toric code, and it reproduces the Hamiltonian of the U(1) toric code for A 4» = Aa».
The A on each sublattice commutes, so the Hamiltonian IV.1 is exactly solvable for
Agrr = 0.

Six of the local eigenstates of A, are given by

lw) = —=(11) + [1)), (IV.2)

(@) = —=(1=1) +[-1)), (IV-3)

(10) +10))) (IV.4)
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IV Perturbation theory applied to the checkerboard U (1) toric code
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Figure IV.2: Different visu-
alization of Figure IV.1. The
gray squares correspond to un-
perturbed stars, and the white
squares are the ones the per-

act on.

and

turbation acts on. The red and
blue dashed lines are the non
contractible loops the Wilson
loop operator acts on.

- = (1) = D) (1v.5)

_ _L T ; )

@-) = (-1 = |-, (IV.6)
1 _

0-) = 5(10) = ), (v.7)

where the states are defined like seen in Figure IV.3 and the corresponding eigenvalues
are +1 if the sign in front of the second vector is +1 and —1 if it is —1. The remaining
eigenvectors have the eigenvalue 0. They are given by product states that are not
flippable and can be seen in Figure 1V.5.

This ansatz explicitly breaks the translational symmetry, which is spontaneously broken
in the full system. For Ap = 0, all local ground states can independently be put on
the checkerboard. So one finds for each unperturbed star three local ground states:
v), [@0) and |w). We would expect a 3™ fold ground state degeneracy, where Ny, is
the number of unperturbed stars. Choosing Ag # 0 new constraints are imposed on
the ground states, and the ground state degeneracy changes. For a state to be part of
the ground state manifold, all B, eigenvalues need to be +1.
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IV.1 Unperturbed Hamiltonian and ground state 0° tilt
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Figure IV.5: Local product states corresponding to the eigenvalue 0. These states
are called non flippable states.
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IV Perturbation theory applied to the checkerboard U(1) toric code

The local ground states are sums of the local product states defined in figure 1V.3.
These states are called flippable since they are the only local product states that are
not projected to 0 if A, acts on them. The local product states give constraints on the
neighboring product states of the checkerboard, if B, |gs) = |gs) is required.

1) or |I> share either 2 up or 2 down spins with the plaquette on the top right. So
the state of the star on the top right also has to share 2 up or down spins with the
plaquette for B, to be 1. The only flippable states that fulfill this condition are |1)
and |1). The argument for |[—1) and |1) is analogous. With this, we can deduce the
constraints a product state built out of flippable stars on the checkerboard has to fulfill
so that B, [¥) = |¥). If the star on the bottom left of the plaquette is in the state |1)
or |1), the state on the top right has to be either 1) or |1). If the state on the top left
is |—1) or |—1), the state on the bottom right has to be |—1) or |—1).

Applying this constraint inductively, we find that one |—1) or |—1) requires the whole
diagonal to be |—1) or |—1). And one [1) or |1) requires the whole anti-diagonal to be
1) or |1). The term anti-diagonal is used in the same way as for matrices.

Applying these constraints to the ground state manifold of the unperturbed Hamilto-
nian, we find that one |w) constrains the whole anti-diagonal to be in the state |w)
and |w) the whole diagonal to be in the state |w).

We also notice that if we restrict all states on an anti-diagonal to be |w}, there cannot
be a diagonal with |@) since the diagonals would meet, and either the constrain given by
the By, has to be violated or a local cigenstate of the stars does not give the eigenvalue
+1. With these arguments, we find a smaller ground state degeneracy than in the case
where Ap = 0. We can label the states in the unperturbed ground state manifold by
the states on their diagonals or anti-diagonal. For a system of the size L x L, the
number of ground states is 21 — 1 in the 45° compactification and 95+l _ 1 in the
0° compactification with even L. The number of states where one or no diagonal is
restricted to |w) is 244 where L, is the number of unperturbed (anti-) diagonals in the
system. This is easy to see since Ly is equal to the number of diagonals, and with the
restriction that no diagonal can be in the state |w), every diagonal can be restricted to
be either |w) or |v). We get the same number of states if the anti-diagonal is restricted
to be |w). But we double count the state where all local states are |v). For the 0°
compactification and even system size Ly = % and for the 45° compactification it
equals L. It follows that the ground state degeneracy grows subextensive compared to
the extensive ground state degeneracy in the case where Ap = 0.

The eigenvalue of Wy, still has to be discussed. Acting with W/, on a product
state in o* basis gives (—1)Nw where Nyp is the number of spins pointing up on the
non-contractible loop. Here the non-contractible loops are defined like in figure TV.2.
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IV.1 Unperturbed Hamiltonian and ground state 0° tilt
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shows an anti-diagonal con- show a diagonal constraint to
straint to be |w). be |w).

One can see, that the states [0) and |0) contribute a factor of 1 to the eigenvalue of
W12 since the non-contractible loops cross the stars vertically or horizontally. As seen
in Figure IV.3 the contribution to the product is either (—1)% or (—1)°.

Analogously, all the other flippable stars contribute a factor (—1) to the product.

To determine the eigenvalue of a ground state, we calculate

W, 1/2 |us> ® |®) \/— 0;0; |13> + |1_¢> @ W 1/2 |¢3) |ws> @ I'i"zlg‘2 |¢’> (IV'S)

1 _
W1 is) @ |¢) = \/§0a ai(|-1) + [-1)) @ Wy o @) = — [0) @ Wy o |0y  (IV.9)

1 = s
Wi lvs) @ [¢) = 70 07 (]0s) + |0s) ) @ Wy ld) = |v) @ Wyg|6) (IV.10)

where W, /2 1s the Wilson loop operator acting on the remaining factor of the tensor
product |¢) and i and j are the indices on which the non-contractible loop crosses the
star s the local star operator acts on. So the eigenvalue for a ground state built by
local eigenstates is an eigenstate of both Wy /5. The eigenvalue is given by the number
of local |w) and |w) states of the non-contractible loops as (—1)V:@ where N, 4 is
the number of |w) and |@) states on the non contractible loop.

