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Abstract

The single Gyroid is a triply periodic negative curvature surface of BCC cubic symmetry,
frequently occurring in nature, e. g. in the wing scales of the butterfly Callophrys rubi.
Within there, it gives rise to structural colour (Simulation parameters are chosen to meet
experimental data, to easily embed the work into the context of bio-photonics). The in-
evitable deviations of biological systems from perfect periodic order, as well as the possible
tolerances for synthetic photonic devices adopting Gyroid structures, will motivate the
main question of this work: the influence of distortion on the Gyroid’s photonic properties.
The Gyroid is a handed (chiral) structure, so a natural question is its response to handed

light (circular polarisation, CP). As an approach to quantify chiro-optical behaviour, we will
introduce and discuss the Cumulative Circular Contrast (CCR) as an appropriate, setup-
conscious way to measure CP-light response of media in slab-like geometry.
Wewill give a comprehensive overviewof three distinctGyroid construction routes: Nodal

approximation to TPMS/CMC, 1srs network graph with finite wire thickness, and assembly
from discrete helices, each including analysis of volume filling fraction and characteristic
length scales.
A Fourier synthesis approach for a distortion field with finite correlation scales will be

developed, and deployed to create geometries derived from the Gyroid via controlled
distortion. On these, FDTD simulations are carried out, to measure reflectance and trans-
mission. Additionally, systems with finite absorption or at non-normal incident angle will
be included into comparisons.
The ranges of distortion correlation will be probed and discussed, with a focus on the

Cartesian [001] direction of the Gyroid: Short correlations (high-frequency “structural
noise”) give rise to smearing-out and to partial loss in circular contrast. Long-wavelength
distortions, however (resembling a chirp, i. e. pitch gradient throughout the slab), will be
found to influence the coupling behaviour, with a pronounced sensitivity of transmission
enhancement on the pitch/density gradient.
The helical model of the Gyroid is “disassembled” into its uniaxial subsets, and a sepa-

rability of the characteristic reflectance behaviour by the helix orientation relative to the
incident light is observed.
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Introductory Words
Carl Spitzweg: „Der Schmetterlingsjäger“ (1840)



1.1. Structural colour and minimal surfaces—From Life’s
biotechnology laboratory

Within the manifold phenomena of physics by geometry, minimal surfaces (surfaces of minimal area
fulfilling given boundary conditions), are one of the topics astonishing the professional world with their
persistent recurrence. Their apparent intrication contradicts with their obvious ubiquity, e. g., in various
functions for all kinds of organisms. It was only recently that the “double Diamond” membrane, known
from plants’ ethioplasts, proved “non-photonic”, when viewed on the biological scales of length and
dielectric contrast [Dec14]—but is nonetheless biology’s structure of choice. The envelope of the stratum
corneum skin layer fibres forms a “Gyroid” surface [ER14]. So it is, present even on atomic scales—
arguing for nature’s parsimony in resolving complex geometric problems—it is found to describe an
exotic high-pressure allotrope of elementary nitrogen [Ere+04], and beyond.
The wing scales of various butterflies exhibit structural colouration [GR76; MS08]. As a such, the

greenish wings of Callophrys rubi with their microscopic1/meta2 structure discovered to be a single
Gyroid [Sar+10; Sch+11; MTC11; MTC13] (see sec. 3.2) will play the pivotal role in this thesis.

Figure 1.1.: Scanning electron micrograph of C. rubi butterfly wing scale surface. The bulk of the depicted cross-
section (inset: detailed view) consists of a structure-photonic polycrystalline single Gyroid medium, consisting
of chitin. Image source: [Sab+14]

The most striking features rendering the Gyroid in continuous attention, are, beyond (or perhaps on
account of) its various occurrences in nature, its friendliness to bottom-up techniques of self-assembly
as an “intelligent” structure. Moreover, essential in geometric argumentation, it is bi-continuous
(dividing space in two not interconnected parts), it is cubic, i. e.with a high intrinsic symmetry, and
handed, hence occurring in “concurrence with itself”.
The deployment of the Gyroid by butterflies to create structural colour has triggered research of its

structure-photonic properties, unveiling a lot of remarkable properties [Dol+14].

1.2. “Photonics”—an attempt to clarification

Photonics: This word seems to have become an inevitable terminus in the last few decades’ effort of
research in the “modern” fields of optics (which once had “monopolised” the entire field of the physics
of light).
1“Microscopic” from the anthropocentric view through a microscope’s eyepiece.
2The single Gyroid can be regarded as a crystal consisting of dielectric “meta-atoms” shaped to bi-continuously tessellate space.
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Originally introduced as a denomination for light-driven analogue to electronics in the field of
information technology—hence the name, a portmanteau from ϕωτóς (Greek: light) and electronics,
but rather likely with a connotation towards “photons”, the light quanta—the name photonics was
shifted in focus on the “modern” implications quantum nature of light, especially Laser technology,
nonlinearity, and quantum optics [Men01]. Due to the stretchability of this term, the introductory
chapters of the majority of textbooks avoid a concise definition, and rely instead on an “intuitive”
understanding on what photonics means.

Maximum possible scaling dependence The general, recurrent motif is the highlighting of the
particulate properties of light (quantum statistics, quantum-mechanical light-matter interaction, etc.)
as a separation criterion towards “classical” optics. This implies a intimate dependence on the scales of
length, energy, and time characterising the system.
As an example, think of an atom, whose characteristic energy scale (essentially the RYDBERG energy)

determine the light frequencies of atomic light emission and absorption. Its energy levels and spatial
extent are the very consequences of its quantum nature (classical electrodynamics is not, due to its
scale-freeness, i. e. ignorance against atomic details of the electromagnetic interaction, cf. sec. 2.1.6).

1.2.1. The “photonic” “crystal” (PhC)

The term photonic crystal has been coined by Yablonovitch, Gmitter, and Leung [YGL91] with their
report on the first full band-gap PhC, somewhat in between the seminal publications of John [Joh87]
and Yablonovitch [Yab87], and the textbook of Joannopoulos, Meade, and Winn [JMW95], to describe a
periodic structure impeding (or, more generally, manipulating) the propagation of electromagnetic
radiation. In all cases, the light–matter interaction is not driven by matching the energy scale, but the
length scales of light and the crystal.3 So, using the word component “photonics” (to describe some
light–matter interaction having to be distinguished from “classical” optics) within the term “photonic
crystal” (“[light] physics governed by geometry”) is, at best, an un-instructive misnomer.4 Besides
geometrical optics (all relevant lengthsÀλ), PhC are on the “least photonic” (photon-as-particle) scale
structures you can think of.
At least, photonic crystals integrate seamlessly into “core photonics” by usage of their beneficial

properties in providing environments for “photonic devices” like Lasers, non-linear materials, or in
information transport [Joa+08; Yab87; Men01; Oba11].

1.2.2. The structure-photonic length scale

The “photonic crystal” deals with light–matter interaction phenomena not covered by “classical” pho-
tonics: precise knowledge of quantum-mechanical details of both matter and the radiation field is
neither exactly known nor relevant; the interplay of the arrangement of continuous (coarse-grained
to hide atomic details) bodies in space (called geometry further on) and the spatial variation of the
electromagnetic field is the sufficient and appropriate scope of view.
This is the case when the length scales of the geometry are not too small to just get averaged by light,

but not too large to be covered by classical geometrical optics. Seeking the limiting cases may be part of
the comprehensive study of particular systems, cf. below in sec. 2.3.
3Note, that for physically relevant systems staying below the Vacuum-UV frequency limit, vacuum wavelengths are, typical,
orders of magnitude larger than interatomic distances within condensed matter.

4Note that photonic crystals exploit the wave properties of light rather than its constitution of photons (!).
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“Buzzing” and “Un-Buzzing” The terms “photonics” and “photonic crystal” are in good company
with a plethora of ambiguous, context- and scale-dependent terminology, of which arbitrary compound
words of micro, nano, sub-microscopic (anthropocentric view on length scales), or meta (see also
sec. 2.3.5) may serve just as a non-representative selection. The benefit of preferring self-reference over
self-explanatory for the respective professional fields is certainly dubious.

Structure-photonic materials/media When you want to address PhC behaviour, but want to avoid
the ambiguous word “photonic”, and just as well the notion of “crystal” (for greater generality towards
structures without [more or less strict] translational symmetry), you run into an apparent nomenclature
shortage.
Physics of light was traditionally called “optics”, but you have to exclude quantum and (macroscopic)

geometrical optics. But “physics of light within geometries of the light’s length scales” or “dealing with
electromagnetic interaction ofmedia structured within the scale invariant regime (cf. sec. 2.1.6)” appear
too bulky. As literature and reader get accustomed to misnomers, sticking to has its advantages. So we
will, as a compromise, refer to (dielectric) structures within the “photonic” length scale as “Structure-
photonic materials (or media)”, and will (not consistently, by recognition reasons) abbreviate this
terminus by “PhC”.

1.3. Is Light a good probe for geometric chirality?

Figure 1.2.: Nail scissors for right and left hands: enantiomers of obviously opposite “handedness”.

When connecting the geometric chirality to the chiral properties of light (most prominent in presence
as with circular polarisation), two contexts of handedness meet. We will discuss howmuch (or how
little) we can say about the complex interplay of those, complicated by the subtle non-localities of
light–geometry interaction.

The [geometric] notion of handedness Chirality of a geometric object is commonly defined as the
“lack of mirror/inversion symmetry”, being dependent on the number of spatial dimensions available
for generalised off-plane rotations [Arn97; Ama09].
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Equivalently, an object is called chiral, when it cannot be congruently superposed with its mirror-
image by applying translation or proper rotations alone. Not only the obvious standard example human
hand, but also the respectively appropriate scissors (fig. 1.2) exhibit chirality.

The handedness of light (This paragraph is an anticipation to sec. 2.2, andwill be soundly introduced
there.) Electromagnetic plane waves in free space can be described within the circular basis, in which
the field vectors E and H behave helical in their spatial structure along the propagation direction. It
is therefore suggestive to study the interrelation of the geometric chirality of a given structure with
the optical chirality of the light. This has been subject to several investigations already [LC05; Sab+11;
Sab+13; Was13], and will also be the main scope of this work.5

The paramount question: Is light an appropriate probe for geometric handedness?
Depending on the questionwe ask, it is. Paralleling the decay of (handed) geometric distinctness from

distortion with electromagnetic observations may be inappropriate for a fundamental understanding
of the interrelation of chirality and distortion—but it is perfectly appropriate from the photonic point
of view, i. e.when you look on the implications for light response as a “measure for non-crystallinity”.
We have to bear in mind, that we test the properties of light as well as those of the geometry when

interrelating the two.
So this thesis will ask for the implications of the interrelation of geometric and light chirality, will

search for approaches to quantification, and illuminate its results in the light of these intrications.

5Note, however, that the “smoothness” prerequisites (as implied from field differentiability) cause subtle implications in how
“stiff” the electromagnetic fields follow features of geometric chirality, i. e. how accurate they are able to trace geometry.
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2

Physics of
Light and Geometry

Pink Floyd: The Dark Side of the Moon (LP back cover, 1973)



2.1. Maxwell’s Equations and Light in Matter

2.1.1. The Maxwell Equations

Classical electrodynamics usually start with implying [Jac98] or postulating [Jon89] the MAXWELL
equations (2.3)–(2.6) as the governing equations for the electric and magnetic fields.6 They express, in
terms of differential equations, the spatial and temporal interrelations of the electric field Ẽ, and the
magnetic field B̃ = H̃ (In the non-magnetic case assumed here, this relation becomes trivial, which is
not the case in a more general case). By choice7 of the constitutional relation

D̃ = εẼ (2.1)

the permittivity8 is introduced to relate the electric field with the dielectric material response within
the electric displacement field D̃. The geometry becomes determined by the “material function” ε(r)
(defined by spatial dependence of ε) as the “input quantity” for these electromagnetic studies.
The action of the fields in terms of NEWTONian mechanics is expressed by the LORENTZ force

ṗ = q

(
Ẽ+ 1

c0
v× B̃

)
(2.2)

of impulse change (force ṗ) on a particle of charge q moving with speed v.
TheMAXWELL equation divide into two divergence equations (connecting fields with source densi-

ties), and two curl equations (linking field curls with temporal variations). The common distinction into
homogeneous (eqs. (2.3) and (2.6)) and inhomogeneous (eqs. (2.4) and (2.5)) equations only arises from
the “asymmetric” existence of electric charges % and currents j̃ (and not their magnetic counterparts).
This is irrelevant in the absence of free electric charges, i. e. %= 0, j̃ = 0.
The equations read as [Jac98]: GAUSS laws:

∇· D̃ =% (2.3)
∇· B̃ =0 (2.4)

and curl equations:

c0∇× Ẽ+∂t B̃ =0 (2.5)
c0∇× H̃−∂t D̃ =j̃ . (2.6)

One major implication of theMAXWELL equations are their inherent charge conservation, known as
the continuity equation, which reads in its differential formulation9:

∂t%+ c0∇· j̃ = 0 , (2.7)

and shows the equivalence of divergence equations with continuity/flux conservation
6Due to focusing on the scope of this work, we skip the introduction of theMAXWELL equations in all-vacuum space, and
magnetic materials (µ≡ 1). Moreover, the charge density and current, %= 0 and j = 0, will be zero, and are only expressed
within eqs. (2.3) and (2.6) for abstract argumentations, rather than existing in the real simulation (except for the light sources,
of course).

7Several field parametrisations exist to conceal microscopic details of non-vacuum electromagnetic field interactions into
response fields, the one adopted here is to use D̃ and H̃ fields, avoiding explicit dealing with electric polarisation and
magnetisation.

8In general, the interconnection of the electric and displacement field will have to be described by a tensorial ε, translating
anisotropic microscopic polarisation into the constitutional relation. See sec. 2.2.2.

9This is simply derived from ∂t (2.3)+∇· (2.6)= 0.
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The choice of units and interconversions is performed to emphasise the natural interrelations
between the quantities (e. g., for the electric and magnetic fields to have the same units). Permittivites
are always relative: the assistant constants ε0 and µ0 familiar from the SI electrodynamics are set equal
to unity.
Even though the vacuum speed of light c0 can be chosen to unity in practice (leading to a non-

dimensionalised “unit” system, the units of time and space becoming equivalent), c0 is, by convention,
explicitly written into the formulae to distinguish spatial from temporal coordinates. See sec. 2.1.6 for
the physical motivation of natural units.

Complex field notation

The quantities Ẽ, etc. have been introduced as the fields of physical relevance, e. g. for the LORENTZ force
(2.2). However, for most calculations it proves sensible to introduce a complex field notation [Jac98],
which simplifies calculations of harmonic fields, and assists in elegant Fourier formulations of many
problems. The complex-valued field X replaces the physical field X̃ in calculations, and every time a
physical quantity is computed, its real part is evaluated: X̃ = Re(X).
With this, one can easily apply the harmonic ansatz, i. e. a temporal field propagation in terms

of a complex time dependence X(t ) = Xexp(−ıωt ), when the problem does not exhibit explicit time
dependence. It is monochromatic in the sense of enabling frequency-wise treatment, and enables
elegant formulations by temporal Fourier transformation (∂t ≡−ıω).
When real observables which are quadratic in the fields are computed:

X(t ) =Xexp(−ıωt ) ≡ Xϕ

Ã · B̃ = Re(A(t )) ·Re(B(t )) =1

4

(
(Aϕ+A∗ϕ∗) · (Bϕ+B∗ϕ∗)

)=
=1

2
Re(A∗ ·B)+ 1

2
Re(A ·B∗ϕ2) ,

(2.8)

and subsequently time-averaged (observation times commensurable or long with respect to 2π/ω, in
reminiscence with long-time limits, and feasible experimental measurement times), the second term
(oscillating with ϕ2 = exp(−2ıωt ) cancels out due to its time dependence∝ cos(2ωt ).

Electromagnetic waves

From theMAXWELL equations, the electromagneticwave equation can be derived10

c2
0∇× (∇×E)+ c0∂t∇×B =0(

c2
0∇2 −ε∂2

t

)
E =0

Harmonic:
(
c2

0∇2 +εω2)E =0

(2.9)

A successful ansatz11 to find solutions for the spatial dependence E(r) is a (spatial harmonic) plane-
wave basis, i. e. E ∝ exp(i k · r), each mode described by itswavevector k.
These solutions of theMAXWELL equations prove to describe transverse plane waves, and introduce

an additional degree of freedom of polarisation (direction of E). In vacuum and isotropic media, the
modes are degenerate. Further at 2.2.1
10From c0∇× (2.5) with (2.6) and (2.3)—remember the absence of charges.
11In this introduction, we restrict to plane waves, but other solutions emerging frommore intricate mathematics are in existence

and of some practical relevance: Think of Gaussian beamsmodeling beam shape of finite lateral extent, or spherical waves.
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The spatial derivative converts to ∇≡ ık, and the dispersion relation(−c2
0 k2 +εω2)E =0 ∀E

ω2 =c2
0

ε
k2

ω= c0p
ε
|k| = c0

n
|k|

(2.10)

evolves naturally from eq. (2.9). By convention, the refractive index n =p
ε is introduced as the ratio of

the light speed within medium to its value in vacuum.

2.1.2. Energy density and flux

The local energy densities of the electric and magnetic field

w̃el =
1

2
Ẽ · D̃ = ε

2
Ẽ2 = 1

2ε
D̃2

w̃mag =1

2
H̃ · B̃ = 1

2
H̃2

(2.11)

(for linear media) are derived in textbook electro-/magnetostatics, and are also proven for time-depen-
dent fields [Jac98]. They consider both the charge/current density self-interaction and the contributions
stored in the build-up of the polarisation state within the media.
Energy conservation law in electromagnetics is usually referred to as POYNTING’s theorem [Jac98]: By

considering an electromagnetic field exerting the LORENTZ force, eq. (2.2), on a moving probe charge
(representing a current density j̃), and the above expressions for field energies, the continuity equation
for field energy reads, in its differential form, as

∂t
(
wel+wmag

)+ c0∇· S̃ =−j̃ · Ẽ , (2.12)

introducing (by use of theMAXWELL equations, and some vector calculus) the POYNTING vector

S̃ = Ẽ× H̃ (2.13)

as the field of energy flow carrying energy density. By application of the harmonic ansatz for the fields
(see sec. 2.1.1), this becomes S̃ = 1/2Re(E∗ ×H). The POYNTING vector describes energy transport
by electromagnetic waves, and is, for plane waves, directed along k. As a such, it is a useful and
natural measure of intensity, combining the contributions of electric andmagnetic fields irrespective of
polarisation state, and as a such it is implemented into the software used for the presented simulations
[MIT].

2.1.3. Fresnel formulæ: Field matching at interfaces, and reflection

This section describes the reflection behaviour of electromagnetic waves at interfaces betweenmedia
exhibiting dielectric contrast, i. e. different ε. From integrating theMAXWELL equations surrounding
a finite area of the surface, which is described by its normal vector n, two kinds of field continuity
conditions can be derived generically: D̃ ·n = 0 = B̃ ·n (normal components stay continuous), and
Ẽ×n = 0 = H̃×n (tangential components continuous).
For electromagnetic waves, the situation at a material interface is a reflection problem, involving an

incoming, a reflected and a transmitted wave. Applying complex notation, the problem is formulated as
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matching their amplitudes (complex, including phase factors k ·r at the boundary, which is located at r)
for all times. This leads to the famous FRESNEL formulae [Jac98], quantitatively describing reflection
and transmission dependent on incident angle arccos(n ·k/k) and the dielectric contrast ε (usually
expressed in terms of the two refractive indices n1 and n2 = n1

p
ε of the involvedmedia). The treatment

requires the following choice of the plane-wave basis: linear polarisations, with polarisation vectors
tangential to the surface either of the electric field (TE) or the magnetic field (TM). Only at normal
incidence, they are degenerate, giving rise to a particularly simple formula to compute the absolute
value of reflection:

|r | = n1 −n2

n1 +n2
=

p
ε−1p
ε+1

(2.14)

2.1.4. Thin-film interference: a slab of finite thickness

Computing the transmittance of a “thin film”12 is a standard exercise in any optics textbook [Men01].
It will be presented here, as its effect, the FABRY-PÉROT interference, will be a prominent part of any
slab-like transmission or reflectance measurement, both in simulations and experimentally.
Given amaterial of dielectric contrast ε to its exterior (vacuum), constituting a slab of the thickness L,

with perfectly plane faces and infinite lateral extent: ε(r) = 1+(ε−1)Θ(L/2−|z|). The slab be irradiated in
normal direction with a plane wave of incoming electromagnetic radiation. This light wave is described
by the wavevector ki = kiez , and E0, the incident electric wavevector at the origin: As long as the slab is
disregarded, its electric field is given by E(r) = E0 exp(ı(ki · r−ωt )), and the (electric) field intensity by
Ii = |E|2 = |E0|2 = E 2

0 .
Each time the light crosses the interface between the medium and vacuum, observing the field

matching rules 2.1.3 will cause part of the amplitude to be reflected:

Transmission: |E t
f | = |t | · |Ei|

Reflection: |E r
f | = |r | · |Ei|

Amplitude conservation per interface: t 2 + r 2 = 1

Global flux conservation: T +R = 1

(2.15)

with the reflection and transmission amplitudes r and t (as introduced in the previous section) being a
property of the single interface, and the total transmitted/reflected intensities, denoted by capital R
and T (which are, in contrast to r and t , properties of the whole arrangement).
The fraction of intensity immediately transmitted (through both the front and back interface) is thus

Ii|t |2, but is accompanied by infinite multiple internal reflections, giving rise to interference due to
their difference in phase.
While passing through thematerial for a length`, awave accumulates aphase angle ofΓ= k`= ki

p
ε`,

and at the back face an additional phase jump of π. For every two additional internal reflections (one
at the back face, one at the front face), the intensity is each time diminished to the remaining |r |2
(remainder from two transmissions) and the phase advances by Γ= 2kL

p
ε+2π, giving for the total

12This relative definition of thickness has to be understood in the sense of thin enough to not be disturbed by the finite coherence
of the incident light, i. e. in the validity regime of idealised monochromatic plane waves. There is no length scale.
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series:

|E t|
|Ei|

=|t |2
∞∑

m=0

(|r |2e ıΓ)m = |t |2 1

1−|r |2e ıΓ[
1− I r

Ii
= 1−R =

]
T = I t

Ii
= |t |4
|1−|r |2e ıΓ|2 = |t |4

|1−|r |2e ıΓ|2 =

= (1−|r |2)2

1−2|r |2 cosΓ+|r |4 = 1

1+4|r |2(1−|r |2)−2 sin2
(
Γ
2

)
(2.16)

The latter result is known as the AIRY formula [Air33]. It describes the interference-modified transmit-
tance (or, complementary, reflectance) of a material interface “knowing” about another interface not
too distant away, dependent of wavelength andmaterial thickness L

p
ε/λ0 = Γmod2π.
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Figure 2.1.: Reflectance, at normal incidence, of a homogeneous lossless-dielectric slab of surface reflectance |r |2
as a function of phase accumulation Γ=p

εL/λ0. Selected single-surface reflectances correspond to dielectric
contrasts of ε= 2.4 (|r |2 = 0.046), ε= 11.9 (|r |2 = 0.303), and ε= 103 (|r |2 = 0.88).