Since an (anti-)diagonal always crosses both non-contractible loops, every state on the

checkerboard has the same eigenvalue for W and Ws. Therefore, all ground states lay

in the symmetry sectors (+,+) and (—, —). The global ground states of the system at
A =1 are in the same symmetry sectors for the 0° compactification.
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IV Perturbation theory applied to the checkerboard U (1) toric code

Figure IV.8: Constraints on the diagonal in the 45° compactification.

IV.2 Ground state for 45° compactification

The local eigenstates stay the same for other compactifications. Also, the arguments
for the constraints do not change. But the states are now constrained parallel to
the compactification vectors, as can be seen in Figure IV.8. This has interesting
consequences for the symmetry sectors that the ground states lie in. First, we notice,
analog to the section before, that the flippable local product states |0), |0), |1) and
1) give a factor of —1 to the eigenvalue wy = (—1)Newr.1 where Ny is the number
of spin-ups on the non-contractable loop 2 while |1) or |1) give a factor (+1). The
reason is that the non-contractible loop always intersects the stars at the top and left.
For the W, along the non-contractible loop 71 we find that the states |0), |0),|—1)
and |—1) give a factor —1 and the states |—1) or |—1) a factor +1 with the analog
argument.

Following the same argumentation as for the 0 degree compactification, we find that |v)
and |w) give a factor —1 to the product wy and |w) gives a factor +1 to the product.
For the product wo |v) and |w) give a factor of +1 and |w) gives a factor of —1.

With the constraints in mind and how the diagonals affect the eigenvalues of the
Wilsone loop operators, we find that all ground states are in the symmetry sectors
(+,+), (=, +), and (+, —) for even L. We know that there can not be |w) and |@)
states in a ground state built by those local ground states simultaneously. So, if there
is one |w) we know that wy = +1 because there is an even number of stars crossed
by the Wilson loop and there can not be any |w) state changing the eigenvalue to
—1. The analog argument holds true for w; if there is a |} state in the system. So
there can be no ground state in the symmetry sector (—, —) since local ground states
w and @ would be needed on the checkerboard. For a system with an uneven length L,

26



IV.3 Perturbation theory applied to the checkerboard U (1) toric code

we find with the same arguments that all ground states are in the symmetry sectors
(=, —),(+,—) and (—, +) since the product w; now has an odd number of -1 factors.
All the symmetry sectors with ground states in the checkerboard U(1) toric code are
the ones with ground states in the U(1) toric code for even and odd system size, as
seen in Chapter 2.

IV.3 Perturbation theory applied to the checkerboard U(1)
toric code

In this section, the perturbative formalism first introduced by Takahashi in Ref. [24]
is applied to the checkerboard U(1) toric code. For this, we separate the Hamiltonian
into two parts

Hyoyes = Ho + AarV (IV.11)
with
Hy=-AgY B,—Ax > Ay (IV.12)
r s'es’
and
V==Y Ay (IV.13)
S”EJSY”

To use degenerate perturbation theory, we then define P as the projector on the ground
state manifold and S = % where Ej is the unperturbed energy. Using Takahashis
perturbative approach, the effective Hamiltonian in fourth order reads

Heg = Ho + Hi\qn + Ho)4 + H3NY + HyNY (IV.14)

where
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IV Perturbation theory applied to the checkerboard U(1) toric code

H, = PVP,
Hy = PVSVP,
Hy = PVSVSVP + PVPVSSVP + PVSSVVP,

1 1 1
H, = EPVPVPVSSSVP - §PVPVSVSSVP - §PVPV.S'SVSVP

—%PVSVPVSS’VP + PVSVSVSVP

+%PVSSSVPVPVP - %PVSSVSVPVP

— PVPVSSVSVP — _PVSSVPVSVP.

Before constructing the effective Hamiltonian, we discuss the action of A, on states in
the ground state manifold. As already mentioned before, acting with Ay on a product
state either flips all spins on the product or projects to 0. To see how the perturbation
acts on a ground state of the unperturbed system, the local ground states that are
influenced by the action of A, can be written in the o product state basis

(IV.15)

a; +by as+bs az+by ay+ by
|$1a$23$3:$4) =

where |;) are the local ground states of A; influenced by the perturbation Ay, |a;) are
0), |1) or |—1), and b; are the corresponding states |0), |1) or |~1). Since Ay either
projects a product state to 0 or flips the spins, we find that the final state is a sum
of states where the four spins the perturbation acted on are flipped. Since all local
ground states are a sum of flippable stars, the product states resulting after one spin
is flipped are eigenstates of A, to the eigenvalue 0. So acting with A, creates four
exitations on the surrounding stars. This way, we can see that only even orders can
contribute to the effective Hamiltonian for an infinite lattice, since every A, has to
perturb the same star two times to result in a state that is not projected to 0 by P
in Takahashi perturbation theory. But on an infinite system the only possibility to
perturb every star twice is acting on every star twice with the perturbation A,. With
this one can deduce that all terms in TV.14 that contain PV P vanish in an infinite
system.

The next impotent property is that unperturbed ground states do not couple in finite
order. For two ground states to couple one would need L A, to act one a ground state
since diagonals constraint to be w or w have to be created or destroyed. So we know
that the effective Hamiltonian only has diagonal corrections in any finite order. The
question remains if one of the ground states is energetically preferred. It turns out that
this is the case. The state where all local A, eigenstates are |v) is the energetically
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IV.3 Perturbation theory applied to the checkerboard U (1) toric code

)

X1 () X4

Figure IV.9: The blue dot is the star the perturbation acts on, the z; give the
convention for the order of the states |xy, x2, 23, 24)

most favorable state. Even more interesting, the gap to the other ground states grows
subextensively.