It is depicted in figure 2.1 and shows, irrespective of how high the actual reflectance is, full trans-
mission on Γ being an integer multiple of π, as a consequence of destructive interference of reflected
beams. On half-integer Γ, however, reflectance reaches remarkably higher values than anticipated from
the single-surface case, reaching a maximum value of R, being dependent on the dielectric contrast as

R ≤R = 1− 1

1−4|r |2(1−|r |2)−2 =
(
ε−1

ε+1

)2

ε(R) =1+
√

R

1−
√

R
.

(2.17)

The idea to utilise FABRY-PÉROT extrema heights and frequency locations to extract some kind of
“effective refractive index” from slab reflectance datamight be some contribution to a heuristic effective
medium data acquisition. But once subject to distortion on a scale which is not tiny compared to the
wavelength (see chapter 5), the rigorous assumption of predictable and uniform phase accumulation
irrespective of the position within the structured medium becomes questionable, blurring effective
slab thickness. In effect, with finite distortion, the minima get less pronounced, impeding the benefit
from explicitly exploiting FABRY-PÉROT features to gather structural information.
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2.1.5. Absorption

Aconvenientwayof representing light absorptionwithin the givenelectromagnetic framework is to allow
the permittivity ε to be complex: Consider a slab-like geometry of an absorbing medium at 0 < z < L,
in the approximation of attenuation lengths large compared to the wavelengths (αλ0 ¿ 1, hence
Im(ε) ¿ Re(ε), see below). It becomes obvious that a complex wavenumber k = k + ıα/2, describing an
exponential decay of waves incident on the absorbing medium, is connected to Im(ε) by:

|E(z)|
|E(0)| =

∣∣∣e ıkz
∣∣∣= ∣∣∣e ı(k+ıα/2)z

∣∣∣= e−αz/2

k2 =k2 + α2

4
+ ıαk = w2

c2
0

ε (2.10)

Re(ε) = c2
0

ω2

(
k2 + α2

4

)
∼= c2

0

ω
k2 +O(α2)

Im(ε) = c2
0

ω2αk = c0

ω
α

√
Re(ε)− c2

0α
2

4ω2
∼= c0

ω
α

√
Re(ε)+O(α3)

(2.18)

Thewell-knownphenomenologicalBEER-LAMBERTabsorbance relation, connecting thefinal intensity
If (normalised to incoming intensity Ii) introduces the attenuation constant α (inverse of the 1/e
attenuation length)

|E(L)|2
|E(0)|2 = If

Ii
=e−αL

I (x)/Ii =e−αx ,
(2.19)

which can interrelate the imaginary part of the permittivity with transmission flux:

If =Ii− Iabsorb ∼= Itrans as long as Irefl¿ Itrans

α= 1

L
ln

(
Ii
If

)
= 1

L
ln

(
Ii

Itrans

)
ωL

c0

Im(ε)p
Re(ε)

= ln

(
Ii

Itrans

) (2.20)

2.1.6. Reduced variables and natural units

TheMAXWELL equations (and their solutions) exhibit a (trivial, from the mathematics side) invariance
under scaling frequencies by α, together with

• either scaling lengths by α−1,

• or permittivities13 by α−2, i. e. refractive index by α−1

This is a consequence of the absence of an explicit scale within classical electrodynamics14 [Joa+08],
and enables to reproduce any experiment on any length scale, as long as the scaling rules are observed
(and the continuum assumption is justified). This has been often exploited, e. g. by [VKH08; PV12].
13It can even be shown that any coordinate transformation is equivalent to (can be encoded into) a transformation of ε(r) and

µ(r) [WP96].
14The beauty of the classical theory with respect to a numerical treatment is its exactness in a sense arising from the same fact:

no questionable assumptions and simplifications are needed to conduct simulations, opposed to, e. g. ab-initio quantum-
mechanical calculations like DFT [Oba11].

17



As a consequence, the characteristic lengths introduced by the geometry itself are the only relevant
scales, so they can easily been reduced to unity, to obtain natural units for all quantities.
Be asuch a characteristic length of a structure (for the structures derived from cubic crystals, this is,

by convention, the edge length of the conventional cubic unit cell), then space coordinates can be given
relative to a, and so can time (via the speed of light: c0 in vacuum; phase velocity within the medium:
c = c0/

p
ε), and especially, frequency:

Ω= ωa

2πc0
= a

λ0
(2.21)

This dimensionless natural frequency (in contrast to the actual frequency ω in units of reciprocal time)
is closely linked to the (reduced) vacuum wavelength λ0/a of the corresponding light. Once an explicit
length scale a (in real physical units) has been introduced, the frequency might be translated to a
photon quantum energy via the conversion ~ω=Ω ·hc0/a. When a is in the order of the visible light
wavelengths, aΩ near unity represents quantum energies in the visible range; then a colour bar can be
drawn aside a frequency axis, cf. B.3.
The introduction of an explicit scale (meaning the breakdown of validity to an universal natural unit)

gets necessary, once interaction is not solely determined by geometry, and the quantum nature of light
(and matter) plays a role, e. g.:

• Resonances of atomic/meta-atomic systems (absorbance (dyes!))

• Material non-linearities (Higher-harmonic creation)

• Collective excitations (most notably plasmons)

• Non-classical light-matter interactions (Laser gain medium)

2.2. Chirality and Light in homogeneous media

2.2.1. The Polarisation state

k

Figure 2.2.: Circular pola-
rised plane wave: spatial
Ẽ (or H̃) field pattern at
an instant in time.

Electromagnetic waves are described by vector fields, so their am-
plitude has to be described by a vectorial quantity. For plane waves,
theMAXWELL equations only imply the condition of transverse waves,
i. e. Ẽ ·k = 0 = B̃ ·k (and Ẽ · B̃ = 0) at all places in space. The dispersion
relation (2.10) cannot determine the particular spatial structure of the
waves—rather this proves to be a degree of freedom of the system: For
any wavevector k, two orthogonal polarisation vectors can be found to
describe a plane wave.
The most familiar (and most readily imaginable) choice for basis

functions is linear polarisation, i. e. both the Ẽ and B̃ field oscillating (in
space and time) in planes tangential to k.
However, the oscillations are not restricted to be in the amplitude’s

absolute value alone, but can also exhibit, in general, periodic change in the direction (elliptic polarisa-
tion), or solely so (circular polarisation,15 CP): The field vectors are of the same length at all points in
15Note that, conversely, linear polarised light itself can be interpreted as a superposition of LCP and RCP light of the same

amplitude, and its node surfaces (propagating along k with time) can be understood as the nodes of azimuthally standing
waves.
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space, and exhibit spatial dependence of direction according to their wavelength: see fig. 2.2.16

Description of the polarisation state

The complex field notation (sec. 2.1.1) provides an elegant way to describe the basis functions of light.
The choice of one (lateral) direction x perpendicular17 to k determines the linear polarisation basis
functions (up to a uniform phase shift, which can always be absorbed in choosing the temporal zero
point) of the lateral electric18 field E∥ = (Ex ,Ey )Tas

x-polarised E∥ = E

(
1
0

)

y-polarised E∥ = E

(
0
1

)
,

(2.22)

The circular basis encodes its spatial phase offset between x and y into a complex spatial amplitude:

LCP E∥ =
Ep

2

(
1
−ı

)

RCP E∥ =
Ep

2

(
1
ı

) (2.23)

This notation equals, once normalised to the absolute field amplitude E , the JONES vector known
from classical optics [Men01].

The rotation sense convention Due to the existence of contradicting conventions regarding to
what is LCP and what is RCP, we will stick to the “time-frozen” definition from [LC05]: This light shall be
called right-handed CP, whose tips of Ẽ vectors around some axis directing in k direction, forms a RH
helix.
Later on, once the handedness of a given geometry got assigned (be it by convention or analysis, but

definitively, see sec. 3.2.2 for the Gyroid’s handedness) we can re-label the CP states relatively according
to the geometric handedness: as “in the same rotation sense”: 		, or in the opposite sense: �	.
This way, the complete mirror inversion of both the structure and the rotation sense of the light won’t

change anything to both physics (which is obvious), and nomenclature (which underlines a gain in
universality, referring to, in some sense, expressing geometric and light chirality in the natural unit of
the relative rotational sense).

2.2.2. Chiral response from geometry

Homogeneous media: intrinsic chirality

In the context of linear polarisation, degeneracy between basis modes is destroyed when “cross-talk” of
the different electric field components is allowed within the constitutional polarisation equation (2.1)
16It turns out that CP is in fact the fundamental base state of light, reflecting the intrinsic “rotatory sense” (spin/helicity) of the

photons.
17Youmay consider, w. l. o. g., k poẏnting in Cartesian +z direction.
18By convention, the polarisation is formulated for the electric field. This uniquely determines the according magnetic field

components.
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(called birefringence: dependence of refractive index from the polarisation plane). It is conveniently
expressed by a tensorial dielectric permittivity ε.
Conceptually related is “bi-anisotropy” (see, e. g., [Arn97; SS15]), allowing, in addition, the displace-

ment field to be also dependent from the magnetic field components.
The positioning of these relations within electrodynamics shows up its meaning as an intrinsic

property of the respective material. In contrast to geometry-inherited handedness, it may thus be
called intrinsic chirality, caused microscopically (lengths scales small compared to the wavelengths) by
objects/(meta)atoms being able to interconnect electric and magnetic effects, e. g.metallic wire helices
[JMP79; EJ88], or (based on experimental evidence) sugar solutions.
Once translated to the language of phenomenology and experiments, the intrinsic chirality causes

effects like optical rotation (either CP sense experiencing a different phase accumulation during passing
the material, causing a rotation of the polarisation ellipse).

Chiral objects and CP light

When (as in the case of dielectric structures of length scales in the order of the light wavelengths), a
microscopically averaging view becomes inappropriate, and other ways of dealingwith system response
to light chirality must be found.19 The route of some spatial density of objects leads (due to the subtle
non-locality arising from theMAXWELL equations) naturally to the intrication of the “basis” (single
objects) and “lattice” (site distribution) dependencies of any obtained result. In any case, the lateral
(perpendicular to k in free space, and appropriately chosen within vacuum) continuity of CP light will
be broken down by the presence of objects (at most to the discrete translation rules of a crystal).
However, there have been some explicit studies of the structure-photonic functionalisation of helices.

Referring to the success of PhC in which helices serve “only” as bandgap-functional elements [YGL91;
Joa+08], Chutinan and Noda [CN98] investigated dielectric PhCmade with helices as basis elements—
disregarding possible implications due to their handedness. Uniaxial and cubic arrays of helices have
been subject to several studies regarding CP response [TJ01; LC05; Fre+10; Thi+10; Was13]; however,
without conclusive links from circular-dichroic effects to local geometry or reverse.
A crucial issue in inhomogeneous media is the loss of the notion of circular polarisation (as a basis

state of light), replaced by BLOCHmodes (see sec. 3.1), which becomes even worse in non-periodic
media, when the BLOCH theorem does no longer assist by its elegant constructive rules for modes.

2.3. Structure-Photonic Crystals—theory and examples

This section describes the implications of a system consisting of periodically arrangedmatter (a crystal),
on itsway to support thepropagationof electromagneticwaves. Itwill focus on thedielectric permittivity
ε(r) as an spatially inhomogeneous material function.

2.3.1. The Bloch Theorem and the Band Structure

Arising from thequestionhow theperiodicity of a crystal lattice reflects in the structure ofwavefunctions,
Bloch [Blo29] introduced his famous theorem, nowadays named after him—although it has thorougly
19Even the charming route of “assembling” structures from single objects, probed as a single, is infeasible.Alone the idea to

test a localised, finite object with a plane wave (with its infinite spatial extent in lateral direction), is ill-defined, let alone the
“superposition” of single-particle behaviour. By introducing finite transversal and longitudinal coherence lengths, things
might become a little better, but the “multi-body” problem within the coherence volume stays.
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been pioneered earlier, e. g. by Floquet [Flo83]. It states that the eigenstates ψ of an operator with a
potential exhibiting translational symmetry with respect to a crystal lattice {R}, can be chosen as

ψk(r) = e ık·ruk(r) (2.24)

to separate into a lattice periodic function uk(r) = uk(r+R) ∀R, and a phase factor, introducing the
crystal wavevector k to characterise the mode [AM76]. Any function of this form is infinitely extent over
the whole (infinite) crystal, and its absolute value is lattice-periodic.

Indexing wavevectors: the Brillouin zone

The space holding the crystal wavevectors is called the reciprocal space. It exhibits some crystalline
structure by the reciprocal lattice {G}, the sites at which the phase factor in eq. (2.24) equals unity
irrespective of r, thus being the Fourier transform of the real-space crystal lattice.

HN

P

Γ

〈100〉

Figure 2.3.: The BRILLOUIN zone
of the BCC lattice, and its high-
symmetry points. Derived from
[SC10]. Black arrows: primitive
reciprocal lattice vectors (not to
scale).

The BLOCH theorem now readily shows that, for any k of the
crystalwavevectors aG from the set of reciprocal lattice vectors
can be found to let the vector k−G be closer to the reciprocal
lattice origin Γ than to any other point, in effect reducing the
effective volume to be considered to the Voronoi cell20 of the
Γ point, which is commonly called the (first) BRILLOUIN zone
(BZ).
Whenmapping infinitely manyWIGNER–SEITZ cells of the

reciprocal space on one single, the arising ambiguity is re-
solved by introducing a band index n, storing the “umklapp”
information (length and direction) of the G lattice vector as a
second index characterising the BLOCHwaves.
As the BCC crystal lattice will play a central role within this

thesis, its BZ is depicted in figure 2.3. The high-symmetry
points (lowMILLER indexing) on the BZ surface are named by
convention, in order to identify the translational symmetry of
the modes between real-space and band diagrams: Plots of
the dispersion relationΩ(k), i. e. the eigenfrequencies of the
modes resulting from evaluating of the constitutional wave equation (which deviates from eq. (2.10)
due to the influence of the periodic potential) are usually parametrised by the way along high-symmetry
directions (edges of the distorted tetrahedron in the image).

Evanescent and propagating modes

The BLOCH theorem claims exactness only for infinitely extent “propagating” modes, spanning the
whole crystal with constant amplitude. At an interface, e. g. a surface towards a homogeneous medium
like vacuum, the eigenmodes of the two media have to couple, to enable finite transmission. By the
violation of translational symmetry in the region around the interface, the BLOCH theorem (intended to
describe behaviour in the undisturbed bulk crystal) or the free-space solutions (plane waves) are not
expected to provide accurate solutions without modification.
In general, the infinite propagation is not guaranteed (see below) for all waves crossing the interface.

This gives rise to near-field evanescentmodes decaying exponentially into the respectivematerial.21 This
20In case of a periodic lattice, this is usually referred to as theWIGNER–SEITZ cell.
21Or even surface states being evanescent in both the vacuum and the material, thus localised at/around the surface itself.
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situation, depicted in fig. 2.4, can, once rigorously formulated, be described with complex wavevectors,
which (by their finite Imk, hence amplitude damping in real-space) have to be included to deal with
generalised interface transmission problems [SS15].

homogeneous medium interface photonic crystal

BLOCH
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Evanescentm
odes

scattering
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Figure 2.4.: Schematic of wave patterns at an interface of a PhC illuminated by a plane wave from homogeneous
space. The waves (excluding the exponential phase factor exp(ık · r)) separate into BLOCHmodes with a truly
lattice-periodic shape function u(r) (see eq. (2.24)), whereas the evanescent modes carry the real exponential
leading to decay into the PhC. Image adapted from [SS15].

In the case of a slab-in-vacuum geometry, these dampedmodes give rise to light “tunneling” when
Im(k) is small enough to allow the field penetrate the material into a depth not small against the slab
thickness. Even though themode is not truly propagating (not an eigenmodeof the geometry in the strict
BLOCH sense), it exhibits finite transmission (with an exponential dependence from slab thickness).

2.3.2. Band Gaps and Reflectance

Analytic and numeric evaluation of the dispersion relation confirm the (experimental) observation of
band gaps, i. e. intervals of frequencywithinno crystalwavevector canbe found to represent propagating
modes. In the case of electron waves, this is the base of success of semiconductor technology [AM76],
but it also occurs in dielectric structures [YGL91; Joa+08].
A band gapmay only exist along one particular direction of the crystal, and is then called a partial

band gap. Frequency regions with partial band gaps in all directions are named total band gaps.

An Explanation Adopting the analogue argumentation for electronic band gaps [AM76], an illus-
trative explanation for the occurrence of a band gap in periodic dielectrics along a given direction is
based on the energy density (introduced in sec. 2.1.2) [Joa+08]: When the wavevector approaches the
BZ border (i. e. its distance to the Γ point and the origin of the adjacent translational copy BZ gets the
same), the spatial periodicity due to the phase contribution becomes commensurable with the crystal
structure periodicity in this direction. The mode basis constituting the bands as they meet at the BZ
border (at the same frequency if the potential were zero), superposes to form standing waves.
The finite potential discriminates the two modes according to the energy density, i. e. the field

intensities within material or vacuum into a dielectric and a air band, as the energy density, hence the
mode frequency, depends on if the knots of the standing waves lie in high-dielectric (air band) or in
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vacuum (dielectric band, energy reduced by 1/ε for the majority of field “profiting” from the material’s
internal displacement currents/polarisation) [Joa+08].

Gap size The frequency intervalΩ− · · ·Ω+ of the band gap is commonly expressed [YGL91] in terms
of the gap-midgap ratio

∆Ω/Ω= 2
Ω+−Ω−
Ω++Ω−

(2.25)

being properly reduced to stay invariant under structure rescalings (cf. sec. 2.1.6).

Dichroic band gaps When a crystalline structure is analysed with respect to its response to circular
polarised light, it may exhibit dichroic band gaps, meaning that modes within this frequency interval
do not exhibit the character of a given circular polarisation. Such features are known to appear in the
[001] direction of the single Gyroid (see [Sab+11] and sec. 3.4) and, in particular strength, of the 4srs
quadruple Gyroid (cf. sec. 5.3.3).
Analogue to the generic band gap argumentation above, an energy discrimination for light circular

polarisations, fed by field energy analysis, can be found in Thiel et al. [Thi+07] and Lee and Chan [LC05]:
When the rotatory spatial structure of the wave matches the one of the dielectric structure, a breaking
of quasi-continuous variation of field energy concentration with continuous wavelength change occurs,
being equal to a forbidden energy interval—a dichroic band gap (for an example, see sec. 2.3.4). This
approach conceptually suffers from an asymmetry in lateral direction: On the one hand, the circularly
polarised plane wave exhibits continuous translation symmetry, but on the other hand, the helicoidal
PhCs are built from discrete lateral translations.
A qualitatively different reasoning applies to cholesteric structures, i. e. spatial structure within the

orientationof ananisotropicε(r) rather than theabsolute value itself: In case thepitchand rotation sense
of a CP plane wave matches the one of the anisotropic permittivity orientation, frequency continuity of
adjacent field configurations gets lost, giving rise to true dichroic band gaps, accompanied with high
reflectance [Abd08].

Reflectance, band gaps, and low coupling When, for a given frequency being irradiated from free
space, no appropriate BLOCHmode (in terms of the conserved parallel wavevector, cf. sec. 2.1.3, and
frequency) exists within the material, this wave cannot propagate within the crystal and must be fully
reflected (apart from tunneling described above as a consequence of finite penetration depth).
The inverse reasoning is more complicated due to the possibility of low coupling : Even if, for a given

frequency, propagating modes exist, the reflectance can be high due to little energy transfer between
vacuum and BLOCHmodes.

2.3.3. Laterally (quasi)homogeneous PhC

The Bragg mirror

The simplest case of a structure-photonic crystal is, that the material function alternating along one
direction in space with a period of a, while continuous in the other (lateral) directions: the BRAGG
mirror. It is equivalent to a repeated array of thin films as those described in section 2.1.4. Its first
investigation dates back to Rayleigh [Ray87], and is nowadays in use as a versatile module in optics and
technology [Men01]. The case of anisotropic ε has been studied by Yeh [Yeh79].
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TheBRAGGmirror exhibits a band gap related to the border of its one-dimensionalBRILLOUIN zone (at
π/a), at frequencies aroundΩ. 0.5 (or lower, depending on the value of ε) [Joa+08; Dec14]. Analogue
to the field matching at a single plane interface, the eigenmodes of the BRAGGmirror are naturally
labelled according to the TE/TM (see sec. 2.1.3), i. e. linear polarisations. With respect to circularly
polarised light, the BRAGGmirror behaves accordingly in projecting the waves on the respective TE/TM
constituents. This achiral response is not astonishing at all, due to its geometric achirality (from the
high (continuous) lateral symmetry).

Helicoidal films: Chiral 2-D PhC

Helicoidal bianisotropic media are uniaxial (with an accentuated direction), laterally homogeneous
media with a helicoidal variation of the orientation of the permittivity, which is extended to 2nd-rank
tensors. Hence they exhibit chirality, labelled left-handed or right-handed according to their inherent
(natural) rotatory sense.
A highly interesting experimental preparation method for media is glancing-angle deposition (GLAD)

of: PVD (physical vapour deposition) growth of dielectric columns on a substrate, while rotating
with a large inclination angle. This way “beards” of helical material are created, consisting of helices
homogeneously aligned to each other [RBL95; RB97]. Due to the controlled manner of crystalline
growth, they exhibit bi-anisotropy 2.2.2, effectively representing a material of cholesteric material
anisotropy (inherited from the anisotropy of the deposited crystalline materials). Helical GLAD films
reflect preferentially		, and transmit�	 CP light.
Popta, Sit, and Brett [PSB04] showed that GLAD helix beards made of TiO2 performmuch better in

terms of optical activity than conventional chiral materials such as quartz or fluorite. The construction
of a circular discriminator from GLAD helicoidal films has been demonstrated by Park, Sobahan, and
Hwangbo [PSH09].