To show this we first calculate the second-order perturbation theory. Starting with
a tensor product of the local ground state with the convention depicted in IV.9 and
expanding into a product state, we obtain

v, v,0,0) = — Z 0i,. 04y, 045 05,)

i1,89,i3.04
where 07 = 0 and 0y = 0. Acting with ;1,,. on this state, we get

Ag v, v,v,0) = %ﬂb, d,c, a)+|l_), e d, a->+|l_), ¢, d, a->+|b, c,d, &-)+‘b, e.d, !‘.—L>+

b, d, a))

where the states correspond to the stars seen in Figure IV.5. Now all non flippable
stars are local eigenvectors to the eigenvalue 0. So acting with S gives a factor —1/4
for all product states, and acting with A, on the same star flips all spins since none of
the states are projected out again. As we have already seen, acting on a different star
would give an excited state and would be projected out by P in order 2. With this, we
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IV Perturbation theory applied to the checkerboard U(1) toric code

obtain
A S A, v, v,v,v) =
1 1 _ _ o _ _ - P
\/?—_4“0’ 0,0,0) + |{J,0,U,U) + |U,O,U,O) —+ |O,U,0,U) +10,0,0,0) + |0,0,0,0))
and can now calculate the diagonal matrix element
(v,v,v,0| AgSAg [v,v,v,0) = —%. (IV.16)

We notice that the calculation did not depend on the local ground states chosen on
the checkerboard, even though we have done it for a concrete example, since every one
of the local ground states is a superposition of product states, with one of them being
spin up on the perturbation and one being spin down. This statement is also true for
higher orders; if the perturbation acts only on one star next to an unperturbed star,
the local ground state of this star does not change the matrix element.

Next, we calculate the perturbative corrections in order 4. We do this for a state
with one diagonal restricted to |w) ground states and for a state with no diagonal
restricted. We are only interested in the perturbative processes that differ for the
ground states. So all processes where the perturbations affect the diagonals only once
are not interesting. The remaining processes are the ones where the perturbations
cross the diagonal, as seen in Figure IV.10 if x5 and x4 are restricted and IV.11, if x5,
x4, and x5 are restricted. Other processes acting on local ground states of the diagonal
twice are processes acting parallel to the diagonal. Such a process does not change the
matrix element since the spins shared by |0) and |0) with the next parallel diagonal
the perturbation acts on are the same the states |1) and |1) share with the diagonal.

To calculate the corrections, we first consider processes depicted by stars acting like
seen in Figure IV.10. We label the upper star s and the lower one s'. Since A, has to
act twice on every star to get an overlap with a ground state in the final state, terms
with a sequence PV P vanish. This leaves us with contributions from the operators
PVSVSVSVP, PVSVPVSSVP and PVSSVPVSVP. We argue that the diagonal
matrix elements of the second and third ones do not depend on the states on the
diagonal. First, we notice that all the residues S give a factor of —1/4 since they are
acting on states perturbed once if the left ones act on the left state and the right
ones on the right state. Then, since there are only diagonal corrections, we can write
P = |gs) (gs| where |gs) is the ground state of which we calculate the matrix element.
So we obtain

N L -1 ,
(gs| PAySSAyPASALP |gs) = = (gs| A% |gs) (gs| A% |gs) (IV.17)

which is independent of the ground state |gs). Contributions coming from the acting
on star first and then on the second vanish all since such a state is always projected to
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IV.3 Perturbation theory applied to the checkerboard U (1) toric code
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Figure IV.10: Convention Figure IV.11: Convention
used for processes in perturb- used for processes in perturba-
ation theory that act diagon- tion theory that act vertically.
ally.
0 by P.

So the only remaining contribution that can partially lift the degeneracy of the ground
state is coming from the term PV SV SV SV P. First, we calculate the diagonal matrix
element for a state with a diagonal constraint of |w). In our convention, this term is
given by |v, v, w,w,v,v). As we have argued before, the states |v) could be different
local ground states without changing the matrix element since they share only one
spin with the stars the perturbations act on. We calculate

AySASAySAP v, v, wwv,v) = AySASAyS—— (‘b d.¢,a,0,v) + \b,&, ¢,a,v,v)

+1b,d,¢,a,v,v) + |f_) d, c,a,v,v> + |l_), d, c,a,v,v> + |b, d, c,a,-v,v>) =

— A,SA 5_14\/_ ‘b,&é,e,c,@+|b,&,é,e,a,a.>+‘b,&,e,é,c,@

+)b,(f,e;e,c,a> + |b.d,e,e,c,a) + ‘5,&,6,&@&) + )5,d,é,e,5,a>
+‘E:d:é,e,c,ﬁ>+|?} d,e, &, a.>) + b4, e,é,cﬁ)

+10,0,1,1 60>+|0011on> |{J0110()
+}001100>+|001100>+|0011 )

,0) +10,0.1,1,0,0

Having calculated this, the diagonal matrix element is given as
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IV Perturbation theory applied to the checkerboard U(1) toric code

1110

(v,v,w,w,v,v| PAg SASAgSAP v, v, w,w,v,v) = G2

(IV.18)

Next, we calculate the matrix element for a ground state without a restricted diagonal.
We do this for the state |v,v,v,v,v,v) but the outer |v) states can be changed to
any other local ground state, and the ones in the middle that we act twice on can be
changed to |@) states, since the spins |0) and |0) share with the star the perturbation
acts on are the same that |—1) and |—1) share with them. So we calculate

AySA,SAySAP v, v,v,0,0,0) = AySA SﬁsfS‘/%qb, d,a,c,v,v) +[b,d,a,¢,v,0)
+1b,d,a,c,v,v) + |b d,a,c,v,v >+ |f_),d,a,c,-v,-v> + |f_),d,a,6,v,v>) =

A, SA, 5_14\/_ (b d, = >+‘b,cf, —‘1,—1,5,a>+|b,&,—1,—‘1,c,a>

+‘b,d?—1,—‘1,5,a>+

bd, 1,1, c,a> +|bd,—1,—1,¢ a)
+ ‘& d, 1, —1,6,a> + jB, d,<1,-1,c, a,> +

—1,-1,6,0) + ‘B, d,—1,-1,¢,a))

To calculate S we need to make a change of basis in the eigenbasis of the Hamiltonian
given as

|-1) = % (IV.19)
and
|-1) = [o) \"/2115‘> (IV.20)
From this, it follows:
|-1,-1) + |-1,-1) = |b, @) — |@—, @) (IV.21)

and we can continue calculating
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IV.3 Perturbation theory applied to the checkerboard U (1) toric code

AS;SASS_%W%QI;,&,@,% a) + (b d, @, 1, ¢, a> B, c,a)