2.3.4. “Truly” 3-D dielectric, chiral PhC: Helix arrays

Motivated by the “occurrence” of network topologies resembling helical structures within the diamond
network of full-bandgap structures [YGL91], Chutinan and Noda [CN98] calculated band structure for
helices arranged in cubic Bravais lattices. They found the BCC arrangement exhibiting the largest band
gap of the cubic structures, better than SC or FCC. There were no reports on analysis with respect to
circular polarisation equivalence of the computed BLOCHmodes, so the (obvious geometric) chirality
of the helices has not been treated at all.
Experimental investigations of various tetragonal arrays of helices with alternating phase shift/ro-

tation inversion have been carried out by Thiel, Fischer, Freymann, andWegener [Thi+10] and give a
visible CD signal in transmission for globally chiral systems.

Lee and Chan [LC05] study, in order to cast the photonic response known from helicoidal films into
a model treatable with frequency-domain theory, a hexagonal22 lattice of helices (ε= 9 P61 (No. 169
[Int04])), with particular respect to the chiral character of its BLOCHmodes.
Departing from thefindings of Toader and John [TJ01]: a complete but achiral bandgap for a tetragonal

array of overlapping square helices (dielectric contrast of ε = 11.9), they report markedly increased
chirality by decreasing the helix radii, thus isolating the helices from each other: They conduct band
22This uniaxial symmetry gives rise to the distinction of lateral and normal directions within the infinite structure, rather than

determined by the relative position within a symmetry-reducing slab-like geometry alone—in contrast to inherently isotropic
structures like the cubic Gyroid of chapters 3 and 5.

24



structure calculations via a plane-wave expansion, and reflectance computations off a finite slab,
inclined in uniaxial direction, by a scattering matrix method This reveals a dichroic (partial) band
gap (		 reflectance,�	 transmission) of remarkable bandwidth (∆Ω/Ω= 26%) for irradiation in axial
direction (parallel to the helix orientations), besides reporting from a narrower single-mode band in
lateral direction (�	 reflectance, no proof/picture).

2.3.5. Non-geometric frequency matching: Metamaterials

To conclude the section on chiro-optical physics-by-geometry systems, we want to mention metamate-
rials, a relative to structure-photonic media, often mentioned in the same breath.
They received their name from consisting of “meta-atoms” (atoms made of atoms, in the bottom-up

view: you can design them as you want). In a narrower sense, metamaterials designate structural
materials made out of “atoms” staying well below the “visibility” (diffraction) limit of the probing
radiation: Structure sizes are typically much smaller than the structure-photonic length scale (cf. 1.2.2).
Response is rather due to matching in resonance frequencies (metamaterials are usually metallic,
hence exhibiting collective electronic, i. e. plasmonic resonances) rather than the geometry of field
configurations.
(Plasmonic) metamaterials have in common with structure-photonic media the idea to tailor spa-

tial dependence of material response by geometry (but rather the plasmonic, i. e. periodic current,
distribution, than the electromagnetic radiation field itself). As an example, Gansel et al. [Gan+09]
investigated an uniaxial tetragonal array of gold helices, and found considerably circular dichroism
from		-major attenuation. Pioneering studies in disordered chiral metamaterials were carried out
by Hollinger, Varadan, Ghodgaonkar, and Varadan [Hol+92] and Busse, Reinert, and Jacob [BRJ99],
reporting considerable optical rotation for a “liquid” of metal helices in the microwave regime.
In contrast to purely dielectric structures,metamaterials suffer fromhigh losses (short-circuit currents

of plasmonic resonances). Even in the presence of a dye within structure-photonic media (finite
absorption, see sec. 2.1.5), the system keeps, essentially, its photonic properties, subject to attenuation.
Typical plasmonic metamaterials, in contrast, rely on the emergent phenomena connected with their
non-zero conductivity.
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Bi-continuous Geometries and Chirality
M.C. Escher: Drawing Hands (1948)



3.1. Quantification of chirality and circular dichroism

3.1.1. Intrication of geometric and optical chirality

Various approaches have been elaborated to quantify geometric chirality, usuallywith the aim todevelop
a convincing23 chirality measure by the enantiomers’ dissimilarity from nearest achiral “neighbours”
[Pap+03],HAUSSDORF distance-like approaches, and some other ad-hoc variations.
However, when asking for the chiral response to light, a quantification of chirality is naturally based

on the chirality of the light, within the structure, and reflected from it.

Crystals and disordered systems For crystalline media, a closer look to the nature of BLOCHmodes
is appropriate in any case. [LC05; Sab10; Sab+11] have introduced, as (continuous) measures of the
handedness of BLOCHmodes, circular dichroism indices, by comparing them to (discretely chiral) plane
waves. These data contains information on coupling to vacuummodes on a per-mode basis, thus the
maximum possible information frommode analysis for the interaction with the incident light field.
Note that these measures refer to unitcell-averages, i. e. represent a property of a BLOCHmode, and
is as independent from the actual (finite) geometry of the crystal as the band structure, inheriting its
conceptual difficulties to link to interface phenomena and their interpretation.
However, in systems bearing crystalline order, there is no well-definedmode basis (which is universal,

or at least to be developed in a constructiveway). So for a programme for quantification feasible for both
crystals and disordered systems, we need either some ad-hoc hypothesis based on approaches from
geometry or fundamental physics24, or some effective measure creating an “empirical” link between
handedness of light and material response.

3.1.2. Cumulative circular contrast

As a such, we now argue in favour of the cumulative view on the reflectance (CCR) or transmission
(CCT) difference between		 and�	 light in a particular given geometric and electromagnetic situation.
These measures are then inherently geometry-dependent.
The requirements are

• Applicable to arbitrary structured media, especially non-periodic (in which the prerequisites to
the BLOCH theorem are not fulfilled, hence BLOCHwavevectors and a BZ are not defined),

• Depicting response on circular polarised light,

• Being sufficiently “phenomenological” (offering interpretation in a context which is easily ex-
tendible to a experimental context)

• Additivity (proportional to circular dichroism, i. e. twice the single-CP reflectance yields twice the
CDmeasure),

• No overrepresentation of the relative difference in favour of the absolute difference,
23In a natural way, a chirality “measure” has to overcome the traditional binary and point-centred perception concept of chirality.

So continuity and a sensible approach to deal with locality and translational “invariant” aspects of geometry have to be
concise.

24Subject to current considerations is LIPKIN’s Z 00 Zilch quantity [Lip64], probably representing some “flow of chirality” [BN11],
see on page 107 for a short outlook.

28



• At least, preserving the frequency resolution.25 In fact, this makes this measure be a spectrum
itself.

The cumulative contrasts fulfilling these points are defined, in terms of the intensity reflectance Re

and transmittance T e of the circular polarisation senses e = LCP or RCP (and −e the other) as their
respective difference, cumulated from some starting frequencyΩ0 on (which will usually set to zero,
unless a variant choice appears reasonable):

CCRe (Ω) =
∫ Ω

Ω0

dΩ′ (R−e (Ω′)−Re (Ω′)
)

CCTe (Ω) =
∫ Ω

Ω0

dΩ′ (T e (Ω′)−T −e (Ω′)
) (3.1)

The abbreviation CCR/CCT stands for Cumulative Circular Contrast in Reflectance/Transmission,
respectively.26 For lossless media, i. e.when the “macroscopic” flux conservation R +T = 1∀Ω holds
true, the both quantities are complementary to each other: then CCRe −CCTe ≡ 0 is obvious (Note the
minus sign corresponding to the sign switch between the equations in (3.1) to not to have to switch CC
sign on comparing CCR and CCT of the same structure).

CC data can be easily a posteriori generated by point-wise evaluation of FDTD reflectance/transmit-
tance spectra, or from any other source of reflectance, such as computed from complex band structure
calculations [SS15], or from experiments.

Dimension CCR27 is “dimension-less”, as it inherits its (natural) units fromΩ, so that they implicitly
depend on a, some inherent length scale of the system even in absence of crystalline structure. If you
think of an ensemble of systems with polydisperse a: then smearing of the CCR’sΩ dependence shows
up that the most relevant part of a CCR curve is its end-value (at best, spectra end within a region of
high transmission and negligible CD).

Relative handedness Given a structure with a well-defined handedness (such as an unbalanced
arrangement of helices—for the decision of the Gyroid’s handedness see sec. 3.2.2), the relative “sign” of
e will be chosen to fit into the respective handedness convention. In those cases, the CC measure(s) will
be used without indicating the polarisation—reflecting the “scale-free-ness” (relativity) of handedness.

Interpretation—How to read CCR data Though sounding naïvely to just subtract the two re-
flectances of opposite handedness, we will discuss now the benefits and implications of CCR data.
It has to be read left-to-right, as it depicts (in effect, averages over) the differencewithin this finite

frequency interval, starting at its lower bound at zero.
CC visualises the effective dichroic band-gap width (by its end-value), and the frequency range over

which this growth can be observed.
25Similar routes, butwith out-integrated frequency dependence, have been applied formerly, e. g.by Saba et al. [Sab+11],Wasserka

[Was13], and Saba, Wilts, Hielscher, and Schröder-Turk [Sab+14], to quantify circular dichroism. However, any kind of an
data evaluation routine looking at a fixed frequency (or frequency range) will then be susceptible to red- and blue-shift
trends (caused by changes in volume filling, e. g.), andmislead to conclude on either false-positive or false-negative trends.
Moreover—as those effects are physical, actually—this implies special care to be taken for both finding robust measures for
effects otherwise described just qualitatively, and to the actual experiments designed not to alter the nature of the structure
by excessively altering the volume filling.

26Which “C”s originates in which words is left to the reader’s imagination.
27In the following, wewill predominantly stick to theCCR as long as it differs fromCCT only by artefacts of the numericalmethod.

29



Note that, in all CC plots, a "‘Full-CD line"’ line of slope 1 will be included, in order to quantitatively
compare different CC data with different scales in frequency and absolute value.

Possible further normalisation steps You can think of normalising CC data to some CC efficiency:
CCR/φ, quantifying the efficiency of material deployment. Such a normalisationmight also deal with ε,
but is problematic, as the qualitative scattering behaviour changes with the dielectric contrast.28
The CC measures, when derived from averaged, “macroscopic” energy flux measurements, are

insensitive towards the very polarisation of the reflected/transmitted light. A possible generalisation
might include a polarisation analysis of , giving rise to a set of 2×2 “partial CC” spectra

3.2. The (single) Gyroid

In his seminal work in the late 1960s, Schoen [Sch70] described the Gyroid as a particularly remarkable
member of the family ofminimal surfaces29 i. e. surfaces representing localminima of the surface energy
(area and mean curvature) among all possible curved surfaces extending in space. It is a triply-periodic
minimal surface (TPMS) exhibiting BCC cubic symmetry (see next section 3.2.1), dividing space into
two (not interconnected) channels smoothly linked in all three spatial dimensions (hence the name
TPMS).

Figure 3.1.: The single Gyroid: Nodal approximation
within a conventional cubic unit cell (green), superim-
posed with the srs network graph (orange), continued
2×2×2 unit cells. Especially the helical network ele-
ments parallel to the Cartesian axes are visible in the
upper right part of the image. Source: [Sab+14]

Single Gyroid A single of the Gyroid channels, when viewed separately, is handed, i. e. chiral, the
other channel representing the opposite enantiomer, so with no translation-rotation operation, the
both channels can be exactly superimposed.
When the channel is the regarded object (rather than the surface itself), it is commonly referred to

as the single Gyroid; by making the channels distinguishable (here: by filling with different material)
28Think, e. g., of the φ 6¿ 1 and ε 6À 1 shift to weak diffraction well governed by the first BORN approximation—which is, in fact, a

very bad approximation to the diffraction behaviour of structure-photonic crystals.
29For a comprehensive list of minimal surfaces and their nodal approximations, see [SN91] and (illustrated) [MK03]. A compre-

hensive historical overview over the history of discovery can be found in [HOP08].

30



the symmetry is lowered (removal of inversion symmetry) by the breakthrough of the chiral (non-
symmorphic) symmetry of the single channel.
The TPMS Gyroid is a surface of constant mean curvature (CMC), the natural solution of the surface

[tension] minimisation problem.30 By allowing the two channels to have different volumes, the relax-
ation yields the family of CMC Gyroids, characterised by the volume filling fraction φ of the (in this
study) channel filled with high-dielectric material.

Lowest Fourier modes, and the Nodal surface The lowest Fouriermode of the balanced (φ= 50%)
single Gyroid CMC channel (cf. eq. (3.3.1)) is a smooth function of space. Its nodal surface (surface of
zero points) is a remarkably accurate approximation to the TPMSGyroid [SN91], as are the (generalised)
equipotential surfaces of this formula to CMC surfaces (see sec. 3.3.1).

The network graph The (10,3)−a graph introduced by Laves [Lav32] and Heesch and Laves [HL33]
and named LAVES’ graph thereafter by Coxeter [Cox55], has been shown to be topologically equivalent
to a single Gyroid channel—in fact precisely tracing its geometry. It is customarily abbreviated to srs
(or 1srs in order to distinguish frommultiple interlaced srs networks [Sab+11]) This name arises from
its occurrence in the network of silicon atoms in the cubic LAVES phase alloy SrSi2 [HOP08].

3.2.1. Symmetry

The Gyroid TPMS (and all other forms of balanced Gyroid representations) exhibits I a3d (No. 230
[Int04]) symmetry, including a spatial inversion centre, hencebeing achiral. Introducing adistinguishing
criterion between the channels (referred to as solid/material, and void/vacuum phase), or inherently
asymmetric realisations (wires along the network edges, cf. sec. 3.3.2) reduces the symmetry to the
non-symmorphic I 4132 (No. 214) space group.
The solid and void phases exhibit opposite handedness, whereas topologically (and for the balanced

cases even geometrically) identical otherwise. This symmetry is remarkable and unusual for chiral
objects.
Another noteworthy property of the Gyroid geometry is the possibility to interweave several (three

[Sab10], four [Sab+11] or eight [Sab+13]) networks (each with sufficiently wide hollow space, of course)
to form geometries called 4srs and 8srs, respectively. This will be described and performed in more
detail later in sec. 5.3.3, for the transition 1srs→4srs, to “interpolate” the chiral properties of these two
geometries.

3.2.2. Handedness, Chirality

As already mentioned in connection with fig. 3.1, the Gyroid is a subtle join of helical elements. We
may refer to the thorough discussion within [Sab+14], and mention only some details: The “triangular”
helices of the 〈111〉 directions, and the “octagon” helices of the 〈100〉 directions (the ones the Gyroid
will be built from by the helical model, cf. sec. 3.3.3) hence show the characteristic conventional helical
sense of the Gyroid, whereas the “hexagonal” 〈111〉 and ”quadratic” 〈100〉 helices exhibit the opposite
turning sense.
30This is realised, e. g., in an experiment by a soap film relaxing within a wire frame determined by symmetry, or in its simulation

counterpart, cf. BRAKKE’s Surface Evolver [Bra92]. To yield the Gyroid minimal surface, one has to ensure the volumes of each
channel balanced at 50%. This will be implied by following the boundary conditions from topology and symmetry.
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Along the mere number of helices of left and right handedness, no decision on an “absolute” handed-
ness can be made, so it will be defined by convention, introduced in [Sab+11]: The handedness of the
Gyroid equals the one of the 31 axes surrounded by the “triangle” network helices of the 〈111〉 direction.
This thesis will sticks to the handedness convention.

3.3. Ways of representing and creating the Gyroid

In this section, we will discuss remarkably distinct approaches to structure space in order to repro-
duce some or all of the properties of a Gyroid, such as the bi-continuity, topological equivalence, and
symmetries.
A special focus will be drawn on the volume filling fraction φ, arising from the different model

approaches, as the eigenfrequencies of BLOCH lightwaves in thematerial aredependent in a complicated
(but largely monotonous) way from the fraction of space filled with high-dielectric [Joa+08].
Three distinctly differentmodelling paths for theGyroidwill be presented, eachwith its own strengths

and disadvantages. Table 3.1, at the end of the section on page 42, will summarise their parameters,
and gives some values preferentially used in the course of this study.

3.3.1. Nodal approximation to CMC surfaces

The lowest Fourier harmonic of the balanced single TPMS Gyroid, shifted by a threshold t , reads as

g (r) = sin(Gx)cos(G y)+ sin(G y)cos(Gz)+ sin(Gz)cos(Gx)− t = 0 (3.2)

with nondimensionalisationGa = 2π [SN91; MK03].
Its zero iso-surface (t = 0) proves to be a ready approximation of the Gyroid TPMS, sharing its

symmetry between void and material phase, and inherent smoothness. Moreover, by varying t , the
volume fractions of the channels can be easily manipulated.

1-D volume filling fraction of a shifted sinusoid

Due to the nonlinear dependence on spatial coordinates in eq. (3.2), evaluation of the volume filling
fraction as a function of the threshold is not possible analytically.
As a one-dimensional toy example for the analytic computation of a volume filling fraction (refer to

figure 3.2 for visualisation), consider the “volume” defined by the fraction of a sinusoid31 function lying
below some (spatially constant) threshold t (analogue to the nodal approximations to TPMS):

g (x) = cos(x)+ t (3.3)

Being inside the testing material at x is equivalent to the conditional g (x)
?≥ 0, or the value of the

HEAVISIDE step functionΘ(−g (x)). For −1 < t <+1 we know (from continuity) g (x) has two zeroes xi :
the first when g (x) crosses the zero axis (“surface”) from positive to negative values, “switching on” the
Θ conditional, the second x2 when g (x) switches to positive values again. Inversion of (3.3) provides

x1 =arccos(−t )

x2 =2π−arccos(−t ) ,
31Choosing w. l. o. g. the cosine in eq. (3.3) avoids ambiguities in root-finding.
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Figure 3.2.: Visualisation of filling-fraction computation from a one-dimensional nodal formula t 7→φwith an
example threshold t =−0.57.

so that the computation of volume filling

φ(t ) =
∫ 2π

0

dx

2π
Θ(−g (x)) (3.4)

simplifies to the interval balancing (by knowing g (x) < 0 ⇐⇒Θ(−g (x)) = 1 ⇐⇒ x1 < x < x2)

φ(t ) = 1− 1

2π
(x2 −x1) = arccos(t )

π
(3.5)

to be steadily continued from the interval borders to φ(x ≤−1) = 1 and φ(x ≥ 1) = 0.

From Sinusoid to 3D Nodal Formulae

The constraint (3.2) defines the single Gyroid in its nodal approximation. Viewing line-wise with
constant y and z (interpreting the dz integral in the RIEMANNian sense as regarding a column along its
height 0 · · ·2π over its base square of area dx dy), the integration over the x direction is reducible to the
one-dimensional case described above by eq. (3.5):

0
!≥ g (x, y, z) =(

sin(x)cos(y)+cos(x)sin(z)
)+ (

sin(y)cos(z)+ t
)=

=
√

sin2(z)+cos2(y)cos(x +ϕ)+ (
sin(y)cos(z)+ t

)
⇐⇒ cos(x)+ sin(y)cos(z)+ t√

sin2(z)+cos2(y)

!≤ 0

(3.6)

Choosing the phase shift ϕ (arising from the used trigonometric identity) to zero is justified by the
arbitrary choice of the x interval to evaluate (as long as its length of 2π is maintained).
So, for fixed y and z (a singleRIEMANN “summand”within the y and z integrals)we know the “x-partial

filling fraction” (from eq. (3.5)) to be

φx (y, z) =
∫ 2π

0

dx

2π
Θ(−g (x, y, z)) = arccos(ty z )

π
(3.7)

with the effective x- and y-dependent threshold

ty z = sin(y)cos(z)+ t√
sin2(z)+cos2(y)

, (3.8)
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given the case arccos(ty z ) is defined, or, equivalently: the given x “column” (of fixed y, z position) does
not consist fully of material nor of vacuum.
Wemay express this case distinction in terms of a generalised definition of the integrand function:

âarccos(t ) =


π t <−1

arccos(t ) −1 < t < 1

0 t > 1

(3.9)

With that, in principle, we have the analytical form of the volume fraction (applying the substitutions
a = cos(y) and b = cos(z), respectively):

φ(t ) =
Ñ

[0:2π]3

d3r

8π3Θ(−g (r)) =

= 1

4π3

−1∫
1

dap
1−a2

−1∫
1

dbp
1−b2

âarccos

(
b
p

1−a2 + tp
a2 −b2 +1

)
=

= 1

4π3

−1∫
1

dap
1−a2

 ∫
−
π+

∫
arccos(tab)

 dbp
1−b2

(3.10)

where denotes the range of b ∈ [−1;1] in which −1 < tab < 1, i. e. the ordinary arcsin(tab) is defined
(0 <ϕx < 1), and − corresponds to the area where tab <−1 (ϕx ≡ 1). In dependence of t and a, the
borders for the b integration compute to

(3.8)
∣∣ty z

∣∣=1

b± = t (1−a2)±
p

2−a4 +a2 − t 2

a2 −2

b ∈
{

[−1;b−]
−

[b−;b+]

(3.11)

This result has the aftertaste of not being solvable algebraically.

A crude but remarkably accurate approximation

Numerical evaluation of either the full-volumeGyroid integral eq. (3.2) or the two-dimensional problem
above, i. e. eq. (3.10) gives, at a first glance to not too minute filling fractions (i. e. looking on the linear
graph at the right side within fig. 3.3), a remarkably simple approximation for the Gyroid volume filling
fraction:

φ(t )approx =


0 t <−1.5
1

2
+ 1

3
t else

1 t > 1.5 ,

(3.12)

which approximates the “exact” (volume filling fraction determined by numerical evaluation, i. e. voxel
counting) volume filling fraction within the interval −1.3 < t < 1.3, corresponding to 6.2%<φ< 93.8%
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up to a deviation of∆φ= |φapprox−φexact, num.| ≤ 1/150. This linear32 relationship has at least once been
observed in literature [LRT96], but was not subject to further investigation.
Figure 3.3 (linear plot) illustrates the apparent accurateness of this approximate function, which

should suffice for any case with a substantial fraction of space occupied by both material and void.
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Figure 3.3.: (Voxel counting) Single Gyroid volume filling fraction from nodal approximation, in dependence on
the threshold t (left: log-log, right: linear axes). Counting voxels filled at a given t reveals a near-linear behaviour
when the distance from the extremal threshold |t | = 1.5 is more than about 10−1. At lower distances, the function
crosses over to a power law φ∝ (t +1.5)3/2. Residual (logarithmic plot: absolute value) is exaggerated tenfold.
Direct Voxels resolution: up to 721px a−1.

The observed t 1 and t 3/2 power laws can be argued the following way33: With |t | < p
2, the nodal

surface is bi-continuous, theminor channel breaking apart from into isolated chunks of more andmore
spherical “atoms” at the vertex mid-points, progressing to lower excess t [Woh+01]. The appropriate
coordinate system to describe the volume dependence on t (to expand eq. 3.2 in) is

• for the bi-continuous cases, a cylindrical one, viewed at the cross-section through an edge.Volume
filling will be proportional to r 2 in leading order.

• spherical when the minor phase is no longer connected, accordingly with a φ∝ r 3 behaviour

(r being each the distance from the nodal surface to the coordinate origin). As r 2 =O(t ) from TAYLOR
expansion of the cosine(s) in eq. 3.2, the behaviour of φ(t ) becomes obvious (or, at least, plausible).
Note that for the Primitive and Diamond surfaces’ nodal approximations, a similar evaluation might

be realisable, but the deviations from linear φ(t ) behaviour occur at much lower t distance from the
borders of the allowed interval [LRT96; Dec14].
32By additionally considering cubic terms (only odd powers of t are allowed due to inflection symmetry at t = 0,φ= 50%), the

accuracy may be increased up to 5×10−4.
33For this consideration, Matthias SABA should be credited.
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“Length scale” and behaviour on distortion

The nodal approximation is a smooth function of space, and as a such has no inherent (model-
dependent) length scale, in contrast to the wire models presented in the following. Moreover, as
the distortion field operation will uniformly “smoothly” act on all space points (or, in the real case, every
voxel), the nodal approximation proves very resistant to changes in volume filling fraction, as long as
the viewed space region is commensurable with the distortions (as it will be by construction, see next
chapter).

3.3.2. The srs Network Graph

In a regular geometric realisation (locally identical vertices), the srs network skeleton graph, created
from tracing a Gyroid channel, inherits its full body-centred I 4132 symmetry, including the chirality
and the possibility for two enantiomers (see introductory section 3.2 and figure 3.1).

Vertices and Edges

The primitive BCC unit cell holds 4 three-connected vertices, linked by 6 edges; hence the conventional
cubic unit cell holds 8 vertices with 12 edges.
The positionsVi of the points (vertices) and connections (edges) building up the srsnetwork are taken

from the comprehensive structures database RCSR (Reticular Chemistry Structure Resource) [OKe+08;
14]. For this work, they are adapted to stick to the (crystallographic) coordinate origin convention,
the same as for the nodal approximation (3.3.1, eq. (3.2)) and the helical models, see section 3.3.3.
Moreover, the points have been freed from lattice translation duplicates34, overall translated, and
enantiomer-flipped z →−z.
Finally, the points to present here and duplicated by a primitive BCC lattice vector (half cube body

diagonal). So, besides showing up within a cube-shaped unit cell with its easily comprehensible
symmetry operations, the choice of (conventional) unit vectors is unique (Cartesian axes, length: a).
The points and connections are:

(V1 V2 V3 V4 V5 V6 V7 V8) =a

8

1 7 7 5 3 3 1 5
5 7 1 7 5 3 3 1
7 7 5 1 1 3 5 3


V6 ←→ V5 V2 ←→ V5 + 1

2
[111]

V6 ←→ V7 V2 ←→ V7 + 1

2
[111]

V6 ←→ V8 V2 ←→ V8 + 1

2
[111]

V5 ←→ V4 V5 ←→ V1 + [001]

V7 ←→ V1 V7 ←→ V3 + [100]

V8 ←→ V3 V8 ←→ V4 + [010]

Every point is connected by three edges to points which share one coordinate and differ in the other
two by a/4 (i. e. edges are 〈 1

4
1
4 0〉 vectors with the length a/

p
8).

34Of course, the edgesmust have connections to points within adjacent unit cells (see below), in order to create a connected
network.
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Geometry from the Network

To create a structure to be examined with respect to its photonic properties, the edges are inflated to
cylindrical “wires” with finite cross-section, or radius, respectively.
In practice, every edge Va ←→ Vb (as defined above) will be replaced by a cylinder between Vb and

Va , with a radius r . For a first estimate, the volume fraction of a regular srswill then compute from the
number of cylinders, their length and cross-section to

φfirst = 1

a3 ·12 · ap
8
πr 2 = 3

p
2π

( r

a

)2
(3.13)

This is an overestimation, as the intersections of the tubes at the vertices are counted twice.

vertex V

edge i

edge j

Γ

30°

Figure 3.4.: Cylinder
intersection at a vertex.

The duplicate per-cylinder intersection volume Γ at a vertex is half-
circular and wedge-shaped, as depicted in fig. 3.4 (and accounts for both
meeting cylinders). Its volume computes to

Γ=
∫ π

0
dϕ

∫ r

0
d%%sin(ϕ) · (%sin(ϕ)

)
tan(30°) = πr 3

6
p

2a3
. (3.14)

At every of the eight vertices, six of those wedges have to be subtracted,
so that the exact volume fraction is given by

φ=φfirst−6 ·8 ·Γ=

=3
p

2π
( r

a

)2
−4

p
2π

( r

a

)3 (3.15)

restricted to the r range of no contact between the distinct wedges, i. e.
wedge height ≤ half edge length, or r ≤p

3/32 ≈ 0.306 a, at φ= 73.9%.
To obtain a wire radius for a given volume filling fraction, one must either conduct a painful inversion
of eq. (3.15), or apply a numerical root-finding algorithm.35 The resulting volume filling fractions are
depicted in fig. 3.5. The volume fractions observed by voxel counting on discretised srs realisations are
in well agreement with the values from eq. (3.15), at least within the relevant range r /a ≤ 0.2, or φ≤ 0.4.
An additional natural freedom within the geometry construction from the srs network is to place

“atoms” with finite radius rA > r at the vertices, resembling ball-and-sticksmolecular construction kits.

Length scales

With respect to distortive manipulations of the geometry, the explicit and implicit length scales are
to be discussed. Note that any distortion of the network will be topology-preserving (or just “adding”
topological links into the structure by overlap due to massive distortion distances). Even at distortions
large compared to typical edge lengths, the vertex connectivity will persist (though the network may
hardly resemble the original srs, with acute angles, edge intersections etc.).

Wire cross-section As a globally fixed parameter of the network,36 the wire thickness r , in the first
instance, defines the volume filling fraction, and the short-range surroundings of points. Within

35The finite precision of the r found by numerical solvers for a given φ is tolerable, as the number of voxels is finite, too. Within
the structure initialisation, the iterativeNEWTON root-finding algorithm gsl_root_fdfsolver_newton from the GNUGSL
library [Gal09] comes to use. Departing from the first guess from eq. 3.13, the residual |rn − rn−1| drops below 1×10−13,
typically after n = 12 iterations, corresponding to an error of the order of one single voxel at a utopian resolution of 104 px a−1.

36It is, of course, possible to vary r within the network (given, a soundmotivation), but with this in mind, the boundary towards
dropping the circular shape of cross-section is too nigh to be ignored as well—all those are kinds of short-range correlation fine
adjustment with disputable impact on the low-frequency non-local testing which is the scope of this study, but introducing a
diverging number of additional degrees of freedom into the system.
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a distance of the order of r , a point can be characterised by either lying near the surface or deep
within a wire, or, at most, near a vertex.

Atom radii If desired, the three-connected vertices can be occupied by spheres with a finite radius rA,
which will be fixed within the whole network for the same reasons as the wire thickness.

Vertex positions and edge lengths The correlations of longer distances than r are implied by the
vertices and their relative arrangement. Especially, the local signature of chirality will at first be
visible at distances on the order of edge length, when the unbalanced dihedral character of the
vertex coordinations are accounted.

Edge subdivisions In order to increase the density of points manipulable by distortion operations, it
is possible to divide the edges of the network by arbitrarily many two-connected vertices. At the
latest with subdivided edges, it is necessary to build edges from spherocylinders, i. e. to surround
every vertex with a sphere of the same radius as the wire, so that gaps at non-straight junctions
will be avoided.

3.3.3. The Gyroid built from distinct Helices

The Gyroid network contains solid helices wound along the 41 axes in the Cartesian directions (see
fig. 3.1), matching the turning sense chosen for the Gyroid handedness definition, see sec. 3.2.2.
Inspired by the construction ormodeling of chiral geometries from distinct helices [Fre+10; Dem+12],

a remarkable accurate modelling of the Gyroid by the aforementioned helices has been developed by
Wasserka [Was13] and is refined within this thesis.
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A single (mathematical) helix will be parametrised by its pitch λ, the (bend) radius R , and the mathe-
matical description of its core fibre

H(n,O,a,R,λ) =

x|x = O+Da
n

−R cos(2πz/λ)
R sin(2πz/λ)

z


 , (3.16)

with z̃ = (x−O) ·n, and a rotationmatrixDa
n tilting the helix axis into the desired normal n, and spinning

around the axis so that a−n ·a, the perpendicular component of the phasing vector a, points towards
the helix path from the origin (centre of mass) of the helix.

Figure 3.6.: Tracing the helical geometry of the single Gyroid with helices. (a) topology represented by its skeletal
graph, 2×2×2 unit cells. (b-d) Construction from helices in the three 〈100〉 directions. (e) Accuracy of the
construction: BCC basis helices (in total, 16 helix turns per direction; excess structure cut away). (f) The Gyroid
from the nodal approximation, in comparison.

Three helices per unit cube

Demetriadou, Oh, Wuestner, and Hess [Dem+12] introduced their “tri-helical model” as a model
which can be dealt with analytically, while sharing selected symmetry elements with the Single Gyroid:
Oriented in 〈100〉 (Cartesian) directions, three isolated conductive helices mimic (some of) the helical
channels surrounding the 41 screw axes of the Gyroid, while continuously varying the pitch37, and
interconnection between the distinct helices is deliberately circumvented.
While a detailed re-build of a Gyroid structure was not the main scope of that model, it underlines

a fact showing up a new way of both seeing and constructing a Gyroid: The helical character of the
37Note that, only for selected pitch values, this is compatible at all with crystallographic operations. Screw axes (as those of the

Gyroid) must have a pitch being an integer multiple (1 a for 41, and 2 a for 42) of the cubic unit length.
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Gyroid’s topology is well-known from helix-like sub-networks within the srs network, cf. [Sab+14]. Any
edge of the srs skeleton graph is amember ofmultiple helices, each lying in one of the 〈100〉 directions.38
In his research project (which was the immediate precursor to this work), Wasserka [Was13] has—

inspired by the idea from [Dem+12] to build structures from distinct helices—investigated a remarkably
accurate Gyroid replica from placing helices along the primitive cubic 〈100〉 axes (with the proper pitch
of the cubic lattice constant, λ= a). Per cubic unit cell, a total of three helices are thus positioned in
a way that they mimick the Gyroid’s 41 axes. This process is visualised in fig. 3.6. The helix curves are
given by39

SC Gyroid:


H(n = (0,0,1)T,O = a · (0.75,0.5,0.25)T,a = (−1,0,0)T,R,λ= a)
H(n = (0,1,0)T,O = a · (0.5,0.25,0.75)T,a = (0,0,−1)T,R,λ= a)
H(n = (1,0,0)T,O = a · (0.25,0.75,0.5)T,a = (0,−1,0)T,R,λ= a)

 (3.17)

(in the notation introduced by eq. (3.16)), and inflated to have a circular (normal) cross-section with
the desired wire radius r . Helix centre positions O and phase axes a are set in a way to match the
crystallographic unit cell choice, analogue to 3.2 in section 3.3.1.40
Obviously, for wire radii allowing void pores, this creates a bi-continuous network, i. e. both void and

material space are interconnected throughout the whole structure by construction.
Its topological equivalence to the single Gyroid has not been shown rigorously, but obviously shows

up from comparison of the structures (suggested in figure 3.6.

The BCC-trihelical Gyroid

Once one has rebuilt the Cartesian 41 screw axes along 〈100〉 directions (three per unit cube: [100], [010]
and [001]) from helices, forming the solid phase, one has arrived at simple cubic symmetry (originating,
in effect, from applying the 3 rotation to rotate-produce the helices onto each other).
Even if the topology of this SC Gyroid is that of the srs network, the geometry can never be true BCC,

due to the lack of the explicit duplication vector 1/2[111] (or, equivalently, the 3 axes in all the 〈111〉
directions, besides [111]), even though the resemblance works amazingly well already. However, full
BCC symmetry can be achieved by explicit execution of the BCC basis duplication. For a side-by-side
comparison of SC and BCC helices, see fig. A.4 on page 112.
Look at a point where the wire of a SC helix has wound up to direct into [110] direction from its

orientation axis. By the half-pitch of phase distance between the two distinct primitive helix arrays
(plugged into each other to form theBCCbasiswithin the unitcube), the complementary helix is directed
into [110] direction, hence at the same place. Note that this implies

• the remarkable accuracy of building the (actual BCC, hence six equivalent axes per unit cube)
Gyroid from the three-helices model: the second set of helices accounts only for minor structure
smoothing and strictly satisfying BCC symmetry, but has no effect on topology (see fig. 3.6 on
how the BCC-helical Gyroid looks like in this situation).

• a constraint fixing the helix radius by a simple touch consideration: In order not only for the
direction, but also for the radial distance of the two helices to meet, the contact point, hence

38In fact, this holds also true for the 31 helices in the 〈111〉 directions, which are not considered at all in this study.
39Note that this is not the choice in [Was13], but is re-parametrised/translated to make the distance between centre points O of

the helices of distinct orientations, and between adjacent unit cells maximal, and the parameters represented in a way to
emphasise their inherent symmetry.

40This way, the primitive cubic 3 symmetry along [111] is obviously visible in the cyclic permutation of all helix coordinates.
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the helix radius R has to be at half the axis distance (when seen from [001] direction), thus at
R/a =p

2/4

Volume filling fraction and translational noise

A (single-turn) helix can be seen as the result of cutting a torus (of elliptical cross section) and shearing
along its polar axis. The short semiaxis equals the desired wire radius r , and the long semiaxis computes
from the helix radius R and the pitch p (helix “wavelength”, i. e. repetition length in normal direction)
from elementary trigonometry to r /cos(arctan(p/(2πR))) = r ·

√
1+p2/(2πR)2.

Let us, for shortness, introduce the A =πr 2
√

1+ (p/(2πR))2, the cross-section area if the helix is cut
by a plane containing its axis. By applying PAPPUS’ centroid theorem, the volume of a single-turn helix
computes to

Vhelix = A ·2πR = 2π2r 2R ·
√

1+ p2

4π2R2 =πr 2 ·
√

4π2R2 +p2 . (3.18)

This is, unsurprisingly, the volume of a cylinder of radius r and the un-wrapped length of the helix wire:
the hypotenuse of the triangle whose legs are the pitch, and the diameter of the circular base projection
of the bend, respectively.

The volumes of the distinct helices are far apart from being additive to yield the overall φ, as the
overlapping (especially from the explicit BCC basis duplication) renders a major part of an individual
helix “redundant” (already covered by another helix). A reasoning for computing φ, oversimplifying by
reducing helices to a uniform “probability cloud”, adopts ideas from the BOOLEan model:
Be φ1 ∈ (0;Vbox) the probability to find no helix at a random place within a finite box, or, equivalently,

the volume fraction of the box not occupied by a helix. Then

φ1 =1− Vhelix
Vbox

= 1−2π
R A

Vbox

For n helices : φn =1− (1−φ1)n = 1−
(
2π

R A

Vbox

)n

=

=
n∑

k=1

(
φk −φk−1

)
φn −φn−1 =φ1

(
1−φ1

)n−1

(3.19)

Figure 3.7 denotes this sequence at its right border. Besides, results from voxel counting “experi-
ments” on structure initialisations reflect the situation for a real BCC-helical Gyroid, depending on
the displacement of the helices by a Gaussian-distributed offset of standard deviation σr /a. For large
distortions (the relevant scale being the wire radius r ), hitting the single-helix BOOLE limit is a mere
consequence of the binary evaluation nature—the higher-order “predictions” are completely wrong, as
the BOOLEan model is totally naïve with respect to the real-space correlations arising from the helices
being solid bodies. At small/no distortion, the variances of seed statistics is small, and considerable
multiple overlap is present, decaying fast on switching on the quasi-random distortion.
Note that the helical character of the building blocks survives any kind of distortion, while the

sensitivity of φ on the distortion scale exceeds that of the other Gyroid models. The Helices are a
mathematical “toy-model”, probably badly suited for actual realisation. But they show a natural route
to separate the geometrical features (helical elements in the network topology) in different directions,
cf. sec. 5.3.1.
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Figure 3.7.: (Voxel counting) Amounts of helix overlapping within the BCC-helical Gyroid (six helices per unit
cube, helix radius 8−1/2a, wire radius 0.111 a, resolution 35px a−1) when subject to purely translational noise on
the helix origins. Data points show the fraction of voxels covered by at least as many helices as noted. Data point
noise is due to variable random seeds; solid areas are delimited by splines, as guides to the eye. On imposing
distortion (Gaussian profile, σq a/(2π) = 1), the helices are moved apart each other from the positions forming
the Helix Gyroid approximation. Multiple-overlap volumes decrease, whereas the binary (“net”) volume filling
fraction “1” rises (σr /a . 0.1). At higher distortions (σr /a & 0.2), overlap fractions equilibrate, at a binary φ
around 0.45, i. e.more than twice the original filling! To emphasise that, this plot does not apply a logarithmic
scale for the ordinate.

Table 3.1.: “Standard” parameter choices for the different Gyroid initialisationmodels to obtain the volume filling
fraction of φ= 20.5%, as motivated by its approximate occurrence in the wing scales of C. rubi [Sab+14]. For
reflectance spectra and CCR in [001] direction, for typical biological contrast ε= 2.4, see in fig. 3.8.

Nodal 1srs network Helices
SC BCC

Threshold t =−0.9
Wire radius n/a r = 0.1372 a r = 0.1255 a r = 0.113 a
Helix radius n/a n/a R = a/

p
8

Prominent length scale edge length/subdivisions helix centre distances
(continuous) a/

p
8 (3/8 = 0.375)a (8−1/2 = 0.354)a

See sec./page 3.3.132 3.3.2/36 3.3.3/39 3.3.3/40
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3.4. The undistorted single Gyroid as a PhC

The single Gyroid, arising from its natural occurrence in systems known for their structural colour (cf.
introduction), has been subject to investigation as a structure-photonic crystal [TODO; MDS09; Dol+14;
Sab+11; Sab+14]. See table 3.1 for which parameters to apply to get appropriate φ from the different
Gyroid models. This section will, in short terms, present the known behaviour, with a focus of band
structure features/inclination in high-symmetry (lowMILLER-indexed) directions.
All data within this section (for the introduction of methods, see chapter 4) has been extracted from

simulation at dielectric contrast ε= 2.4 (biological material/chitin vs. air/vacuum), with typical filling
fractions φ known from butterfly wing scales, and at frequencies equivalent to optical/near-UV light,
when the cubic lattice constant a is of the typical order of 315nm of butterfly wing scales [Sch+11;
MTC13].
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Figure 3.8.: (MEEP reflectance) Comparing the undistorted single Gyroid initialisations by their PhC response of
[001] inclined slabs of the thickness 6 a. LCP (middle graph) and RCP (lower) reflectance; above, the cumulative
circular contrast. Shadings demarcate regions of qualitatively distinct regions, as identified along the description
of band structure and reflectance (sec. 3.4 and [Sab+14])
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Briefly summarised, itemised by inclination/high-symmetry direction:

Cartesian [001] direction (See also fig. 3.8) Subsequent to the fundamental bands, at Ω & 0.8, a
narrow (partial) high-reflectance band gap causes high reflectance, irrespective of circular polari-
sation.
Around 0.83 <Ω< 0.86, a circular-dichroic band gap exists due to the existence of a band con-
sisting of modes of nearly full		 character, giving rise to high transmission, hence substantial
CD.
At higher frequencies, multiple bands exist which couple poorly to incident plane waves, thus
showing high reflectance in general.

Cubic face diagonal [110] This is the primitive direction of reciprocal lattice, hence the direction
within the BZ of least distance to BZ translation copies. For a given low frequency (i. e., not
exceeding the eigenfrequencies of the primitivemodes at the band edge in the primitive direction
too much), within the material no other BLOCHmodes are available to couple into with help of
additional crystal impulse (reciprocal lattice vector), so that, in effect, the diffraction problem
remains one-dimensional, giving rise to a BRAGGmirror-like, simple band gap and reflectance
behaviour, insensitive on circular polarisation [Sab+14].

Body-diagonal [111] The band structure in [111] direction is complicated by the long distance up to
the next Γ (reciprocal lattice) point, forcing to view the direction in the extended zone scheme
(regard wavevectors effectively outside the first BZ) [Sab+14]. First-BZ-only band structures
show up several narrow, essentially achiral band gaps, but extended view unveils low-coupling
modes over the whole frequency range. Note that this direction, being the primitive real-space
direction of the BCC lattice, hosts the highest number of repetition units per given length. Thus,
in resemblance/reversal of the [110] argument, the frequencies necessary to reach the BZ edge are
sufficient high to excite sufficiently many higher diffraction orders to achieve major transmission
(or, equivalently, to hinder the build-up of a wide band gap).

Figure 3.8 compares the reflectances and CCR performance of undistorted single Gyroids created
by either the nodal approximation, the network graph, the BCC or the SC helix sets (as described in
sec. 3.3). The former three share exact BCC symmetry, hence qualitatively (in frequency position and
slope) the same details in reflectance, and deviations are solely due to the minute differences of how
the initialisations differ in detail (straight vs. curved “wires” for network vs. helix Gyroid, e. g.). The
agreement is remarkable.
The SC helix behaviour, behaving in terms of CCR (which smoothens out narrow details by its

integration) rather similar to the BCC structures, exhibits subtle, but pronounced deviations from
the BCC reflectance spectra in sharp resonances. Moreover, although the volume filling fraction is
essentially unaltered, the CCR always lies below the true BCC structures, and a blue-shift of about
∆Ω = +0.02 is visible. This may hint at a high importance of fulfilling the geometrically strict BCC
symmetry.