W, G, a> +|b.d, -1, —‘1,c,a> +|b,d,—1,—1,¢,a) — |B, d,_,b_, ¢, o_.>
+ B,d,la,ta,c,a>+ B,d,ta,la,a,a>) i c,a))
AgSA, S_—4\/—_(|b d, d, W, ¢ a> (b D, D €,a> ~|b.dw_ i, c.a)

This gives the result for the matrix element

1 1(4+4+1(2+
422604 8 44

V0,0, 0,0,0) = —

S.f

(1}!1’1!' y Uy Uy

The contribution of processes equivalent to the one seen in Figure IV.11 is calculated
to

AgSASAGSA v, v,0,0,0,0,0) = ASISASSJS;S%
U, >+|b,d,a,5,1},v,v

b,d,a,c,v,v, ’U>
, ,,’U,?}>+‘B, d,a.c, ?_r,v:v>) =

Ay SA, S_il \/2—( b,c%,&_, e, b E_,&>+‘b,c§,&,e 5,c,&>+|b,t§,a,c,5 C: >+)b d,a,e,b,c, a>
+b.d.a,e.b,c.a)+|p.d.a e,b,aa>+|b,d,-,e,b,a,a>+ b.d.a,e.b,c a>+‘b d,a,e,b,c, a>
+|b.d,a,¢,b,¢,a) + |b,d,a,é,b,¢,a) + |b,d, a,6,b,¢,a) + |b,d, @, ,b,c,a)
+|b,d,a,,&,b,é a)+‘b,d,&,,E,B,c,a>+‘5,d,a,é, b,c,a +|5,d,a,é b,éa)+ : >
— 1=11(/0,0,0,0,0,0,0) + [0,0,0,0,0,0,0) + [0,0,0,0,0,0,0)

+10,0,0,0,0,0,0) + |0,0,0,0,0,0,0) + 0,0,0,0,0,0,0)

+10,0,0,0,0,0,0) + |0,0,0,0,0,0,0) +[0,0.0,0,0.0,0)

+10,0,0,0,0,0,0) + [0,0,0,0,0,0,0) + 0,0.,0,0,0.,0,0)

+10,0,0,0,0,0,0) + |0.0,0,,0,0,0,0) + |0,0,0,.0,0,0,0)

+10,0,0,0,0,0,0) + |0,0,0,0,0,0,0) + |0,0,0,0,0,0,0))
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IV Perturbation theory applied to the checkerboard U(1) toric code

‘We obtain the matrix element

1 1
f ,"U,"[?,'{!,'U,'U) = —:18ﬁ2—7 (IVQZ)

(v,v,v,v,v,v, oS

The same calculation for a state with a constraint diagonal is given by |v, v, w, w, w, v, v}

P AySA,SA.SA P|fv v, W, W, W, 0, V) =
AS;SASA,HS"/—( v1!>+|bd€awv1!>+|bd0au v, v)

+bdcawua +‘b,d,c,a,'w,v,v> ,','>):

A SA.SL i ,—153;,5,5;) + ‘b; d, cz—l,gzc,ﬁ> + ‘b,i c:—l,E:E,a>
+ b,d,c,—l,b,c,a>+ 5,d,c,—1,5,c,ﬁ>+ 5,d,c,—1,5,6,a>

+ |b,d, b,d,a,—lj,c,a,>+ ‘b,d,é,—l,g,(‘:,a)

+ |b,d, ¢, —_1?b,c,§,>+ b,d,ec, —_1?b,6}0:>+ b,d,ec, —_1,5,c}a>

+|b,d.é, —_l,b,c,&> + E_),d,é,,—_l,b,é,a> + |B,d,6, —_l,l_),c,a>

+|b,d,c, —_l,b}c;ﬁ>+ b,d, e, —‘1,5;5}@>+ b,d, e, —_1,5,c;a>)

Now we can again change the basis to calculate S

A SASL \/—( .c, |")'\"/|1’ ) b, a>—|—|b d, e, ‘)5;"},5, c, §.>+‘b.,c§; c, |"’)T/|%”‘}.,5,E,
+ |b, d, ¢, lwitl=) u’H'”" Ez>+ 5,d,c,%,5,c,&>+ B,d,c,ﬁ%,g,é,@
+ [b,d, e, =) b6 ) + [b,d, e ) b e ) + b, dye, MRS G a)
+ |b,d,c, |w>?/|_;”‘),b,c 6> + |b,d, c, |'w}?/|%‘"),b,6,a> + |b,d, c, 22 '“‘),B,c,o>
+ [b.d, & =) b a) + [b,d, 7, ) b, a) + [b,d, 7, ) B a)

+ b,é,é,ﬁ%l,b,c,a) b,d, ¢ w=lv-) 4 a>+

So we obtain the matrix element

1 1118 18
SV, W, W, W, 0, V) = _E2_§( 5 + 3

<)

(U: v, w,w, w, v, 1
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IV.4 Fractons as elementary excitations

Processes like PAySAySA,SA, where the first star is acted on twice and then on
the second star were not discussed yet, but it turns out that these processes give the
same contribution independent of the local ground states of the neighboring stars.
Calculating the matrix element gives

o 1
(gs| Ay SAgSASA|gs) = 2 (gs| A% SA? |gs) = ZS’ (i| A% |gs) (i| A2 |gs)*

with S; = (i| S|i) and the sum running over all excited states |i). But as seen before
in the second order calculation, when calculating A2 the local ground states are
interchangeable for this calculation, and the same holds true for this one. All matrix
elements that contribute to the difference in energy for the ground states in order 4
have been calculated. The energy difference is given by

1
42 26

(4 4+1(2+2 4)) 1110
1tstilats ) T
181 1 11118 18

“erw T eEwels

E, Edlag - “LL(

),\AH +0(\%), (1v.23)

where E, is the state where all local ground states are put to |v) and Ediag is the
state where all local ground states are |v) but one diagonal is restricted to be |w).
The matrix element for the last two terms has been multiplied by 2 since there are
double the number of processes seen in Figure IV.11 than seen in Figure IV.10 and the
factor 4 comes from the different ways one can distribute the stars in the contributing
operators. The value for the term TV.23 is —1.30789621 x 104, this is a negative
value, which shows that in order 4 the state E, is the global ground state. The linear
dependence on the length shows that the gap grows subextensively and is infinite in
the thermodynamic limit.