3.5. Finite incident angles

By applying trueBLOCH-periodic boundaries, setting k∥ as an input parameter, and a spatialmodulation
of the source profile with the same BLOCH phase factor exp(ık · r), a FDTD simulation can be carried
out at finite incident angle with respect to the inclination direction/slab surface normal.
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More precisely, this is a simulation run at constant k∥, with the actual incident angle being dependent
on the frequency Ω, determining the normal component kz of the incident wavevector: The polar
angle computes, per frequency, to ϑ= arctan(c0k∥/ω) and is a nonlinear function of both k∥ and ωOne
“finite-angle” simulation run carries the finite-width frequency spectrum of the source, so the lines of
constant angle lie curved within the graphs parametrised by (Ω,k∥). An additional degree of freedom
comes with the azimuthal angle of the wavevector (lateral direction of k∥), chosen (and named adopting
the directions) to tilt towards other high-symmetry directions.
Figure 3.9 depicts, starting from the high-symmetry directions [111] (upper row) and [001] (lower

row), the angle dependence of circular contrast in an undistorted Gyroid.41 Similar angle-resolved data
(both from simulations and experiments) has been obtained by Pouya [Pou12] and Pouya and Vukusic
[PV12] for single Gyroid reflectance of linearly polarised light, and used to identify the BRAGG orders
involved in the formation of the reflexes.
The prominent reflectance signal of the band gap/low-coupling regime of the [001] direction sys-

tematically red-shifts with increasing parallel wavevector. Whereas the low-coupling regime and the
dichroic band gap (blue) gradually diminish, the full band gap reflectance stays rather robust, even at
incident angles on the order of 25°.
The [111] direction, “outstanding” by its complicated band structure and both low absolute and

dichroic reflectance, shows up very sensitive to finite incident angles, and its minute�	-dominated yet
faint reflectance is, depending on tilt direction, outshined by a moderate increase in reflectance (with
signals at least as complicated); some of the emerging “bands” exhibit distinct CD (intense colours) in
both		 and�	 CP senses. Compare this complicated behaviour with the observation made for the
normal-incidence [111] direction data in the presence of finite absorption, sec. 5.4.2.
Its distinctly low reflectance becomes overlaid with medium-reflectance “bands”, exhibiting weak
		-major reflection, impeding possible experimental observations of the features in [111] direction
when subject to (inevitable) finite angular divergence.

41Compare fig. 3.9 with fig. 5.17 on page 103 for the influence of translational noise and a sinusoidal chirp in the [001] direction.
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Figure 3.9.: (MEEP reflectance) Irradiationwithfinitek∥ (in effect: tilting the angle of incidence) of theundistorted
network single Gyroid (φ= 20.5%, ε= 2.4), inclined in [111] direction (upper row) and [001] (lower row) and its
consequences on reflectance. The polar angles cover a range from zero to approx. 25° in these pictures. The
azimuthal angles are chosen (see real-space lattice drawing at the lower right) to mix the k vector from the
surface normal (inclination) with some amount of another high-symmetry direction, denoted by indexing k∥
with the respective directions. Brightness is proportional to reflectance (black: zero, white: full reflectance
for both�	 and		). Colour intensity depicts degree of circular polarisation (red: 		-major, blue: �	-major
reflectance).
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4

Constructing Distorted Structures
and Probing by FDTD

Adolph von Menzel: „Eisenwalzwerk“ (1875)



4.1. Computational Electrodynamics

The usual way for testing results from theoretical predictions or from experiments against each other,
when the “direct” cross-link is inaccessible, is the substitution of generalising exactness—with minimal
approximations (esp., discretisations)—by brute-force computing power: numerical simulations. Once
the (small) subspace of analytically solvable problems has been fully explored, numerical approxima-
tions to the governing equations have to be applied to compute (approximations of the) solutions.
For the field of electrodynamics (i. e., approximate dealing with theMAXWELL equations), several

numeric methods come to use, each with its distinct approaches [Oba11]:

Time-domain Forward-integration on discrete meshes. FDTD (finite-differences time-domain), FEM
(finite elements), FVTD (finite volumes). In essence these differ in the approach to subdivide
space.

Frequency domain/indirect Plane-wave expansion and relatives: seek for the mode structures and
their associated eigenfrequencies (cf. sec. 2.3.1).

4.1.1. Finite Differences Time-Domain (FDTD)

The both most naïve and straightforward approximation to numerically compute electrodynamics is to
replace the real-space time-domainMAXWELL equations’ differential operators (spatial and temporal
derivatives) by their respective first-order finite differences, partitioning space and time in a suitable
uniform lattice, and simple iterative computation of time-evolution (hence the name).

Regular spatial discretisation—the Yee lattice

Yee [Yee66] pioneered the FDTD calculations, deploying the now-standard YEE lattice space-time
tessellation (in two-dimensional space): The space is divided into voxels42, i. e. a simple cubic (in 3D;
square in 2D) lattice of distinct sites. At any of those lattice points, the six E and H field components are
stored component-wise on different positions within the voxel, so that they form a spatial chessboard-
like pattern, further structured by the pattern which components are stored at which sites: The YEE
lattice storage sites hold the triple of H and E components placed at each site of an imaginary fcc lattice
(without the origin itself) originating from the body centre, or an edge centre, respectively.43 For a
closer look to the details, see [Yee66] or any basic FDTD text [TH05; Oba11; MIT].
FDTD, as a time-domain technique, applies a temporal update scheme. It is designed in a leap-frog

manner, in that the H(t ) components are computed from E(t −∆t/2) half a time step earlier, and from
this, the E(t +∆t/2) values, to compute the fields (not only in space, but also in time) alternately, rather
than simultaneously. For computing field quantities from both the electric and the magnetic fields, this
implies that the accuracy is disturbed by the time-offset of ∆t/2, giving rise to a field synchronisation
routine, which interpolates in time, enabling a more accurate calculation of those derived quantities
[MIT].

42As this study will cover 3D only, I will use the term voxel (“volume pixel”) throughout the document. Though, I will denote
linear dimensions in terms of the (YEE) lattice given in “pixels” (px) in accordance to ordinary 2D computer graphics.

43You can also think of the YEE lattice storage as a “rocksalt−bcc” structure, i. e. the two-atom (E and H) basis fcc rocksalt
structure with the unit cube origin and body centre (bcc lattice) cleared out.
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Bloch-periodic boundaries

In an infinite system with discrete translational symmetry, the value of any function at any point can
be determined once its decomposition into a unit cell function (invariant under lattice translations),
parametrised by its respective crystal wavevector k, is know (which is the main message of the BLOCH
theorem, see sec. 2.3.1).
For an incoming field consisting of plane waves, a laterally infinite structure (periodic or not) would

be appropriate, but is—of course—not realisable with both finite spatial resolution and finite computer
memory. For crystals (true translational symmetry), the natural way to “truncate” the structure is by
(parallel) planes commensurate with the crystal lattice (apart a lattice vector R), and to impose periodic
boundary conditions: The opposing planes are connected, so the system at one side sees itself on the
other as its neighbourhood (toroidal connection), periodically concealing the translation by R. Tomake
(complex) fields fulfil the BLOCH condition for a given k, the phase factor exp(ık ·R) is added on the
interaction terms involving each lattice vector R which collapses parallel box termination planes onto
each other.
TheseBLOCH-periodic boundaries are the essential (implicit) ingredient in calculationsof crystal band

structures by plane wave expansion [AM76; JJ01]. In the case of the slab-like transmission/reflectance
geometry, the preconditions are slightly altered: Of the three spatial dimensions, only the two lateral are
indefinitely extended.44 Thus, periodic boundaries are used only for the lateral faces of the simulation
box. Note that the finite lateral extent is a compromise towards disorder systems (i. e. an with infinite
spatial period).
By constructing distortion with the help of Fourier components of the simulation box (see sec. 4.3.1),

periodic boundaries for the structure are automatically fulfilled. For the electromagnetic fields, MEEP
provides passing a BLOCHwavevector to define the phase increment at boundary crossings.
Unless non-normal incidence, i. e. finite k∥, is requested, this reduces to k = 0 (unity phase factor,

i. e. ordinary periodic boundaries) in effect, as the normal component of the wavevector is arbitrary
(due to absorbing boundary conditions described in the next section). When a non-zero incident angle
ϑ is desired, the lateral component k∥ of the BLOCHwavevector is adjusted to direct into the incident
angle ϑ = arctan(ck∥/ω) direction. In fact, k∥ is the given input variable; so the angle is dependent
on the frequency, as a whole interval of ω is excited by the source. This “parametrisation” of incident
angles by k∥ is somewhat more “natural” than the angle itself, as it mimics the conservation of parallel
components of the wavevector as well as those of the E and H fields on crossing material borders—at
the price of issues on data analysis, e. g. in “distorted” spectra when plotted against ϑ, or due to its
distance to realistic experimental conditions.

Reflection-less boundary conditions: (U)PML

For situations where a sensible emulation of infinite free space is desired, a way is needed to suppress
reflections in such a way that the actual conditions are (ideally) irrelevant. To reach this goal, the
naïve placing of a simple absorbing material at the boundaries has the disadvantage of, in general,
causing reflections at the interface. Therefore, Bérenger [Bér94] developed the perfectly matching layers
(abbreviated: PML; “matching”, as it is designed to match the wave impedance of free space) as an
artificial medium placed in front of the borders of the simulation box boundaries. Its idea is that, by
constructing, plane waves are reflection-less transmitted, and exponentially attenuated. PML have

44In the direction of the surface normal, however, the (material) thickness is fixed, surrounded by hollow space to allow for an
onset of far-field behaviour (allow evanescent modes to decay). See next paragraph.
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rapidly gained attention as boundary conditions for time-domain simulations [TH05], and have been
improved in various ways, especially into the nowadays widespreadUPML: coordinate transformation
towards complex coordinates [Joh10; OJ11; Osk+08].
A failure of PMLs witnessed during this work, and also known from literature [DV11; Osk+08; Dom13]

is a divergence (exponential grow of field amplitude), especially for non-normal incidence, or PhC
reaching near or into PMLs. Long-lived lateral modes within the simulation box void might get excited
(during the initial source pulse) which are badly absorbed by PMLs, or even “pumped” by them. The
field gets dominated by its exponential growth, rendering simulation data unusable. By the choice of
the POYNTING vector z component (see page 53), PML divergences could be effectively prevented in the
present study.
Adiabatic absorbing boundary conditions [Osk+08] have been proposed as an alternative to clas-

sical PMLs, and have been implemented in MEEP as a PML drop-in replacement. Testing within the
framework of this study resulted in no significant advantage over PMLs.

Convergence, Stability

Due to the conceptual simplicity of finite-difference methods for solving initial value problems, conver-
gence has been subject to analysis long before the emergence of electronic computational methods as
FDTD: Courant, Friedrichs, and Lewy [CFL28] have shown an interrelation between the spatial and
temporal derivative discretisations, nowadays named the COURANT factor S [MIT; Oba11]

S

c∆t
= Sn

c0∆t
≤

√√√√ d∑
j=1

1

∆x2
j

[
=

p
d

∆x
for ∆x j ≡∆x ∀ spatial dimensions j

]

S ≤nminp
d

(4.1)

It assures maximum quadratic convergence [MIT]

Strengths and Weaknesses FDTD can easily be adopted to arbitrary problems; the uniformity of
mathematical structure leads to low implementation complexity. With respect to frequency-domain
techniques, FDTD usually applies wide-band input pulses, enabling simultaneous data acquisition
from near-arbitrarily many45 distinct frequency channels (as long as linearity, i. e. strict validity of
superposition is assumed).
At the downside of FDTD, the numerical cost weighs heavy: Especially when very different length

scales should be represented accurately, the missing option to adapt resolution to structure details
obligates a lot of computational work in “boring” (homogeneous) regions of the simulation box.
Another intrinsic drawback of FDTD is numerical dispersion: phase velocities become dependent

of the orientation relative to the YEE lattice when the space and time discretisation meshes are finite
[Oba11].Within to studies excluding examination of time-dependent behaviour, this phenomenon can
be safely disregarded, as only the total energy/flux balance is taken into account.

45TheNYQUIST frequency of the YEE latticeΩN =ωNa/(2πc0) = a/Resolution defines the magnitude of the natural upper limit of
frequency sampling, the lower limit given by the inverse of the time desired to wait for the simulation to finish.
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4.1.2. MEEP

The software coming to use for the FDTD simulations of this thesis isMIT Electromagnetic Equation
Propagation46 (MEEP) [Osk+10]. By the usage of advanced methods for anisotropic sub-pixel averaging
[Far+06; OKJ09], the staircasing effects inevitable on voxelised smooth surfaces get minimised, in effect
attaining quadratic convergence for any surface geometry [Far+06].
MEEP is most comfortably operated by its Scheme interface, implementing various useful standard

functionality of FDTDsoftware, andoffering (inprinciple) easy extendability. However, the sophisticated
route for material function design necessary for this work cannot be “straight-forward” integrated
in MEEP’s standard work flow (fine-grained “voxel-wise” control of ε conflicts with the “illusion of
continuity” [MIT], which otherwise does a great job in keeping users to be distracted from numerical
details). So an extensive amount ofwork had to be accomplished, for the structure construction software
dedicated to this thesis, to properly cooperate with MEEP.

4.2. Reflectance of PhC via FDTD

4.2.1. Designing the simulation box

The simulation box geometry

R T

So
ur
ce

Structure: “slab”PML PML

(PBC simbox copies)

lateral

normal

Figure 4.1.: 2-D Sketch (by scale for a system size of 2×2×6 unitcells) of the simulation box for FDTD simulation
with MEEP Geometry, with the PhC material within the slab, surrounded by hollow space. Simulation area
boundaries innormal directions are terminatedbyPMLabsorbers, and laterally quasi-infinite, fromcontinuation
by (BLOCH-)periodic boundary conditions, which duplicates the source, too. Reflectance and transmission
measurement planes are indicated by R and T .

This section gives a short overview over the FDTD simulation box, depicted in fig. 4.1. By convention,
the normals of the slab surfaces, sources, measurement planes, and PML direct in z direction.

46http://ab-initio.mit.edu/wiki/index.php/Meep
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Boundary conditions

Periodic Boundary Conditions On the lateral faces of the simulation box, the fields are subject to
BLOCH boundaries, as introduced in sec. 4.1.1. For k = 0 (or, more concisely, k∥ = 0), they reduce to the
special case of regular periodic boundaries, like the ones holding implicitly for the material function
ε(r).

Reflection-less boundary conditions: (U)PML In the normal direction, space should ideally
behave as if it were infinite vacuum, i. e. no effect of boundaries should be visible at all. This is achieved
by Uniaxial PML layers, as introduced in sec. 4.1.1. Their thickness is chosen by a trade-off between
simulation effort (PML volume accounts to the simulation box) and the achievement of full absorption
while reflection-less. From experience, a PML thickness of 50px (at light wavelengths of 20px and
above) proves robust; considerably thinner PMLs may exhibit finite transmission, or even trigger PML
divergence, an exponential growing of field energy, due to the PMLs effectively acting as a negative
absorption, i. e. gain medium.
Since PMLs are optimised for absorbing light of normal incidence, their absorbing performance falls

behind for non-normal incidence. Especially, the zero-reflectance condition is no longer fulfilled when
PMLs are superposing inhomogeneous structures [Osk+08].
Special care must be taken to not locate flux/decay measurement, or photonic crystal material too

near to PMLs, as the evanescentmode patterns leaking some YEE lattice points outwardsmay adulterate
data, or give rise to inferior field decay, or PML divergences.

Light sources

Circularly polarised light is created within MEEP by the inversion of basis change from circular to
linear polarised light as described within sec. 2.2.1: MEEP offers sources for linear polarised light, and
two sources with same geometry are superimposed at the same place. The first source creates the x
component of the electric field, the second the y component, with its phase advanced by π/2 for LCP,
or 3π/2 for RCP light (which will, relative to the right-handed choice of the Gyroid enantiomer sense (cf.
sec 3.2.2), be labelled LCP=�	, and RCP=		 in the following).
The temporal envelope of source emission in FDTD simulations is typically Gaussian-shaped [Oba11;

MIT]. Therefore, the amplitude spectrum in frequency space is also Gaussian, and in both the time and
frequency domain the function runs maximum smoothly.47 The response of several such frequency
pulses may be combined to increase the effective band-width.

Measuring the fluxes

The data acquisition takes place by flux planes, geometrical objects (source- and surface-parallel planes)
collecting the POYNTING flux through themselves [MIT]. Time-domain data will be internally Fourier-
transformed to yield frequency-resolved intensity data. The frequency range is naturally in congruence
with the input spectrum of the Gaussian source, and the selected number of frequency bins defines the
resolution.
47In detail, this is not perfectly true, as the Gaussian pulse has to be cut off at some point in time. Such a sudden (though

low-amplitude) gives rise to high-frequency noise causing YEE lattice aliasing artefacts [Oba11]. Thus, FDTD software offers
and recommends long Gaussian cut-off times [MIT]. As the time constant of mode decay from the PhC typically exceeds the
pulse width by orders of magnitude, this is a “cheap” way to reduce slowly decaying high-frequency noise within the FDTD
simulation box.
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Measuring reflectance flux is complicated by the fact the primary source contributions get measured
along the reflected light. Therefore, any “real” measurement is preceded by a “reference” runwithout
the structure (or, equivalently, with ε= 1 at all space points), so that the free space signal of the source
can be collected for subsequent subtraction from the reflection fluxwith the structure. Moreover, the
reference simulation run creates intensity reference data of the source spectrum, against which the flux
data can be normalised, i. e. reduced to unity.

4.2.2. Determination and analysis of simulation “convergence”
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Figure 4.2.: (MEEP time-domain) Field decay monitors (at the transmittance flux plane centre) of either the x
component of the electric field, or the z component of the POYNTING vector of energy flux. Geometry: SC Gyroid
distorted with σr /a = 0.2, φ = 0.27166, thickness 5.7 a, �	 irradiation. Simulation by E field decay measure
killed due to onset of PML divergence (time& 400).

As for anynumerical forward-integration technique, also FDTDneeds a stop criterion. The temporally
bounded field excitation (Gaussian source amplitude envelope) suggests measuring field decay, i. e.
the observation of field strengths (“decay measures”) at some given point(s), until the assumption that
most of the energy imposed by the sources has radiated into the PMLs for subsequent absorption holds
sufficiently plausible. Technically, the ratio between the current field measure and its maximum value
over the simulation, has to lie below a given cut-off threshold for a sufficiently long time.
Watching (the absolute value of) a field component over its time evolution (as proposed by theMEEP

tutorial [MIT]) exhibits major oscillatory behaviour, thus proves susceptible to zero passages, causing
premature “convergence”. Figure 4.2 depicts such a pathogenic case, where field decay (x component of
the electric field) would have “falsely” terminated the simulation if the cut-off were higher, and finally a
creeping PML divergence takes over (until the run was terminated by hand).
As a more robust measure, the z component of the POYNTING vector comes to use, driven by the

following considerations:
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• Measuring flux is, by also introducing the magnetic field components, less susceptible to zeros,
prematurely terminating the simulation.

• Instead of a scalar (energy density, e. g.), a vector has direction information, making it possible to
detect tendencies to PML divergences:

• If PMLs start emitting, by what reason ever, radiation of intensity comparable to the initial source
pulse field, or numerical errors accumulate in a similar fashion, the radiation will be directed
from the PMLs to the PhC slab, thus will switch the sign of the POYNTING vector at the location of
flux measurement. So the onset of divergence will terminate the simulation by itself (see fig. 4.2).
One drawback of this method is, that this “automatic” mechanism will cause early termination in
cases of low overall-transmission, leading to intense residual ripple.
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Figure 4.3.: (MEEP time-domain) Decay measure monitors diminishing field intensity (nodal Gyroid, t =−0.9,
		 irradiation). After transient response (tc0/a. 50), decay behaviour gradually crosses over to exponential
decay (tc0/a& 200). Switching on Lorentzian absorbance (increasing η, as described in sec. 5.4) shortens the
time constant τη of exponential decay. Data acquisition from [Sab+14].

Absorption and field decay

It is natural to ask for the influence of absorption on the time constants. Figure 4.3 depicts the field
measure in its time evolution. The exponential decay envelopes show up the anticipated response to
losses, in a substantially more rapid decay.
It may be noted that, even though absorption could be considered to “speed up” FDTD convergence,

this means either a substantial alteration of the system behaviour (cf. sec. 5.4), or (for η¿ 1) not a that
substantial advantage.
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Figure 4.4.: (MEEP reflectance) Intermediate		 reflectance spectrum output while the simulation is running.
Ripples in frequency-space spectra (upper graph) increase in frequency and decrease in amplitude during the
simulation time tc0/a. Lower graph: Fourier transform of the spectra in the upper graphs: The maximum ripple
frequency gets visible by a sharp signal break-down.

Development of spectra along simulation time

Flux planes accumulate the flux information during thewhole simulation, and are capable of computing
the “current” spectrum not only at the very end of the simulation. So wemay have a look on how the
“convergence” proceeds: by outputting intermediate spectra during the simulation. This is shown in the
upper part of figure 4.4. Clearly, the “R

!< 1 energy conservation” is “violated”; especially at early times
and at the edges of the frequency interval48. However, during the ongoing simulation, these overshoots
level out gradually.
The ripples in the signals of figure 4.4 increase in frequency with progressing simulation time. The

lower graph visualises this observation, in form of the abrupt cut-off frequency frequency shifting
higher with time. To explain this behaviour, it is necessary to look how MEEP computes the fluxes
frequency-wise: each flux plane continuously collects (POYNTING) field amplitude information in the
time-domain, and computes, by numerical Fourier transformation, the frequencies from it. When
the frequency data is “prematurely” requested (field amplitudes too high to be safely ignored), the
time-domain cut-off introduces a jump function in the (periodically continued) time signal. Once
48Note that this data is reduced, i. e. divided by the reference run spectrum, and the numeric values at the tails come fromdivision

of two very small numbers.
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subject to FFT to yield the spectrum, the latter is superimposed, essentially, with the harmonics of the
simulation time window. The natural countermeasure is to wait until the field has sufficiently decayed
to make its cut-off noise either negligible, or exceed the frequency resolution of the flux plane.
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Figure 4.5.: (MEEP reflectance) How the lattice resolution impacts FDTD results: Cumulative circular contrast of
the samenodal Gyroid (see sec. 3.3.1, t =−0.9,φ= 20.480%analytically (dashed line in the inset, fromeq. (3.15)))
initialisation with different discretisation resolutions. At some resolutions, the reflectance spectra (and volume
fractions) differ qualitatively and quantitatively from the general trend.

Grid resolution

The resolution of grid discretisation has to be traded off realised between a reasonable representation
of the structure with all major details, and on the other hand the finite computational power (CPU time
for FDTD iterations, and, perhaps, memory consumption for holding the lattice, for very large systems)
and the demands on data quality.
To test for an optimal grid resolution, several runs of an otherwise identical structure have been

carried out, differing in discretisation resolution. This comparison is presented in fig. 4.5 in terms of
CCR data. It is no wonder that deviations from themain trend becomemarked at very low resolutions—
alone, the survival of qualitative behaviour is remarkable (at EUCLIDean distances between network
vertices of length

p
8px, and wire diameters of 2.16px!).

In contrast, at some intermediate resolutions, e. g. 20px a−1, data markedly deviates from the other-
wise common behaviour (Note that this effect may not be due to a simple aliasing artefact, as the nodal
approximation completely consists of curved surfaces). This calls for the necessity of, once you simulate
on a new system, to go through a multi-resolution scan like the one in fig. 4.5 in order to estimate the
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“average-ness” of single-resolution data from amore exposed viewpoint.

4.2.3. Inclination and Orthorhombic unitcell supersets

When the structure initialisations, as discussed in chapter 3 are realised within a simulation, we do not
want tobe restricted to their natural (i. e.Cartesian) coordinateorientation. Rather, an inclination should
be selectable, in order to specify the relative orientation of the light wavevectors’ parallel component k∥
with respect to

• (in the crystalline case) the band structure, i. e. determining the frequency-matching condition in
the reciprocal space of the crystal, or

• given a system exhibiting any kind of directional order (be it inherited froma formerly crystallinity,
or orientational order superimposing an otherwise spatial random structure), its predominant
direction.

This work (and the underlying software) formally restricts to processing “orthonormal”49 coordinate
systems, partly to adapt to the rectangular “voxel” structure natural to the YEE lattice, see sec. 4.1.1.
Following the notation for plane cuts through PhC in literature [Sab+11], the inclination is the

conventional cubicMILLER index [hk`] of the surface normal, i. e. at normal incidence (k∥ = 0), the
incoming plane waves are directed in [hk`] direction within a fictional continuation of the cubic (real
and reciprocal) lattice from the material into the surrounding free space.

Orthorhombic unitcell supersets For the embedding of non-〈00`〉 inclinations (i. e. with not all
crystal coordinate axes coinciding with the simulation box coordinate system) into the simulation box,
we cut out, fromacrystal chunkof sufficient size, a rectangular boxwith facesparallel or perpendicular to
the desired inclination. For an arbitrary inclination, the minimal box chosen to hold commensurability
with the crystal lattice this way is not cubic nor a square cuboid, but a general rectangular cuboid. This
unitcell superset50 must hold an integer number of primitive unit cells to be a valid crystallographic
unit cell, and exhibits at least orthorhombic symmetry. It can be used as a convenient container for the
construction of the structure by simple translational copy along the normal (= inclination) and lateral
directions.
By convention, the slab surface normal, hence the inclination, will direct into z direction of the

simulation box, i. e. the (conventional) orthorhombic supercell will be oriented such that its [001] axis
coincides with the inclination direction.

Non-Cartesian inclination To fill such a orthorhombic unit cell with a cubic structure, the cubes
have to be rotated to get the inclination [hk`] the new z axis, hence the orthorhombic [001] direction.
The first step is a rotation around the axis n in between the normal and the inclination direction:

n ∝ [001]+ [hk`]

Lz
(4.2)

(with Lz = |[hk`]| the axial lattice constant of the orthorhombic cell), by an angle of π.Through this,
[hk`] ≡ z′ and z (the former cubic [001]) will swap places.
49The [conventional] unit cells are cubes, but without demanding a cubic space group, i. e. threefold symmetry along the body

diagonal
50In this section, the terms unitcell superset and supercell will be used synonymously. Later on, supercell will name the whole

simulation box, consisting of the orthorhombic unitcell supersets introduced here.
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Next, a rotation around the new z axis will be conducted to make the other Cartesian directions x
and y being represented by low-indexed crystallographic directions (in order to minimise supercell
volume).
Therefore we construct the lattice direction

x′ =

h
k
`

×

0
0
1

=

 k
−h
0

 (4.3)

(which is perpendicular to the new z axis and thus an appropriate Cartesian axis) to become the new x
direction. By construction, the third axis

y′ = z′×x′ =

h
k
`

×

 k
−h
0

=

 −h`
k`

−h2 −k2

 (4.4)

will then point in y direction. The rotation angle is determined by ϕ = arccos([100] ·x′/
p

h2 +k2) =
arccos(k/Lx ).
MILLER indexed direction vectors [hk`] are great in predictingminimum spatial periodicity

u(r+ [hk`]) ≡u(r) ∀ lattice-periodic u(r)

|[hk`]| =
√

h2 +k2 +`2,
(4.5)

as long as they are normalised following the rule of minimum integer indices: Whenever a new lattice
vector z′, x′, or y′ is computed, it has to be divided by the greatest common divisor of each their
components.
Obeying this, the orthorhombic supercell dimensions

Lz =
√

h2 +k2 +`2 Lx =
√

h2 +k2 Ly =
√

h2`2 +k2`2 + (h2 +k2)2

V =
√

k4`4 +2h2k2`4 +h4`4 +2k6`2 +6h2k4`2 +6h4k2`2 +2h6`2 +k8 +4h2k6 +6h4k4 +4h6k2 +h8

(4.6)

are only definedmodulo an integer factor, as the computations of eqs. (4.3) and (4.4) do not guarantee
minimal length, thus have to be further reduced to get the minimal orthogonal unit cell.

[110]: Cubic face diagonal inclination

[hk`] =[110] = z′

x′ =[110]

y′ =[002] ⇒ [001]

ϕ=arccos(1/
p

2) =π/4

Lz =
p

2 Lx =p
2 Ly = 1

V =p2 ·p2 ·1 = 2

(2 unit cubes per orthorhombic supercell)

[111]: Body diagonal of a cube

[hk`] =[111] = z′

x′ =[110]

y′ =[112]

ϕ=arccos(1/
p

2) =π/4

Lz =
p

3 Lx =p
2 Ly =

p
1+1+4

V =p3 ·p2 ·p6 = 6

(6 unit cubes per orthorhombic supercell)
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The normal view of the [111]-inclined orthorhombic supercell for a cubic structure is depicted in the
inset of fig. 3.9 on page 46.

Hexagonal lattice: Orthohexagonal cells The use of structures described by hexagonal (or its
superset trigonal) lattices demands away to circumvent the orthogonality precondition for the primitive
crystal lattice. This is done by the orthohexagonal basis choice: Be [100] and [010] the primitive lateral
unit vectors of a trigonal unit cell, then [100] and [120] span a rectangular lattice as an appropriate basis
of aC-centred orthorhombic lattice [Int04], which can directly be used as a conventional unit cell in
the above sense.

4.2.4. Expectations and influences to [FDTD] reflectance spectra

Finite thickness: Fabry-Pérot pattern The reflectance off a PhC slab (consisting of a medium
sufficiently homogeneous for light phases accumulate uniformly to enable interference) has been
discussed in sec. 2.1.4. The conditions for FABRY-PÉROT interference are inherent to slab geometries,
and as a such naturally form an integral part of finite-geometry reflectance data, though in a more
subtle way due to

1. the inhomogeneousmaterial within the slab, i. e. the assumption of plane waves within the slab is
invalid. For regular crystalline structures, at least BLOCHwaves are an available reasonable basis
with a well-defined spatial periodicity, although the equalisation of the free-space wavevector k
of plane waves and the BLOCH index “crystal impulse” k is spurious.

2. In case of a disordered structure, the unambiguous length scale reflecting in the number of
FABRY-PÉROT humps is missing, having to be replaced by the slab thickness itself (to reduceΩ
dimensionless, e. g.). So, in comparison with multiple-unitcell crystalline slabs, the scales differ
and are no longer directly comparable.

There are two approaches to deal with this oscillatory signal. You can either average over slabs of
different thicknesses to “smear out” the oscillations. By doing so (it has been done in data treatment
for [Sab+14]), the prominence of the “macroscopic” [slab] geometry will be reduced in favour of the
influences of the “microscopic” [in this case Gyroid] geometry.
On the other hand, the resulting flat, finite reflectance over those frequency ranges where the mi-

crostructure is essentially transparent, can no longer be distinguished from increasing reflectance
caused by the microstructure itself. So, knowing about FABRY-PÉROT (and not averaging over multiple
thicknesses) in distorted systems, the recognition of “well-behaved” reflectance spectra with clear
minima allow to distinguish slab features from those arising from distortion itself.

Termination Thepositionof cutting throughaPhC inorder toproduce the surface exposed to incident
radiation determines the cut face geometry, hence the local fields at the surface, and the coupling
behaviour of modes into the material.
Thus its impact on reflectance behaviour shall be examined. Figure 4.6 depicts a slab of only

athickness, assumed thus to exhibit very pronounced termination influences. Indeed, different termi-
nations show distinct reflectance, but the differences are in fair agreement with each other, relativising
the need for termination averaging.
Two notes on sensible termination choice
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Figure 4.6.: (MEEP reflectance) Influence of structure termination t (position of real-space cut-off plane at the
upper side of the slab) on the reflectance spectrum of a Gyroid (nodal approximation, φ= 20.4%) with a slab
thickness of 1 a, i. e. one conventional unit cell height, and a single repetition unit in normal (Cartesian) direction.
Data is comparedwith the sameGyroid structure, six times repeated. The�	-major dichroic reflectance (positive
slope in CCR) is already pronounced at thickness one, the overall reflectance exhibiting much less and broader
resonance peaks, and being far lower (though reaching unity—Note that for a massive ε = 2.4 material, the
maximum reflectance expected from thin-film interference would be 17% after eq. (2.17)).

• Especially for circularly polarised light in crystals with screw axes: Only a maximum interval of
size a/n has to be considered, where n is the folded-ness of the screw axis along viewing direction
(for [001] and its 41 axes, n = 4, thus 0 < t < a/4).

• In low-frequency-disorder systems, terminations don’t make a particularly good run in creating
additional randomness, thus it is best mixed it with seed statistics.

Seed statistics The importance of seed statistics arise from the desire to smear out the artificial
reduction of continuously many distortion parameters into a few discrete numbers. In fairly random
systems (fig. 4.7: around 6.5×104 amplitudes contributing, but many of them very low), the influence
between seeds becomes some kind of noise, giving rise to smearing, once averaged over the seeds.51
When the random-walk assumption breaks down due to the low number of contributing distortion
modes (cf. also chirp: an extreme case of “seed dependence”, see sec. 5.5), it may be appropriate no
51Note that seed (and, to a lesser extent, termination) statistics are, contrary to thickness averaging, a “non-invasive” intervention

in the system geometry, hence perfectly valid in all situations with finite distortion originating in random number input.
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Figure 4.7.: (MEEP reflectance) Variations of reflectance details caused by the random seeds of the Fourier
synthesis lattice:		 reflectance of a slightly (σr /a = 0.05) distorted network Gyroid (one subdivision, wire radius
r = 0.113 a, rather high-frequency Gaussian distortion with σq a/(2π) = 2.1) within a 2×2×6 supercell.

longer to average over seeds, but to regard them separately—i. e., seeing the distortion no longer as
random noise, but a genuine modification of system properties.

Slab thickness and number of repetition units Figures 4.8 and 4.9 (same data basis) show up how
the narrow resonance peaks standing out in PhC reflectance spectra move and deform when varying
the slab thickness, i. e. the number of unit cells in normal direction of the slab. Analogue to smearing
out FABRY-PÉROT patterns, these sharp signals get smeared out by multiple-thickness averaging.
It should be noted that it is the natural way to allow variable thickness, thus averaging has its justifi-

cations. Averaging hides the most thickness-sensitive features, which is both good (for comparison
with nature/experiments) and has its downsides (for distinguishing slab geometry effects from inter-
nal structure, and computational cost). For the most part of this thesis (unless otherwise noted), no
thickness averaging is conducted.

4.2.5. Simulation, averaging, and data treatment

“Embarrassing” (or “idiot”, i. e. concurrence on the application level) parallelisation is used to supervise
the parameter sampling (frequencywindow, CP rotatory sense, random seed, distortion scale, thickness,
and others) by the MEEP simulations. Data is returned in plain-text, and semi-automatically reduced
(normalised against reference flux (see sec. 4.2.1), averaged over seed, termination and thickness if
desired, and concatenated with respect to frequency, CP sense, distortion scale, and k∥) by the self-
written script redumean (written in an infamous write-only language, but documented to the best of
our knowledge).

61



0.72 0.75 0.78 0.81 0.84 0.87 0.9 0.93 0.96 0.99

Re
fle
ct
an
ce

(z
er
o
to
un

ity
fo
re
ac
h

L
z
)

→
L

z
→

FrequencyΩ=ωa/(2πc0)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Sl
ab

th
ic
kn
es
sL

z
/a

Figure 4.8.: (MEEP reflectance) Variations in [001] reflectance (coloured lines: 		, grey areas: �	) features with
slab thickness, observed for the BCC-helical Gyroid (see sec. 3.3.3). For the frequency position of first sharp
reflectance minimum, the empirical formula Ω= 0.966−0.013 ·Lz /a can be found. Also note how the lower
band edge sharpens. See fig. 4.9 for CCR computed from this data.
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Figure 4.9.: (MEEP reflectance) Cumulative circular contrast of a [001] inclined BCC-helix Gyroid (φ= 20.0%) in
dependence on slab thickness (cf. fig. 4.8 for		/�	 reflectance data). Also shown is the CCR signal of a single
unitcube-thickness sample (from fig. 4.6).
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4.3. Fourier synthesis of translational noise

Idea and Motivation

Suppose, in general, a system of which you want to identify and/or understand its structure
given by its geometry ε(r) (any physical parameter ε as a function of the space coordinate
r). A standard approach is Fourier analysis (either by the apparatus (scattering/diffraction
in the far-field limit, e. g.) or explicitly from imaging techniques (think of spectographs, or
scanning microscopy)). It delivers length scale statistics of the structure ε(r) within the
“reciprocal” or “wavevector” (the conjugate variable to the real-space coordinate) space,
with inherent statistical averaging over the whole sample.
In particular, a small distortion superimposed on an otherwise regular52 geometry, may
well be characterised in its effect on its matrix by its Fourier components.
An inversion of this approach provides a means of distortion synthesis which is convenient
in several aspects, subject to discussion in the following section: Step-wise carrying out
the Fourier sum at some given over randomwavevectors resembles a randomwalk in real
space. The deviation of this displacement for another point of finite distance is, however,
constricted by a limitation of consideredwavevectors, giving rise to controllable correlations
between the points subject to displacement.

4.3.1. Unit cell, supercell, and multiple BZ “wavevector” space

Real-space lattice We are starting from a 3D real-space periodic structure ε(r) with discrete trans-
lation symmetry ([photonic] crystal): Its unit cell (UC) is the span of three non-collinear vectors
di , i = 1,2,3 which may be chosen

• either by the shortest possible set of defining vectors, to avoid redundancy within the repetition
unit (“primitive” lattice/unit cell),

• or in a way which eases the way of easing the perception of the underlying symmetries or deriva-
tion from lower-symmetry primitive lattices (“conventional” lattice/unit cell).

Space is filled by copies of this UC on the places given by any sum of integer multiples ν j d j , ν j ∈ Z
of the {d j } real-space lattice vectors, so that translation by any vector∑

j νi di (from the lattice) is not
detectable from just evaluating the structure.
The unit cell volume is given by the triple product VUC = d1 · (d2 ×d3).

Supercell This infinite definition is non-physical (as any crystal, obviously, exhibits finite spatial
extent), and one has to “cut” the valid range of yi at some finite value, i. e. to build a supercell (SC53).
Nevertheless, the typical assumption on talking about crystals is the limit of “big” crystals, i. e. by taking
this cut-off border arbitrarily large (or hide behind BORN–VON KÁRMÁN periodic boundary conditions),
so that surface effects can be neglected [AM76]. Consequently, when talking (and thinking) about
quasi-infinite structures and their bulk properties, it is reasonable to think of the SC as infinite as well.
52“Regular” in the sense of “crystalline”, i. e. its Fourier components are distinctly identifiable as the wavevectors of the reciprocal

lattice—see sec. 4.3.1. “Small” distortion in the sense not to destroy topology/connectedness, in general (For an exceptional
“abuse”, see the excessive distortion scale to produce a “gas”, cf. sec. 5.3.2).

53This abbreviation is also being used to denote a simple cubic symmetry within other sections. Here, its meaning is distinct for
supercell, which becomes clear from context.
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On explicit real-space computing on crystals, the actual system size has to be traded off against the
computational cost of the method in use, i. e. a compromise SC size has to be chosen. It will consist
of νx ×νy ×νz (ν j ∈N) unit cells in each direction, and will be distinct from unit cell quantities by the
index S rather than U. The SC dimensions are consecutively L j ·d j in either direction, giving for total a
volume of VSC =∏z

j=x ν j d j = νxνyνz ·VUC.

Description of distortion via normal modes For the construction programme for distortions, we
suppose them to be decomposable into normal modes, i. e. as a superposition of sinusoidal distortions
each with a defined

• amplitude (vector) or polarisation,

• phase, relative to some origin, and

• (directed, spatial) frequency, or wavevector.

This description is an adaption of the classical description of lattice vibrations (phonons) in solid-state
physics [AM76], differing from it in not introducing dynamics (no time-evolution, no frequency, no
energy), and—as a consequence of the structure being continuous in real space (in contrast to the point-
like nucleus masses of atomic crystals)—not constraining possible wavevectors to the first BRILLOUIN
zone.

Reciprocal lattice The space of possible wavevectors k assigned to a real space is commonly referred
to as the reciprocal space. When describing a crystal, it itself is organised into unit cells by the reciprocal
lattice {GU

(hk`)}, the set of all possible linear combinations of the primitive reciprocal basis vectors
{bUj : exp(ıdi ·b j ) = 1} (as obtained by the standard textbookmethods from the real-space lattice vectors
[AM76]). The numbers h,k,` (MILLER indices: characterising a distinct reciprocal lattice vector—
corresponding to a set of parallel lattice planes in real space) run in principle through complete Z.

Reciprocal lattice of the supercell For the distortion to be a property of the particular preparation
(rather than part of the underlying structure itself), its real-space length scales must not match the
unit cell dimensions, i. e. finite amplitudes at {GU

(hk`)} must be forbidden, as they describe the in-phase
collective deformation of all unit cells.
For meshing of the reciprocal space, i. e. restriction on discrete values of wavevectors), the reciprocal

lattice of the SC is chosen. By doing this, every unit-cell reciprocal vector GU
j is subdivided into ν j of

the new GS
j vectors of the supercell reciprocal lattice.

Periodic boundary conditions Any function being a harmonic of the SC is defined by having its
Fourier components at the SC reciprocal lattice points alone, hence cannot produce discontinuities
at the simulation box faces, once they are connected with their respective opposite face (periodic
boundaries).54 Thus the construction of distortion from supercell harmonics alone avoids being
incommensurable with the real-space simulation box in the lateral directions.
54Strictly, the simulation boundary conditions are BLOCH-periodic, cf. sec. 4.1.1, but the arising phase factor on crossing the

boundaries can only apply to the electromagnetic fields, of course. The structure ε(r) itself is strictly periodic, i. e. ε(r+R) ≡
ε(r)∀R ∈ {dSj }.
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The same restriction is also chosen to apply in the direction normal to the constructed material
slab (cf. sec. 4.2.1). Though not mandatory,55 it ensures some (non-mandatory) degree of symmetry in
reciprocal space between normal and lateral directions (both types of direction are discretised). In case
of the normal-direction extent of the simulation box (thickness) being not an integer multiple of the
respective unit cell dimension, the number of unit cells will be rounded up, and the remains will be
truncated.

4.3.2. Distortion field

We use the set of basis functions defined by the supercell reciprocal lattice to construct the field of
real-space displacements56 u(r) subject to which points will be displaced, by a Fourier series over the
whole set {GS} of supercell reciprocal lattice vectors57:

u(r) =
p

2Υ
∑

q∈{GS}

uq cos
(
q · r+ϕq

)
(4.7)

with the normalisation constantΥ= (
∑

q)−1 = |{GS}|−1. As, in general, a Fourier series exhibits complex
coefficients, but displacements shall be real, all degrees of freedom related to the wave phase will be
absorbed into ϕq.
So, any wavevector q within the regarded range |{GS}| of supercell reciprocal lattice vectors carries,

alongside its position q implicitly storing thewavelength 2π/q and phase front normal eq , a polarisation
vector uq (defining both the strength and direction of the distortion), and the phaseϕq at the coordinate
origin.
In practice, the distortion field comes to an application while constructing a structure made from

discrete objects. Every time a coordinate r is queried, the value of u(r) is requested, and added prior to
further application.58
For technical details see sec. 4.4.

4.3.3. Synthesis, specification, illustration

Autocorrelation function

For sufficiently many Fourier components (initialised with random polarisation and phase), displace-
ment at some given point is random, but locally deterministic in a sense that on moving away from this
point, the change of displacement is at most as fast as given by the most distant Fourier component.
This “knowledge” of a point over the behaviour of others, esp. its neighbours, is expressed by the

(auto)correlation function G(x). It depicts the degree of dependence of the field u at x on the value
at some x+ r in a distance59 x = |x| (via the scalar product of the two vectors), corresponding to the
self-convolution of u(r).
55Rather than the periodic duplicate of itself, the structure is terminated by vacuum, sources/detectors and finally absorber

layers in normal direction.
56This terminus must not be confused withMAXWELL’s name for D, the electromagnetic displacement field! It rather describes

geometric distortions continuously as a function of space.
57The choice of what model of distortion is applied impacts the range of non-zero components, thus restricting the number

|{GS}| of wavevectors to be considered. See sec. 4.4
58Note that this is equivalent to a Fourier transformation of uq into real space u(r). Hence it might be made far more efficient

using stock FFT routines, rather than explicit “by-hand” evaluation of eq. (4.7).
59The fact that x is a scalar distance will express (rather: imply) averaging over the solid angle.
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G(x) =(u∗u)(x) =

=Υ∑
q

uq ·
(

cos(q ·x)
(
uq +u−q

(
cos2(ϕq)− sin2(ϕ−q)

))+
+ sin(q ·x) ·u−q

(
sin(ϕq)cos(ϕq)+ sin(ϕq)cos(ϕ−q)

) ) (4.8)

The calculation route from the definition (4.7) in terms of a (real-valued) Fourier sum, to (4.8), the
final correlation function in the most general case, is given in the appendix at B.1 on page 113 for the
curious reader.
For scalar x = |x|, i. e. by averaging over the full solid angle (by applying ∫

d2Ωcos(q ·r) = 4π j0(|q|r )
with BESSEL’s j0(x) = sin(x)/x, and exploiting the fact sin(q · r) being an odd function of r), one gets

G(x) =
∫

d2Ω

4π
G(x) =Υ∑

q
uq ·

(
uq +u−q

(
1+cos2(ϕq)−cos2(ϕ−q)

)) · j0(|q|x) (4.9)

Supplying sufficient statistics, i. e. both
〈

cos2(ϕq)
〉∼= 1

2 and
〈

uq ·u−q
〉∼= 0 (〈·〉 denoting averaging over

all wavevectors contributing to distortion), this reduces further to

G(x) ∼=Υ
∑

q
u2

q · j0(|q|x) (4.10)

A particularly important implication of eq. (4.10) is the interpretation of distortion scale, arising from
the value at x = 0: Compare G(0) ∼=Υ∑

q u2
q = 〈u2

q〉 with the standard expression of the mean square
displacement

〈
u(r)2

〉= ∫
V u(r)2 d3r /V =G(0).