IV.4 Fractons as elementary excitations

In the last section, we have seen how, in fourth-order perturbation theory, one ground
state is selected to be the global ground state. The other states in the ground-state
manifold acquire a gap of order L. In this section, the states that have a gap of O(1)
are discussed, and confined fractons are found.

Fractons were only discovered rather recently. The first paper with fractonic excitations
was Ref. [29] published by Claudio Chamon in 2005, in which an exactly solvable 3D
topologically-ordered spin model was constructed, which was then shown to feature
glassy dynamics, i.e. the system does reach thermal equilibrium much slower than
ordinary systems. The Chamon model is a model hosting type 1 fractons. This type of
fractons cannot move in isolation, but composite fractons are mobile again. In his work
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IV Perturbation theory applied to the checkerboard U(1) toric code

published in 2011 [20], looking for a system with stable quantum memory, Jeongwan
Haah found a 3D model with completely immobile excitations. Even composite fractons
cannot move in this model. These fractons are called type 2 fractons. In 2016, Sagar
Vijay, Jeongwan Haah, and Liang Fu put fractons in the context of generalized lattice
gauge theories [71] and coined the term fracton. Shortly after this, Michael Pretko
discussed higher rank symmetric U(1) tensor gauge theories as a possible phase in
spin liquids and found using a generalized Gaufi law that the matter field such a
gauge theory couples to have to host particles with restricted mobility [32]. This
fracton model is a gapless fracton phase. Since then, a lot of research has been done on
systems hosting fractons. There are a lot of new interesting phenomena to study in such
systems, for example, new hydrodynamic classes with sub diffusive behavior [33], the
mentioned glassy dynamics [20, 31], relations to classical and quantum elasticity theory
[35, 10], connections to gravity [10, 36], and the search for phase transitions outside
of the Landau Wilson Ginsburg paradigm [37, 3%, 39]. On the experimental side,
progress is made as well. Recently, for example, fractons were studied on a quantum
simulator in Ref. [10]. Although the gapped topologically ordered fracton phases have
not been seen in experiments, there are some proposals to engineer such phases using,
for example, a symmetry principle called combinatorial gauge symmetry [7]. Also,
the introduction of the U(1) toric code was in part motivated by combinatorial gauge
symmetry [9].

First, we list all the elementary excitations with a gap of O(1) in the system size. There
are three types of excitation: plaquette excitations, which are created by the violation
of the constraint B), |V) = |¥), star excitations with eigenvalue 0, and star excitations
with eigenvalue —1 on the global ground state. We will see that the excitations
corresponding to the star eigenvalue —1 are not fractons. The ones corresponding to a
violation of the constraint B, |¥) = |¥) behave like lineons, and the ones corresponding
to the eigenvalue 0 for the star operator are fractons. The local excited states with
eigenvalue 0 can be seen in Figure IV.5.

IV.5 Plaquette excitations

The plaquette excitations are created if the constraint B, |¥) = |¥) is violated. This
means that if we expand the excited state in the ¢* product state basis, every product
state has to share an odd number of |1) and |]) with the excited plaquette. If we now
require that all the states of the unperturbed stars are local ground states, we again
find, that in the ¢* product state basis, the state with only plaquette excitations has
to be a sum of product states built by flippable states on the unperturbed squares of
the checkerboard IV.3. Looking at the flippable stars and product states built up by
those, we find that a plaquette excitation that sits on a diagonal of the unperturbed
checker board restricts exactly one of the neighboring stars to be |1) or |1) and for
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1V.5 Plaquette excitations
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IV Perturbation theory applied to the checkerboard U(1) toric code

a plaquette excitation on the anti-diagonal it restricts exactly one of the stars to be
either in the state |[—1) or [—1) as seen in Figure IV.14. Like in the chapters before, we
can deduce now that exactly one of the states neighboring the plaquette excitation on
the diagonal has to be in the state |i) and exactly one state neighboring a plaquette
excitation on the anti-diagonal has to be |w). If we require only plaquett excitations
on the torus and no star excitations, the diagonal has to be interrupted by another
plaquette excitation otherwise, the diagonal would wind around the torus and meet
the plaquette excitation again. But we found that exactly one state neighboring the
plaquette is restricted to be |w) or |w) and not both, so this would be a contradiction.
We find that two plaquett excitations on the same diagonal are enough to construct an
excited state without leading to a contradiction. Now we investigate the mobility of
such excitations on the ground state. We see that we can move the plaquette excitation
diagonally by acting with ¢ matrices on the |v) state neighboring the plaquette so
that the plaquette excitation moves on the diagonal and the |v) state is changed to
a |w) state if the particle is moved along an anti-diagonal or |w) state if it is moved
across the diagonal. This way, we increase the length of the string of |w) at the end of
which the excitations are placed. The reverse process is possible as well. This moves
the excitation along a one dimensional subspace. If we move the excitation orthogonal
to the diagonal, we always have to create star or plaquette excitations. So we find that
plaquette excitations are lineons.

IV.6 Fractonic star excitations

To discuss fractons, we change the basis in a suitable way. We do this by defining new
excited states

1) = (la) % [a)))
Fr2) = (1) £ [5))

[Fe3) = () £ |e))
[fia) = (d) £ |d))
|f+5) = (le) =€)

which all have an eigenvalue 0. We visualize these states on the checkerboard, as seen
in Figure IV.16.

If we restrict the excited states to states with only this kind of excitation, so the
constraint B, [¥) = |¥) cannot be violated, the same argument for the constraint in
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I1V.6 Fractonic star excitations

Figure IV.4 holds. We find that an excited state depicted like in Figure IV.16 requires
a state w or w or an excited state in the direction the arrow is pointing. With this
argument, we find that there are no local eigenstates with an eigenvalue 0 that can
exist in isolation on the torus. The diagonal and anti-diagonal are constraint to be |w)
and |w) meet at some point. This gives a contradiction to the requirement that no
other local excitation is found on the checkerboard.