In comparison with the well-known value of a Gaussian distribution
〈

u2
Gauss

〉=σ2, we approximate
σ=p

G(0) as the second-moment measure of the mean RMS displacement (disregarding correlation)
being generated by application of any distortion expressed by a Fourier series (complying with the
constraint of being “sufficiently random”, i. e. having many modes with independent polarisations and
phases). In effect, the subsequent evaluation of the summands in the Fourier sum eq. (4.7) equals a
random walk in real-space, the lengths given by the respective |uq| (times the spatial cosine phase
factor), and with directions of the amount of randomness you feed your model with. The notable
difference (and the reason for this work) is the correlation between adjacent “random” trajectories,
enabling the construction of collective (long-range) distortions.
Note that in the case these conditions are notmet, the simple scalarG(x) is no longer a valid parameter

for describing correlations within distortion.

A simpl(e|istic) example

Wewant to illustrate the distortion field formalism by a choice of the free parameters in eq. (4.7) with
crude simplifications compared to more appropriate and sophisticated models:
Zero phase ϕq ≡ 0 at all components, and the displacement uq with Gaussian amplitude60 in |q|,

centred around somemean wavenumber q0 with a narrow distribution width σq ¿ q0:

uq = n

|n| exp

(
− (|q|−q0)2

2σ2
q

)
= u−q

ϕq =0 ∀q

(4.11)

60The displacement polarisation is chosen parallel to some arbitrary, but fixed direction n without further relevance.
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so that for the correlation function, eq. (4.9), we get

G(x) =∑
q

u2
q · j0(|q|x)

= ∑
q: |q|=q

exp

(
− (q −q0)2

σ2
q

)
j0(qx)

(4.12)

which can, in the case of a narrow σq ¿ q0, i. e. few (down to a single) q dominating the sum, be
interpreted as

1. an approximative (discrete) sine Fourier transform of a Gaussian: qx ≈ const ∀|uq | 6¿ 1 and thus
j0(qx) ∼∝ sin(qx). This is therefore approximately Gaussian-like, and centred around x = 0

2. a sum of few Gaussians modulated by Bessel’s j0 (sinc) function whose frequency is characterised
by the requested test length x.

An analytically solvable (over)simplification is to permit only a single distortion wavevector length to
contribute by letting σq → 0:

lim
σq→0

uq = n

|n| lim
σq→0

exp

(
− (|q|−q0)2

2σ2
q

)
∝ δ(|q|−q0)

G(x) ∝∑
q
δ(|q|−q0) · j0(|q|x) ∝

∝ ∑
q: |q|=q0

j0(qx) ∝

∝ j0(q0x) = sin(q0x)

q0x∣∣ j0(q0x)
∣∣≤ 1

|q0x| ∀x 6= 0

(4.13)

So the correlation function of this extreme case will disclose the BESSEL function as the elementary
three-dimensional correlation of plane waves with respect to solid-angle averaging, showing the slowest
possible correlation decay proportional to 1/x. Any Fourier component distribution with finite σq will
introduce several incommensurate sinuses into eq. (4.13), so that the correlation decay will be faster
than 1/x. See figure 4.10 for a depiction.
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Figure 4.10.: Comparisonof the single-component correlation functions resulting fromdistinct distortionmodels:
the analytical result of the simple model described in section 4.3.3, and data from numerical evaluation (with
random phase) for two distinct distribution widths σq with a common wavevector distribution centre q0 =
4×2π/a. The “neighbours” depict the inter-vertex distances of a 1srs network (sec. 3.3.2) with one subdivison
per edge. They are drawn aside, to illustrate common distances at which the correlation will be relevant, actually.

4.4. Description of distortion generation

4.4.1. The process of modelling distortion

Now follows a short description of how the distortion field works in conjunction with the structure
construction code developed for this thesis.

The distortion field is constructed as a three-dimensional array with an interface to be addressed
by the (hk`) ∈ Z3 indices of the supercell reciprocal lattice of a size to comfortably hold the major
distortion contributions, e. g. 2π|h|/L& q0 +2σq for amplitudes Gaussian in q .
The effect of the distortion field at any point r can be evaluated according to eq. (4.7). On constructing

any geometry defined by discrete (vertex, centre, etc.) coordinates, this displacement is applied any
time on requesting a coordinate, prior to the actions performed by the respective method. This way
continuity of distorted discrete structures (network graphs blown up to wires of finite thickness, e. g.) is
guaranteed both within the volume, and across the periodic boundaries of the supercell box.

Amplitudes Arbitrary distortions are constructed from the array of Fourier modes q by setting their
amplitude vectors uq to finite amplitudes, according to the desired model of distortion. Typical simple
models are given in the following section 4.4.2.
For the creation of quasi-random noise, this study largely restricts on an amplitude envelope of Gaus-

sian shape |uq |∝ exp(−q2/2σ2
q ) (with random orientation, and phase), largely due to its conceptual

simplicity (one single dimensional parameter: its standard deviation σq gets easily connected to the
real-space correlation length, cf. 4.3.3).
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Figure 4.11.: Amplitudes of the Fourier grid (used to distort the cubic example structure of sec. 4.5.2): the central
2D slide at k = 0 of all (h0`) supercell reciprocal lattice vectors, with the amplitudes at the simple-cubic unitcell
reciprocal lattice zeroed out. Distortion amplitudes are Gaussian distributed, with a width σq a/(2π) = 2.1,
centred around q0 = 0. Simulation box size: νx ×νy ×νz = 2×2×6 unit cubes, reflecting in the unitcell reciprocal
lattice points at (2hS,2hS,6`S)T∀h,k,` ∈Z (hence cuboid “voxel” shapes).

Avoid unit cube harmonics After filling the reciprocal grid with the randomness of choice, it is
appropriate to set the amplitude at any point coinciding with a reciprocal lattice vector (harmonic) of
the unit cell {GU} to zero:

uq = 0 ∀ q ∈ {GU} (4.14)

Those would describe a sinusoidal distortion which is commensurate with the unit cell lattice, thus
uniformly rearranging vertices of all unit cells in the same way.61 Of special importance is a zero at the
origin of reciprocal space, which would otherwise describe a mere translation of the crystal as a whole.
Exclusion of those UC harmonics will thus preserve “ensemble-mean” unit cell geometry (same

distortion startingpoint structures for every unit cellwithin a structure, and across different initialisation
states, i. e. random seeds), but then the Fourier lattice (= distortion model) will be “perforated” by a
regular zero grid overlay—see fig. 4.11.

61In the words of “phonons” populating the extended zone schema of the reciprocal space, these are the Γ points of the unit-cell
reciprocal lattice, i. e.DC components, describing those distortion having no phase difference between real-space unit cells.
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Scalar sampling In addition to the distortion field itself, describing displacements smoothly with
maximal spatial frequencies according to the highest-wavevector modes of finite amplitude, it may be
appropriate to sample some scalar quantity from the field, exhibiting the same smoothness properties,
but being linearly independent from the distortion field itself (and other scalars, if required). To
accomplish this, the distortion field at the sampling position (shifted by a “large”62 vector to avoid
coherence with the distortion vector at this point) is projected along an arbitrary, but fixed axis, to
yield a scalar with the same correlation properties as the distortion vector components (which are, in
essence, such scalars with the Cartesian unit vectors as projection axes).

4.4.2. Description of the software interface

The distortion field construction starts with defining the range of a finite subset {GS} of the supercell-
reciprocal lattice. On this array, each point stores the Fourier amplitude vector and phase contributing
to the distortion vector field. This section presents the methods implemented to construct a desired
distribution of Fourier amplitudes within this reciprocal lattice.

Single Modes c_grid::distortion_single

The conceptual and technical basis of distortion creation is to set the polarisation and phase of a
single mode (point in the considered part lattice of reciprocal space). It is used internally by all other
procedures, and thought only for that, with the prominent exception of creating highly deterministic
distortions:
Most notably (longitudinal63) “chirp”: The distortion mode at (hk`) = (001) (first supercell harmonic

in normal direction) is set to dominate the reciprocal lattice with a distortion polarisation vector
u(001) along z direction. Such a mode can coexist with other distortion models, just by being explicitly
superimposed.

Gaussian distortion profile c_grid::distortion_gaussian

The absolute values of amplitudes form a Gaussian profile in their radial wavevector dependence:

|uq| = exp

(
− (|q|−q0)2

2σ2
q

)
(4.15)

representing a Gaussian distribution if centred around q0 = 0, and a ring profile when q0 6= 0. Phases
are uniformly sampled from a random number generator.64
It offers a “cumulative” option: to just add the vectors (and, proper weighted, the phases) to the

existing ones, forming a superposition of distortion models (e. g., to create bi-modal distortions).

Multimodal Gaussian c_grid::distortion_gaussianwith vector q0/σq

This Gaussian method is overloaded to accept “vectorial” input quantities q0 and σq : Initialisation of
Gaussian width (σq ) or the wavevector length centre (q0) allow anisotropic envelopes oriented with
respect to the Cartesian directions of the reciprocal lattice.
62Large in comparison with the maximum possible coherence length (simulation box body diagonal times an irrational number

larger than unity).
63The same way, transversal (polarisation vector in the lateral plane) or even circular (Single modes at ±hk`with same fv_vec

and f_phases different by π/2) chirp-like distortions are imaginable.
64In all cases throughout this thesis when “true” randomness is desired, it is obtained from the GNUGSL combined Tausworthe

generator gsl_rng_taus [Gal09].
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Distortion modifier: Anisotropic polarisation vectors c_grid::diagscale_all

Additionally to the amplitude vector lengths |uq| exhibiting direction dependence (determining correla-
tion lengths in real space), their direction uq (hence the direction-dependent amount of distortion)
can be made anisotropic, primitively, by multiplying with a linear, diagonal transformation matrix
uq → diag(s)uq with any scaling vector s giving the factors for Cartesian components.

Wavevector exclusion c_grid::exclude_lattice_harmonics

The zeroing of unitcube harmonics, as described on page 70, is automated by pre-defined lattices for
FCC, BCC and simple cubic lattice harmonics.
Choosing the primitive lattice (i. e. BCC for the Gyroid) is preferred over blanking out a conventional

lattice, as unit cell harmonics of a non-primitive lattice do not necessarily describe uniform distortions
of all primitive cells in the same way, re-qualifying as appropriate distortion vectors.65 This way, the
number of blanked-out Fourier components is limited to a minimum.

Normalisation c_grid::scale_distortion_to_rms_expectationvalue

After the desired model of distortion has been assembled, it will be normalised to the desired degree of
real-space vertex displacement σr . Therefore, the result of section 4.3.3 will be used to rescale all distor-
tion amplitudes: Numerical evaluation ofG(0) results in the (dialled) scale of real-space displacement
σr , in its variation over the sampling of the distortion field at different real-space points. In the case
of a q = 0 Gaussian model, σr can be identified as the standard deviation of the distortion function.
Conveniently, the distortion scale is expressed in dimensionless units as σr /a.

4.5. Checks and examples

4.5.1. Distortion: distribution shape and correlation scales

For a first proof-of-concept check, the distortion field is sampled at randomplaces. This is not a realistic
case for real structure initialisation, as the sampling is conducted on a regular lattice (which is, in
addition, commensurable with the distortion field periodicity constraints). Figure 4.12 depicts sampling
results, and suggests a reasonable “global” randomness of distortion (disregarding the intentional
correlation effects on small distances).
Next, sampling points are taken from the realistic BCC helix Gyroidmodel (fig. 4.13). TheHelix Gyroid

is chosen as an example due to its comparatively large distances between vertices.
At a fixed distortion scale σr /a, the distribution width σq in the reciprocal lattice is manipulated. In

the limit of relatively-long-range distance statistics, distortions approach the same behaviour irrespec-
tive of σq , but on short distances, the smearing caused by is pronouncedly lower for systems with long
spatial correlation (low σq ), where adjacent points “know” more about their neighbourhood.

4.5.2. 1srs network graph

The structure As a first real-life example, we apply the described distortion field technique to a
1srs Gyroid network, as described at 3.3.2. To increase the number of distorted points, every edge is
subdivided into two parts by an additional intermediate vertex.
65This is synonymous with the primitive lattice’s BZ being the largest possible reciprocal spaceWIGNER–SEITZ cell without

introducing additional “unnecessary” points.
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Distortion Again, distortion is created with a Gaussian envelope in q space, similar to eq. (4.11). In
difference to the model case of sec. 4.3.3, the polarisation direction n is randomly distributed, as well as
the phase ϕq , and the centre q0 is chosen to zero, leading to distortion components:

uq =


0 q ∈ {GU}

nq

|nq|
exp

(
− |q|2

2σ2
q

)
else

(4.16)

The supercell is chosen to hold νx ×νy ×νz = 2×2×6 unit cubes, see, e. g., in fig. A.4 on page 112.
Wire thickness is chosen to 0.113a, which yields a room-filling fraction φ of approximately 14% in
the unperturbed case; growing with distortion due to increasing edge lengths. Dielectric contrast is
determined by the material dielectric constant ε= 2.4.
A rough analysis of the (pseudo-)randomness induced by the distortion field is done in two steps:

Single-sample test (see fig. 4.14) Comparison of distribution of the distortion vectors u(r) (as they are
requested by the construction routines) with the distribution function 1/2

(
erf

(
x/(σr

p
2)

)+1
)

of the Gaussian distribution of the components, and the cumulative Maxwell-Boltzmann distri-
bution erf(x/(σr

p
2))−p

2/π · x/σr ·exp(−x2/(2σ2
r )) for the vector lengths. Agreement between

coordinate samples and theGaussian distribution correlateswith a in-general normal distribution
of distortion vector components, while disregarding spatial localisation or non-locality, resp., of
the distortion.
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Figure 4.12.: Comparing random-location sampling of the distortion field (cons) with vectors uniformly random
directed into the whole solid angle (gsl_ran_dir_3d from the GNUGSL library [Gal09]). Distortion field values
of the z = cos(ϑ) component and the azimuthal angle ϕ are, for appreciable statistics, in well agreement with
uniform distribution, and naturally exhibit fluctuations in the limit of few samples (144 test point: data from
realistic helix Gyroid initialisation).
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Figure 4.13.: Cumulative pair correlation function of the helix centres as they are sampled in defining the BCC-
basis Gyroid. On applying distortion (all data from a single distortion scale σr /a = 0.01), the distribution of
distances widens from discrete “neighbourhood” steps to a finite-variance sigmoid, broadening with increasing
distance r . Distorted data differs by the respective width of the Gaussian distribution of distortion amplitudes
within the Fourier grid, i. e. the real-space correlation lengths. By increasing range (lowering σq ), distributions
sharpen for small spacings. At larger distances, the differences vanish. Several curves are shown to compare for
the influence of random seed statistics.

Correlation length (see fig. 4.15) Evaluation of the autocorrelation function G(x), see eq. (4.10), as
a function of the distance x = |x| = |r1 − r2| between two points 1 and 2. On the scale of the
pair correlation of the structure vertices (as depicted within the figure for the undisturbed 1srs),
this tells howmuch—in average—the distortion at a single point depends on the distortion at
a distance x. In this case, only the very next neighbours (original vertices↔ edge subdivisions)
exhibit significant correlations.

Figure 4.11 (p. 70) has served as an illustration how the Fourier grid actually looks like. The exclusion
of cubic unit cell harmonics is visible as (black) zeros at the UC reciprocal lattice vectors; Fourier grid
slides with fractional µ j never contain any q ∈ {GU} and thus show no such “holes”.
The anisotropy in reciprocal spacing (“non-square pixels” of fig. 4.11) is due to prolate supercell

dimensions, which lets the lateral resolution be coarser than the resolution in normal direction.

FDTD: Reflectance Once the super cell is initialised and properly distorted, it can be used as a
simulation box within FDTD simulations. The process and observations may be illustrated by the
example data set in fig. 4.16.
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In parallel with the reflectance simulations, the volume-filling fraction φ is determined (inset), as
it plays a vital role for discussion of spectrum changes (most notably, red-shifts on increasing φ and
mean refractive index, respectively [Joa+08]). Note that extracting the volume fraction fromMEEP’s ε
output (HDF5 format) has proven unreliable, seemingly due to MEEP’s anisotropic sub-pixel averaging
[Far+06]. Therefore, the direct evaluation of the plain-text interchange format (between the structure
creation program and the MEEP set-up) is better suited to obtaion φ data (at double resolution, in
effect, as MEEP oversamples its material function with the double desired resolution, again, to compute
sub-pixel ε).
Departing from the undisturbed structure (grey shaded) until σr /a ≈ 0.1, CD decreases in the area of

the dichroic		-major reflectance stop band (Ω≈ 0.84), both in strength and bandwidth. In parallel,
the reflectance within the fundamental regionΩ. 0.81 increases for both�	 and		 by roughly the
same value, increasing absolute reflectance, but not CD.
On approaching σr /a ≈ 0.2, the shape of the reflectance changes dramatically, with stop-band CD

spreading to a broad and diffuse�	-major “plateau”, and significant		-major reflectance emerges at
low frequenciesΩ. 0.8.
An overall red-shift for the visible features is observed. This behaviour must be seen against the

background of the volume filling fraction (which increases by a factor of 2 within the depicted distortion
interval, due to the network edges elongating on the distortion of the vertices): An overall increased
space fraction occupied by high-dielectric (an increased “mean dielectric constant”) will, in general,
lower the frequencies of corresponding modes.
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Figure 4.14.: Approximate random noise by distortion on a Fourier grid, part 1: Gaussian-ness CDF (cumulative
distribution function) of displacement components (u) j (left) and the absolute value |u| (right). Simulation
results in comparison with the anticipated CDFs of a Gaussian-distributed random variable (components:
Gauss’s error function, absolute value: Maxwell-Boltzmann CDF).
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Figure 4.15.: Approximate random noise by distortion on a Fourier grid, part 2: correlation between nearby
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5

Distortion and Disorder
on the Single Gyroid

Edvard Munch: «Skrik» (1893)



Overview

This chapter contains the experimental part (in the sense of evaluating a setup-simulation-
analysis cycle) of this thesis: By presenting and interpreting reflectance data of the Gyroid
PhC, several aspects of its chiral response, and the relation to distortion will be illuminated:

• A helix array (uniaxial crystal) shows substantially distinct (major CD) reflectance, but
is not immediately comparable.

• Disassembly of the Helix Gyroid into its sub-families allows reflectance features to be
related to distinct spatial orientation of helical elements of the Gyroid geometry.

• Finite absorption, esp. the respective view on CCR and CCT, will contribute to argu-
mentation ways of penetration depth and effective CP-resolved attenuation.

• The effect of distortion correlation lengths onCCR variation shows in general a smear-
ing and decline of CD strength, except for very-long-range modes:

• (Sinusoidal) “Chirp”: giving rise to distinct variation in reflectance CD behaviour,
including (dependent on its pitch) doubling, or inverting its averaged CP reflectance
difference.

• [001] reflectance and its distortion-induced variationswill prove an appreciably robust
against angular divergence of illumination (dependence on incident angle).

5.1. Uniaxial helix array crystals

As a preliminarywork for the study of cubic systems, we studied systems of lower topological complexity,
namely uniaxial helix arrays as those introduced earlier (sec. 2.3.4) by Lee and Chan [LC05] and Toader
and John [TJ01].

Hexagonal and tetragonal lattices Starting point for the chiral structure of hexagonal (tetragonal)
symmetry is the particular unit cell, and the choice of its uniaxial (c, by convention) axis as subject to
transformation from proper 6 (4) rotation axis to a 61 (41) screw axis. This axis will be traced by helix
made from a dielectric material. The resulting regular lattice is of space group P61 (No. 169: RCP helices,
or P65, No. 170 in the case of LCP [Int04]) or tetragonal P41 (No. 76: RCP helices, or P43, No. 78: LCP
[Int04]).
Note that for both hexagonal and tetragonal lattices, a “void” helix is found interleavedwith dielectric,

to form a helical vacuum channel of the same handedness as the helices themselves. (Be reminded of,
within the Gyroid and its individual directions (namely, [111] and [001]), helices of multiple radii and
opposite handedness exist, made of material, as well as void channels)
For the simple hexagonal (SH) helix array, a HCP-like two-atom basis (a “body centring”, distant

1/2[111]) can be introduced, reducing symmetry to the trigonal space group P3112 (No. 153).
Herein, the rotatory sense of the helices is always chosen RCP, in order to match with those of the

Gyroid handedness convention.

Hexagonal structures, large band gap (for a band structure, see references [LC05] and [Sab10])
Firstly, producing fig. 5.1 serves as a sanity check for the simulations (comparison with reference data).
Additionally, the behaviour on lowering the dielectric contrast from 9 to the typical biological value
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Figure 5.1.: (MEEP reflectance) Hexagonal helix array (φ = 15.2% c/a = 1), reflectance, comparing different
dielectric contrasts, and literature data. Note that here, the thickness here is 6.7 a for ε= 9, whereas in [LC05]
and ε= 2.4 data it is 12 a, producing higher-frequency FABRY-PÉROT oscillations. Note that, for the primitive
hexagonal lattices, the		 reflectance stays very low for all frequencies, whereas for the “body centred” HCP
structure,		 reflectance exhibits its own distinct spectrum, even exhibiting a pronounced		-major reflectance
at lowΩ= 0.35 frequencies.

of 2.4: the anticipated decrease of distinctness and blue-shift is clearly visible. The thickness had to
be increased to 12 repetition units, still not reaching full reflectivity. CCR has not been computed,
as reflectance is near-zero for 		 light (CCR would merely display the width of the prevailing high-
reflectance bands).
Compare this data (especially the near-complete absence of		 reflectance) to the data obtained

for the normal Gyroid helices of sec. 5.3.1 (representing a body-centred tetragonal helix lattice, in
essence): The disjunct simple hexagonal helices exhibit essentially		 reflectance only. For the Gyroid,
the presence of perpendicular helix-resembling elements (enforced from cubic symmetry, or arising
from reproduction by normal helices, esp. from body-centred basis duplication) is inevitable, and it
shares with the HCP distinct�	 reflectance.
The “good CD performance” has to be seen in relation to material/volume “investment”: To obtain

clear “band gap”-like reflectance in a disconnected-helix array PhC, the latter has to be substantially
thicker than a Gyroid at same ε. Additionally, it comes at the cost to be uniaxial, i. e. not with the
inherent freedom of viewing direction choice given by the Gyroid (Note that this freedom of labelling
coordinate axes is not a kind of “isotropy” in the sense of an essentially angle-independent response, as
the reflectance is, in fact, a non-trivial function of the whole solid angle).