With this, we find that the diagonal and anti-diagonal have to be interrupted by
another state with an eigenvalue 0. We also require that there is no restricted diagonal
winding around the torus since then the state would again have a gap of O(L). This
then shows us that the lowest number of star fracton excitations on the torus is 4
excitations on the edges of a rectangle. Higher fracton number excitations are all the
ones that can be created on the edges of a polygon with only right angles, where all
the lines of the polygon are diagonals of the checkerboard. With the |f; 5) state, more
polygons sharing edges are possible excitations.

We discuss the mobility of these excitations. We restrict ourselves to the eigenstates
| f+.), since we find 0* | f_ ;) = £ f+), so if we can move | f4 ;) states by local operators,
we can do the same with |f_ ;) just by acting with ¢ on those states before. If a star
excitation in isolation sits on the checkerboard with an open boundary condition like
seen in Figure IV.15 moving the excitation acting just with local operators around
the excitation is impossible, since moving the particle to another state with only one
excitation would require a whole diagonal or anti-diagonal to move. An excitation
composite of two star fractons with the diagonal between them being constrained can
move on a one-dimensional diagonal since, only for separating the excitations, a whole
diagonal needs to be changed. Moving such fracton excitations can be done by acting
with ¢ matrices along a rectangular path. A excitation composite of 4 fractons on a
rectangle with a diagonal between the constraint can be moved freely by acting with
o® operators. This is a typical behavior for type 1 fractons.

We briefly look at the relationship between plaquette excitations and star fractons.
The plaquette excitations can move on diagonals, but when we move them orthogonal
to the restricted diagonal they create a star fracton. So if we create two plaquette
excitation move one around a rectangle with diagonals of the checkerboard as sides
and than annihilate them again we have created four star fractons on the edges of
the rectangle. This can be seen in Figure IV.19. We can also interpret moving the
composite star fractons by creating two plaquette excitations and moving them on the
restricted (anti)-diagonal so that all the |w) or |w) states are changed to |v) states,
anihilating the star fracton on the edge of the rectangle, moving the plagette excitation
along the other restricted diagonal, and annihilating them again by creating a fracton
and a restricted diagonal.

39
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IV.7 Non fractonic excitations

The last type of excitation are |v_), |w_), and |w_). These can be calculated by acting
with ¢® on any site of a local ground state. They show no fractonic behavior since
they can easily be moved by acting with ¢* matrices.

IV.8 Confinement

Another important property is that the diagonals are restricted to be w or w cost
energy, as seen in perturbation theory. We can deduce from this that the energy of an
excited state with fractons grows linearly with distance if the fractons are separated.
This property is called confinement and is well known for quarks in quantum chromo-
dynamics [11]. But also for spin liquids, this property is not new. The polarized phase
in the toric code in a magnetic field can be interpreted as a phase of confined and
condensed anyons [12]. For some fracton models in a magnetic field in the polarized
phase, this is the case as well [31].
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I1V.8 Confinement

Figure IV.18: A fracton in
isolation with open boundary
condition. On an infinite lat-
tice, the energy would grow
with O(L) and would not be
an elementary excitation.

Figure IV.19: Four fractons
created on the edges of a rect-
angle. The dashed line visual-
izes a string of ¢* matrices.

Figure IV.20: Moving fractons by acting with a closed rectangle of ¢ operators.
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IV Perturbation theory applied to the checkerboard U(1) toric code

IV.9 ED results

In Figure IV.21 ED results for the two lowest energies are plotted for different A 4v.
We find a threefold ground-state degeneracy for As4» = 0 in the (+,+) symmetry
sector and a fourfold degeneracy for the (—, —) symmetry sector. This adds up to
7 =23 — 1, consistent with the previous result. The ground state energies for A4 = 1
are 9.242 for the (—, —) symmetry sector and 9.171 for the (4, +) symmetry sector.
This is the same result obtained in [9]: the topological ground state degeneracy was
only found for larger system sizes with QMC. The kinks in the excited state come
from a higher energy state crossing the state. We do not see the gap that opens in
perturbation theory. This is not unexpected since the gap opens only at order four.
The ED was done for a system with L = 4 so the ground states already couple in order
four. No higher energy state crosses the ground state. This may indicate that no phase
transition occurs and that the phase of the checkerboard U(1) toric code is adiabaticaly
connected to the one of the U(1) toric code. This would be in contradiction to the
suggested topological order in the U(1) toric code [9]. In general, one cannot come to
conclusions regarding the phase transition since the system size is too small and a lot
of features of the phase were only found for larger system sizes in Ref. [J].

IV.10 Discussion

The phase found for small A4~ is not topological, as we do not find a ground state
degeneracy or anyonic statistics. But looking at the low-energy excitations, i.e. the
excitation with a gap of O(1) in system size, we find that the excitations behave as
fractons and lineons. The excitations are confined, so the real low energy excitations
are bound states of these fractons. This opens the possibility of a phase transition
similar to the one of the toric code in a magnetic field [12] or fractons in a magnetic
field [71] where one finds one type of the topological excitations to be confined in
the polarized phase because the phase is not topological and can not host topological
excitations as "true" deconfined low energy excitations. Although there is work that
claims that deconfined toplogical order fractons are impossible in 2D [13], 2D system
with fracton topological order still have been found [11]. In the next chapter, we will
argue that the plaquette excitations may still be good quasi particles in the U(1) toric
code phase and may still behave like fractons. For the calculated series expansion
up to order four, the global ground state is in the symmetry sector (+, +) for both
compactifications and even system size L. All the ground states in the other symmetry
sectors have at least one restricted diagonal, which leads to a gap of O(L). For the
topological phase, the ground states in the symmetry sectors that contribute to the
ground-state manifold have to get lower in energy until they match the one of the
global ground state. Another possibility is that the gap between the ground states
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Figure IV.21: ED results for Ay» = 1 Ap = 0 in the symmetry sector with the
eigenvalue of B, equal to 1 and system size L = 4 and with 0° compactification. The
upper plot shows the four lowest energy states in the (4, 4) sector, and the lower one
shows the 4 lowest energy states in the (—, —) symmetry sector.

in the checkerboard U(1) toric code indeed persists to the U(1) toric code model but
was not detected. The largest system size the ground-state energy was calculated for
is L = 16. The gap calculated in order 4 is still small for this system size and would
have been inside the error bars of their QMC study.
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V Fractons in the U(1) toric code

In this section, the full original U(1) toric code is discussed in a small magnetic field.
Exact diagonalization (ED) is used to study different excited states of the U(1) toric
code, and how a small magnetic field would act on these states is discussed. We find
signatures of fractonic behavior.

V.1 U(1)-toric code in a magnetic field

We first assume that the plaquette excitations can still be considered as quasi-particles.
To see if the plaquette excitatations still behave as fractons, we consider the Hamiltonain
Hy(1y as defined in Equation I11.4 under the action of a magnetic field.

HU(]),mag = HU(]) +h Z O—?T (Vl)

with Ap > A4 > h. Under this condition, the magnetic field can be seen as a
perturbation to the unperturbed Hamiltonian.

To see if the plaquette excitations still behave like fractons or lineons, we have to
analyze how fractons and lineons would behave under the action of a small magnetic
field. A lineon could only move along the diagonal, so acting with 2 o} in perturbation
theory on spins that would move the particle on a diagonal would give a state with
the same energy in the thermodynamic limit. On a finite-size system and for dressed
quasi-particles, this would, of course, not be true exactly. If the perturbative process
is moving the particle out of the diagonal, we would find that an other excitation is
created. So for our system, we do not know how the other quasi-particle excitation
would look, but we could still see that the state after the action of ¢* is higher in
energy. In general, since having two lineons not on a diagonal is not possible without
fracton excitations as seen in Figure IV.14, we would expect the ground state in a
symmetry sector with particles not placed on a diagonal to be higher in energy. We
will discuss how the action of o* should influence type 1 fractons similar to the star
excitations discussed in Chapter 4. This would be the case if they can only be placed
on a rectangle with the diagonals as sides if one requires no other fractons. In this
case, moving the particle in isolation should always give a higher energy state. Only
moving the fractons in combination by acting o” should be possible without giving a
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V' Fractons in the U(1) toric code

higher energy state. And we would also expect, that the ground state in a symmetry
sector where the excitations are fixed in a way that different fracton excitations are
necessary would have higher energy. In Figure V.6 we can see examples for this
behavior. Subfigures b and ¢ are examples for configurations that would be allowed
for fractons, since all exitations are placed on the corners of a rectangle and all other
subfigures show configurations where other fractons would be needed. With these
considerations, we can now see if the plaquette excitations show signs of such behavior.

We investigate a system of size 4 x 4 with periodic boundary conditions in the 0°
compactification using ED. We calculate the ground states for different symmetry
sectors where some B, eigenvalues were put to —1. We choose Ap =0 and Ay = 1.

V.2 Results for ED with two particles

Already in the ground state energy for different symmetry sectors, an interesting
behavior is found, as seen in Figure V.2. The ground state energies for symmetry
sectors where the plaquett excitations were placed on a diagonal are lower and differ
by at most 0.07. The ones where the excitations were placed not on a diagonal differed
from the ones on the diagonal by at most 0.5 and by at most 0.28 from each other.
This may indicates that moving the plaquette excitation out of the diagonal costs
energy, and only moving it along the diagonal may energetically not be punished. Of
course all the results have to be taken with caution since, for ED only small system
sizes can be calculated and finite size effects play an important role. But this can still
be seen as a hint that the excitations in the U(1) toric code behave like fractons as
well.

To get further indication if the excitations in the U(1) toric code behave like fractons,
we calculate the overlap between the ground state in a symmetry sector and a state
moved by the perturbation

M = (gsca| [T o [8500) (V.2)

where )gsw‘y> is the ground state in the symmetry sector, with the plaquette operators

on site x and y giving the eigenvalue —1. [],; o

gsa?b> is a state where plaquette

excitations were moved created and annihilated and ‘gscsd> is the ground state in the
symmetry sector the state was moved to. We only look at those where plaquette
excitations were only moved. For lineons, we expect this overlap to be large for
transitions where no other particle is created. In Figure V.3 the overlap was calculated
for some examples. The processes in subfigures a and b are the ones we expect to
be large if the plaquette excitations are lineons. Indeed, we find that this is the case
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V.3 Completely flippable states and four plaquette excitations
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Figure V.2: The red dots give the plaquette with eigenvalue —1 and the energies
are the ground state energies calculated with both Wilson loop operators giving the
eigenvalue +1.

compared to other processes. Especially the comparison to the process shown in
subfigure d is interesting, because here the ground state energy in the final state is
the same as in the state we start with, but in the process one would create fractons
because the excitation is not moved on a diagonal. We conclude that the calculation
is consistent with behavior similar to lineons.

V.3 Completely flippable states and four plaquette excitations

We now give arguments that the symmetry sector with four plaquette excitations
placed on a rectangle has the lowest ground state energy. For this, we discuss the
existence of so called completely flippable states.

We call a product state completely flippable if it is built up by only flippable stars,
as seen in Figure IV.3. Also, stars not placed on the checkerboard lattice have to be
flippable so that for every star, A |¥) # 0. Such states are connected to most other
product states in the corresponding symmetry sector. We expect a symmetry sector
without such states to have a higher ground state energy than a symmetry sector with
completely flippable states due to more quantum fluctuations. We also verified by ED
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Figure V.3: The overlap of groundstates M calculated for processes where the
eigenvalues for the plaquettes on the red dots were chosen to be —1 and the o”
Matrices act on the blue rhombuses. Again the Wilson loop eigenvalues are set to +1.

that the product states with the highest amplitude in the ground state are completely
flippable.

The only symmetry sectors with completely flippable states and all B, eigenvalues
equal to +1 are the ones that host a global ground state. We can see this with the
same argument as seen in Chapter 3. The local ground states on the checkerboard
lattice are sums of completely flippable states, so if there is no global ground state in
the checkerboard U(1) toric code, we cannot find a state with completely flippable
product states. For the checkerboard U(1) toric code, we found that the ground states
are in the same symmetry sectors as the ones of the U(1) toric code.

In the next step, we discuss the symmetry sectors where the constraint B, |®) = |®) is
violated four times. In the same fashion as in Chapter 4 we argue, that a plaquette
with an eigenvalue of —1 restricts one of the stars on the anti-diagonal to be in the
state [1) or |1) and one on the diagonal has to be in the state |—1) |—1) as seen in
Figure V.4. If we require that all stars are flippable, a plaquette now constrains two
diagonals. On the checkerboard, one would be a diagonal on the white squares and the
other on the black squares. We choose periodic boundary conditions. So the diagonal
winds around the torus and would meet the star constraint to be |0) or |0). To fulfill
the requirement that all stars are flippable, we have to choose two more plaquettes on
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the diagonal and anti-diagonal to fulfill the condition that B, |®) = — |®). These two

restrict one more diagonal to be in the states |[+1) or |[—1). At the plaquette where
both of the diagonals meet, we need another plaquette to give the eigenvalue —1. A
example of such a state can be seen in Figure V.5.

They could either meet at the last corner of a rectangle or at a second plaquette where
the diagonal meet. But if they meet at the second plaquette not on the rectangle the
requirement that all stars are flippable can still not be fulfilled as verified with ED.

This way, we see that four plaquettes excitations on a rectangle are needed for a
completely flippable state in a symmetry sector where the constraint B, |¥) = [¥) is
violated.

V.4 Four particle states with ED

With the argument before, we expect symmetry sectors where all plaquette excitations
sit on a square to have the lowest energy. In Figure V.6 we find, that this indeed holds
true, although some symmetry sectors like the one labeled d, are rather close in energy.

But placing the plaquette excitations in a way fractons would be necessary in the
lowest energy state even for lineons is energetically unfavorable like seen in Figure V.6.

It is not clear from system sizes this small if the plaquette excitations can be considered
as fractons, since placing them on a square is most favorable, or lineons. In Figure V.7
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the overlap between ground states and moved states was calculated for some processes.
We find that the process that moves the plaquette excitations on a rectangle has the
largest overlap with the ground state in the other symmetry sector. This would be
consistent with fractonic excitations, since by moving only one particle away from the
rectangle we have to create an excitation.
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Figure V.6: The red dots indicate the plaquette with eigenvalue —1 and the energies
are the ground state energies calculated with both Wilson loop operators giving the
eigenvalue +1.

V.5 Discussion

In this section, the results of the previous sections are discussed. For a finite system,
we looked for signatures of fractonic excitations in the ground state energy of different
symmetry sectors. We found that plaquette excitations placed on a diagonal have
a ground state lower in energy, which would fit the description of those as lineons.
We also gave a heuristic argument that four plaquette excitations may behave like
fractons and not like lineons because of the absence of completely flippable states and
verified this claim for small systems although finite size effects make it hard to draw a
conclusion. Regarding confinement, no conclusions can be drawn. We can now put the
heuristic argument given in Ref. [0] in the context of fracton excitations. Assuming
the phase of the U(1)-toric code hosts lineons as plaquette excitations, we could move
them on a diagonal around the torus to change the eigenvalues of both Wilson loop
operators without facing an energy barrier. This process would correspond to the 745°
operator discussed in Chapter 3. The three fold ground state degeneracy can still not
be explained easily this way.
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Figure V.7: The overlap M calculated for processes with 4 plaquette excitations.
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In this thesis, the U(1) toric code was studied [Y]. For this, the checkerboard U(1)
toric code was introduced. This Hamiltonian reproduces the U(1) toric code in one
limit and is exactly solvable in another one. The exactly solvable limit was discussed,
and a subextensive ground state degeneracy was found. The ground states in this limit
lie in the same symmetry sectors for different compactifications, like the ground states
found in the U(1) toric code in Ref. [J]. By using degenerate perturbation theory, we
found that the different ground states only couple in order L but the ground state
degeneracy is still lifted in order four. Further, the gap between the states in the
ground state manifold for A » = 0 and the global ground state grows subextensively.
The excitations with a gap of O(1) in system size were discussed, and a non-topological
fracton phase was found. One of the excitation types behaves as a lineon, and the
other type of excitation as type 1 fractons. The subextensive gap, which is infinite in
the thermodynamic limit, is small for all finite systems. Indeed, for L = 16 it is so
small, that if the series expansion is still valid for A 4+ = 1 it would lie within the error
bars of the QMC simulation of Ref. [J] and would not be detected. This opens the
possibility that the phase found in the checkerboard U(1) toric code is adiabatically
connected to the one of the U(1) toric code. This would be in contradiction to the
suggestion in Ref. [J] for topological order. The other possibility would be a quantum
phase transition to another phase. The obvious and most important continuation of
this work is to look for a phase transition between the topologically ordered phase and
the non-topologically confined phase. One could look for a phase transition using high
order series expansion like done in Ref. [39, 12, 15] or QMC like in Ref. [12, 35]. One
could also try to improve on the QMC results of Ref. [9] to narrow the potential size
of the gap between the different topological sectors further down. Even if there is no
phase transition, the system remains interesting because of the fractonic excitations
and the potential experimental implementation mentioned in Ref. [J]. So one could
look for phase transitions if a magnetic field is applied to the chckerboard U(1) toric
code like it was done for the usual toric code in Ref. [15]. If between A 4» = 0 and
Aar =1 a phase transition indeed occurs, a further investigation of the phase of the
U(1) toric code would be needed. In this work, heuristic arguments and numerical
results for small systems were given that suggest that the plaquette excitations in this
phase are still fractons. This would be interesting because two-dimension, topological
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ordered fracton phases were believed to be impossible [13]. But recently a non trivial
example for such a phase was found in Ref. [11].

Another extension of the work could be to study the relationship between dynamic
constraints and fractonic excitations further. Enriching the U(1) toric code with the
global U(1) symmetry imposes dynamic constraints on the loop dynamics [J]. We
found that imposing these dynamic constraints may lead to fractonic excitations. So
the question arises if there is a more general connection between imposing dynamic
constraints on a system and the peculiar properties of the U(1) toric code.
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