Sinusoidal Chirp In anticipation of (and reference to) section 5.5, wewill depict (sinusoidally) chirped
helix array reflectance here (fig. 5.2). Somewhat different behaviour as in the more comprehensive
treatment for the chirped Gyroid structures is found: The periodic grouping of chirps by initialisation
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phase is identifiable, but the overall behaviour is somewhat more uniform (especially for large chirp
amplitudes), andmore coherently differing from the undistorted structure. Gradually, the FABRY-PÉROT-
like beats aboveΩ& 0.96widen and grow together to form awide-band gap like plateau, in resemblance
to the single Gyroid’s characteristic�	 reflectance (fig. 3.8).
Irrespective of chirp amplitude, the phase has limited influence on the (frequency-averaged) �	

reflectance. In conjunction with the reflectance (most clearly visible for σr /a . 0.2) not reaching
unity, this hints at a substantial penetration of both CP polarisations into the PhC. This insensitivity of
hexagonal helix arrangements is in stark contrast to the observations for the chirped (cubic) Gyroid, cf.
sec. 5.5.
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Figure 5.2.: (MEEP reflectance) Several chirp amplitudes σr imposed on the hexagonal helix array with dielectric
contrast ε= 2.4, each in comparison with the undistorted signal (�	 reflectance spectra), thickness 12 a. In all
cases,		 reflectance stays well below 10%, thus not shown for clarity (see fig 5.1 for comparison		/�	). The
length scale a equals both the lateral and normal hexagonal lattice constants (aspect ratio c/a = 1).
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5.2. Distorting the single Gyroid

In structured media of full disorder (i. e. no spatial correlation between the scattering centres), one
expects individual contributions of unorganised scatterers to dominate any inter-particle interference
signatures, which require material arrangement in an ordered, collective manner. Crystal response is
readily covered by PhC theory, and has been treated in sec. 3.4 Within this section, the gap between
these extremal cases is investigated, departing from the single Gyroid as the limit of the perfect crystal.

5.2.1. The spatial frequency of distortion

Themain rationale of the construction of “educated disorder” (as reported in chapter 4) is to control
vertex displacements better than stochastic randomness. With the work done in sec. 4.3 (especially in
subsec. 4.3.3), we hold tools for sophisticated tuning of the correlation length scales of a system. The
different regimes divide, corresponding to the amplitude distribution within their respective reciprocal
spaces, into

• Surface roughness (narrow spatial correlation/many very-high-frequency wavevectors)

• “Noise”, high-frequency random distortion on the edge length/unitcell size scale,

• “Deformation/Distortion”: collective distortion

• longest-wavelength modes: in effect modulated lattice constant, “chirp”

Two66 reasons motivate distortions to be accessible with, in principle, arbitrary length scales:
At first, excess amplitude of long-range correlations impede nearest-neighbour distances less than

short-range noise, leading to either a lower mismatch excess φ (for the helices, e. g.), or a more shallow
increase of net wire length (within the unitcells of the network). In effect, low-frequency distortion
make the volume fraction vary slower with increasing σr This is visualised in the inset of fig. 5.3.
Secondly, the distortion, being by constructionwave-like, can be seen as a structure itself (with spatial

periodicities on any length scale from the limit given by themodel, up to the whole simulation box size),
i. e. introduction of a new length scale, giving rise to interaction with the light. A haunting example is
the (sinusoidal) chirp presented at full length in section 5.5.
With the main CCR graph in figure 5.3, the extent of amplitude distribution in reciprocal space is

visualised, while keeping the distortion scale σr fixed. Note that, for σr /a = 0.3, the vast majority
of amplitude is concentrated in only two modes, making the assumption of Gaussian-distributed
distortion vectors more than questionable.67

66Actually, a third reason is the nodal approximation (cf. sec. 3.3.1) being a continuous function of space, necessitating a
continuous way of representing distortion and noise, after all.

67Similar considerations, for the dubious results of random-seed averaging on a similar system, have in fact led to the discovery
of the impact of chirp on reflectance.
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Figure 5.3.: (MEEP reflectance)Main graph: How theCCR response is qualitatively connected to the distribution
width of wavevectors contributing to the distortion of real space: For different Gaussian distribution widths of
distortion wavevector amplitudes (upper pictures: amplitude distribution over the supercell-reciprocal lattice
sites, with zeroed-out BCC unit cell harmonics), reflectances are compared for distinct overall distortion scaling
σr /a between 0 and 0.1 (CCR colour intensities proportional to σr , as in the inset). Data from single Gyroid
srs network with four subdivision per edge, simulation box 2×2×6 unit cells. For the underlying real-space
structures, see fig. A.1 on page 110.
Graph inset:With increasing distortion scaleσr , the volume fraction increases, as depicted in the inset (dashed
lines guide the eyes in how the different correlation scales σq impact the volume fraction increase).
Imposing distortion causes circular dichroism of reflectance to out-level and decrease, except for the lowest-
frequency distortions (red), in which the assumption of random phases is no longer valid (Note the few Fourier
components with major contributions in the upper left image). This is further discussed in section 5.5.
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5.2.2. Atoms-only Ball-and-stick network Gyroid

The network Gyroid has the additional degree of freedom of the relative size of atoms compared to
the edges, tunable without losing symmetry. In the extreme ball-and-stick case of totally disconnected
spheres, fig. 5.4, with a wire radius of r = 0, the undistorted structure exhibits reflectance close resem-
blance of the behaviour of its connected “relatives” (fig. 3.8).
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Figure 5.4.: (MEEP reflectance) 1srs network Gyroid “balls-only” (zero wire thickness), inclined in [001] direction,
σq a/(2π) = 1.2. Reflectance and CCR data in the undistorted case (grey) and some finite distortions (colours).
This system exhibits a substantially higher sensitivity to distortion than connected Gyroid geometries.

But chiral response (alongside overall reflectivity) fades very rapidly at switching on even small real-
space distortions σr /a& 0.1. Compare this behaviour to comparable distortion scales in fig. 5.3.

5.3. Variations on the Helical Gyroid

5.3.1. Partial uniaxial Gyroid helix subsets with translational noise

Based on the idea that distinct 41 helices (and not all) might represent the relevant carriers of the
Gyroid’s chirality, we construct mono- and di-helical Gyroids (consisting only of the perpendicular,
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normal, and skew families of helices, where necessary, see the following text).
In section 3.3.3, the protocol to synthesise a Gyroid, coming from a helix aligned with a Cartesian

axis, up to a structure with proper BCC symmetry, has been described in two conceptual steps:

1. Imposing the cubic symmetry constraint of the 3 axis in a 〈111〉 direction (page 39)

2. Explicit body-centred basis copy (page 40).

By varying the first step,68 one can achieve a geometry, which preserves some aspects of the body-
centred-ness (helix radius matching, tight connection, smooth surface) of the originating Gyroid,69
while not necessarily keeping the cubic symmetry with its conceptual isotropy. This variation offers the
introductionof distinctions between the three 〈100〉directions, on the level of the geometry construction
routine, and may consist of:

• Distortion scales different per axis, i. e. the real-space displacement of a helix is dependent on its
orientation. Note that this is distinct from the possibility to create displacement vectors which
are anisotropically distributed themselves (which are direction-discriminating on the general
distortion request level).
As a special case, by choosing a distortion scaling large with respect to lattice constants, selected
orientations can be realised as a (BOOLEan, overlapping) “gas” without (perceivable) positional
correlation: See sec. 5.3.2.

• Complementary, the wavelength distributions of distortion may be independently tuned, i. e.
different helix displacement correlations per direction.

• Dimensional variations (wire thickness, helix radii, etc.).

• Omitting someof the orientation families completely, thus selective viewon subsets of theGyroid’s
screw axes.
In principle, with dropping the cubic threefold rotation constraint (by omitting one or two of
its copies) even in a case with zero distortion, one gains the uniaxial degree of freedom of the
pitch-to-lattice constant ratio—enabling tetragonal lattice distortion. (This will not be covered in
this work; let me refer to Pouya [Pou12; PV12] doing this for the single Gyroid).

This section 5.3.1 follows the last approach: Isolated view on helix orientation families of the Gyroid
helix approximation. For all systems, helix wire radii were fixed at r = 0.111 a, and the helix radius (for
BCCmatching) at R = a/

p
8. The distortion correlation length is chosen to an intermediate value of

σq a/(2π) = 1, which reduces overlapmismatch between the helices (without introducing high-intensity
multiple-unitcell density waves, as those implied by long-range distortion or chirp, see in section 5.5).
In comparison to the full three-family Gyroid (as of fig. 3.7), the initial overlap within a mono-helical

“Gyroid” is much lower: the possible overlap count on a single undistorted helix family cannot exceed 2
for BCC basis, and is exactly one for SC helices, (i. e. a simple tetragonal helix array, cf. sec. 5.1). So the
volume fraction will be far less dependent on the distortion.
Also note that, due to the lowered filling fraction, special care must be taken for proper comparison

to the full Gyroid data (A change inφ is, of course, more than just a mere frequency shift). The evolution
of volume fractions with increasing distortion amplitude σr is depicted in figure 5.6.
68The implications of BCC basis duplication have already been discussed on page 40 in section 3.3.3.
69Of course, in general, the resulting structure will share with the Gyroid only the (local) helix building blocks
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Figure 5.5.: Slab geometries for [001] and [110] inclination of the Helix Gyroid: Orientations of the three helix
subsets (represented by single helices in different colours according to their position within the unit cube)
relative to the surface/inclination normal, i. e. the direction of light incidence. In the [001] case, two thirds of the
helices are perpendicular, and the remaining normal (parallel) to the inclination direction. For [110] inclination,
one helix subset is perpendicular, while the angle between the skew helix families and light incidence is 45°.

Figure 5.6.: (Voxel counting) Volume fraction of Gy-
roid one-helix subsets, initialised with BCC (2 he-
lices per unit cube) and SC (one helix per unit cube)
basis, as a function of the amount of distortion
σr . Data taken from all system situations whose
reflectance data is shown in sec. 5.3.1. Deviations
arise from random sampling statistics (explicit by
seed, and different distortion vector sampling due
to altering inclinations and supercell dimensions).
Solid lines: guide to the eye. Right axis: Values for
the “nematic gas” state at σr /a = 5, cf. sec. 5.3.2.
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[110] direction: Distortion causing decline in reflectance, no CD

The helix subsets divide into two classes by their relative orientation with respect to the [110] direction
chosen for the crystal inclination direction:

perpendicular [001] helices, forming a right angle with the surface normal,

skew [100] and [010], with an angle of 45° to the surface normal.

Figure 5.7 compares the reflectances caused respectively by both types of sub-helices, viewed isolatd,
to the one of the BCC-helical Gyroid. The perpendicular helices show very low, but systematic�	-major
reflectance. The skew helix system remains essentially CD-free.
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Figure 5.7.: (MEEP reflectance. Solid lines:�	, dashed lines:		) The reflectance off an [110] inclined BCC-helical
Gyroid is nearly CD free (black data, cf. sec. 3.4). Its helix subsets viewed isolated (coloured data; upper graph:
skew lower graph: perpendicular with respect to inclination direction) remain essentially CD-free, while modest
distortions σr /a & 0.1 destroy the pronounced high-reflectance (Gyroid: partial band gap in the (primitive)
Γ–N direction) signal initially present for both helix orientations. Note the blue-shift of reflectance due to lower
filling fraction (φ depicted in fig. 5.6). Data from averaging over three random seeds at a slab thicknesses of 6 a.

At intermediate70 distortions σr /a& 0.1 destroy the high-reflectance (Gyroid: partial band gap in
the (primitive) Γ–N direction) signal present in both helix orientations (while proving more robust for
skew helices).

[001] direction: Separate band-edge mismatch and dichroic band

When [001] is chosen as the inclination direction, the Gyroid helix subsets can be classified into those
distinct ways (see the sketch in fig. 5.5 for visualisation):

Normal helix axes aligned with surface normal,

Perpendicular either subset of [100] or [010] helices, or

Lateral (as a special case of the latter) with both directions occupied, thus overlapping to form proto-
helical channels in [001] direction already, see sec. 3.3.3.

70See for example fig. 5.3 for the influence of a similar-amplitude distortion in [001] direction: Depending on σq , the CCR
end-value declines to at most the half of its originial value.
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Fig. 5.8 depicts the reflectances of those three situations in comparison to the full Gyroid, and subject
to distortion; fig. 5.9 shows the according CCR. For small (0 < σr /a . 0.15) distortions, well-known
features of the 〈100〉 Gyroid reflectance signal seem to become separable along the helix orientations,
as depicted (besides the response to distortion) in figures 5.8 (reflectance) and 5.9 (circular contrast):

• The lateral helix family reflectance shares remarkable qualitative similarity with the full Gyroid,
especially the dichroic band width. The lower band edges, however, exhibit an offset reverse to
the Gyroid, i. e. the reflectance for		 light meets the order of unity at lower frequencies than for
�	 (more rapid red-shift), leading to a negative contribution to CCR cumulation—but only when
distortion is non-zero! The red-shift compared to the single-helix families is most probably due
to the higher volume filling fraction.

• A similar CCR/“effective handedness” inversion, though at higher frequencies, is visible for the
single perpendicular oriented helices. Alongside, the�	-major dichroic band exhibits remark-
ably broadness (∆Ω ≈ 0.06, cf. full Gyroid: ∆Ω ≈ 0.026), but is limited in CCR impact due to its
comparatively low contrast—Note that perpendicular helices don’t even reach unity reflectance!

• While the normal helices show no sign of a distinct dichroic band gap (compare this to the
situation of hexagonal helix arrays of sec. 5.1, where each high-reflectance seems decisively
exclusive to a single CP-sense), the		/�	 band edges deviate from each other significantly, giving
a second contribution to CCR, which is moreover both remarkably robust against distortion and
develops the same effective band width as the perpendicular helix families71!

With increasing distortion, the general trend of a step-wise CCR decline develops (perpendicular
orientations: up to total loss of chiral response, overlaidwith someof the aforementionedCCR inversion;
normal helices: comparatively stable up to σr /a& 0.1 and then gradual diminishing), accompanying
the smoothing of reflectance features. There is no hint of increasing broad-banded-ness of chiral
response, apart from the softening of band gaps.

Simple-cubic basis

Another modification step for the helical model is, to omit the BCC-inherited basis duplication, leaving
a simple quadratic lattice of touching helices to cut the slab from. The situation seen here (fig. 5.10) is
remarkably similar to the one for BCC basis, though the following differences and similarities come up:

• Overall lowered reflectance, narrower bands, and smoother band edge regions, presumably due
to reduced effective normal repetition count

• Blue-shift, due to lower volume fraction,

• perpendicular: Less pronounced�	-major in dichroic band; no band-edge mismatch

• normal: even more substantial lower band-edge mismatch (partially due to		 not even showing
a sharp band gap reflectance signal at all)

• normal, gas (fig. 5.11)�	-major CD signal nearly equal for SC helices as for BCC ones, meaning a
“higher material efficiency” (same CD response with fewmaterial).

71The accurateness of any of the three situations nearly exactly hitting the full Gyroid’s final CCR is a striking, yet unexplained
feature of its subsets. It seems that the cubic symmetry of the Gyroid is not necessary at all to let helical model subsets exhibit
“isotropic” (i. e. the same in all spatial directions) CD response.
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Figure 5.8.: (MEEP reflectance. Solid lines: �	, dashed lines: 		)) [001]-inclined BCC-helical Gyroid subsets
oriented normal (lower graph) and perpendicular (upper graph; middle graph: both perpendicular orientations)
towards the inclination direction, for different distortion scales, including total disorder (σr /a = 5, “nematic
gas”, see sec. 5.3.2). For circular contrasts computed from this data, see fig. 5.9.
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Figure 5.9.: (MEEP reflectance) Cumulative circular contrasts from reflectance off [001]-inclined BCC-helical
Gyroid subsets with different orientations relative to the inclination direction, the same as in fig. 5.8. Variation
of CCR with an increasing degree of disorder gradually destroys the circular dichroism of the medium, despite
being built from helices. For reference, data from the full 6-helix-per-unitcube BCC Gyroid is drawn alongside.
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5.3.2. Helix gases: “nematic” and perfectly disordered

This section compares different kinds of helix “gases” with each other (Gaseous in the sense that they
exhibit no visible spatial correlation between their centres, constructed as the limit of high translational
disorder distorted helix subsets72). Gases derived from the Gyroid sub-families are called nematic, as
the translational disruption does preserve their relative orientation (which classifies the gases in the
same groups as in sec. 5.3.1).
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Undistorted Gyroid

Figure 5.11.: (MEEP reflectance) CCR of nematic helix gases with different axis orientations, in comparison to a
randomly-oriented gas, and an undistorted BCC-helical Gyroid. Note that, due to frequency window coverage,
some CCR data begins atΩ= 0.67, ignoring chiral response at lower frequencies.

Fig. 5.11 compares gases (σr À a) with a number density identical to [un]distorted Gyroids (volume
filling has increased to φ= 0.167(6)).
Despite of consisting from (highly chiral) helices, circular dichroism is—at least within the frequency

interval (chosen by its feature-richness within the “proper” Gyroid)—not particularly pronounced (for
normal orientation) down to negligible within noise (perpendicular).
As a reference, also a fully disordered gas (including full orientational randomness) has been tested

72Note this is a toy model, not feasible with bottom-up techniques like “shaking a box of fusilli noodles” (think of the substantial
overlaps betweenmost helices)
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as a “dense-limit” dielectric “sugar solution model”. Despite consisting of helices, the native “building
blocks” of handedness, the fully random gas shows upminimal CD response.

5.3.3. “Cross-over” to the Quadruple Gyroid

The 4srs is a structure built from four srs networks of same handedness, interwoven in a way so that
they do not intersect. The four networks are translational copies from a face-centred set of basis vectors,
filling the half-integer lattice positions left free from the BCC symmetry of the network itself. The
resulting structure exhibits simple cubic symmetry P4232 (with a repetition unit length half the original
lattice constant a of the single networks). Hence, its 〈100〉 directions are primitive directions of both
real space and its associated reciprocal space, giving rise to a low-complexity band structure, and, in
the case of chiral geometry, prominent CD properties (band gap forbidden for one circular polarisation
sense, full LCP/RCP character of the BLOCHmodes). Thus, it has been subject to chrio-optical studies
arising from its symmetry [Sab+11] (though at dielectric contrast as high as ε = 12, rather than the
ε= 2.4 used here).
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Figure 5.12.: (MEEP reflectance) Inflating three srs networks (summed partial volume filling φ234) within the
void channel of a 1srs network Gyroid, to finally form a balanced 4srswith 1/4 ·φ234 = 3/4 ·φ1 =φ.

Slightly varying the wire radii of the distinct networks of the 4srswill (besides destroying strict simple-
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cubic symmetry) not fundamentally change the photonic behaviour. But somewhere in between the
1srs with three additional srs networks penetrating its void phase, and the 4srs with distorted wire
thickness, the behaviourmust cross-over. Due to themappingφ 7→ r from sec. 3.3.2, this can be achieved
at a constant-volume constraint, ensuring optimum comparability between the various realisations.
Figure 5.12 depicts this process. It is parametrised by the partial volume fraction φ234 of the three

“new” networks (getting inflated to the disadvantage of the “old” network). Note that it is directly visible
that the relative handedness of response is conserved (i. e. no CCR sign switch). While CCR amount and
absolute reflectance decreases in both bandwidth and height73, the dichroic band gap suffers a distinct
blue-shift, while the associated shoulder actually increases in height, up to a maximum at φ234 ≈ 0.2.

5.4. Absorbance and Distortion

This section is based on the work (and, partly, the data) incorporated into the publication
[Sab+14], in collaboration with Matthias SABA, BodoWILTS, and Gerd SCHRÖDER-TURK. It
is appended to this thesis; see there for experimental and simulational index-matching
procedure details, and a more comprehensive discussion on band structure, reduced CD
measure, and biological implications.

One strength of FDTD (for crystals) compared to frequency-domainmethods relying on plane wave
expansion, is the seamless integration of absorptive losses (or gain, for a negative “loss”) in material
response, see section 2.1.5. In reality, the existence of material without loss is an idealisation, and at
most valid for a confined frequency range.74

5.4.1. Absorption and frequency-dependent permittivity

For a medium containing a homogeneous density of absorbers exhibiting a LORENTZian line profile,
the complex permittivity (introduced in sec. 2.1.5) ε(Ω) is described by the resonance term

εL(η,Ω) = ε+ησL
Ω2
L

Ω2
L−Ω2 − ıΩγL

(5.1)

with the resonance frequencyΩL = 0.695, the damping constant γL = 0.26 and the resonance strength
σL = 0.1117 (with an absorption scaling factor η). The numeric values have been adopted from [Sab+14]
to fit experimental data of C. rubi wing scales, by imitating the index-matching transmission measure-
ments of butterfly wing scales by FDTD simulation of the idealised Gyroid structure at η= 1 with void
(= immersion medium) ε set equal to the frequency-independent ε of the Gyroid material.
By introducing a frequency-dependent system contribution, one gains another set of parameters:

resonant frequency, width, and coupling strength—at the cost of loosing the universal scaling behaviour
(by introducing an explicit energy scale).

73Note that in the 4srs study [Sab+11], the performance has been measured at the much higher dielectric contrast of ε= 12.
74That any material must have finite absorption somewhere in the electromagnetic spectrum is obvious both from the KRAMERS–

KRONIG relation [AM76], and the remark that all materials exhibit finite light absorption at least when the light frequency
matches the electronic binding energies (photo effect).
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5.4.2. Reflectance of the absorbing, undistorted single Gyroid

FDTD reflectance simulations were carried out on the undistorted, fixed φ= 20.5%Gyroid created by
its nodal approximation material function. The three high-symmetry directions of the BCC lattice were
investigated. The [110] direction exhibits no CD response, so it is not regarded in this section.
Figures 5.13 and 5.14 depict the CP-resolved reflectance change with switching on absorbance, for

[001] and [111] directions, respectively. As absorption relaxes the strict R +T = 1 flux conservation,
circular contrasts of reflectance and transmission do no longer necessarily coincide. In fact, a gradual
de-coupling of CCR and CCT is observed. The CD band-edge mismatch is suppressed by absorption as
of η& 0.5 for CCR, but enhanced (!) 		 transmission, as seen in CCT of fig. 5.13.
What do CCR, CCT, and their difference, mean in the finite-absorption case, respectively? CCT

compares how 		/�	 (RCP/LCP) modes couple into the material, whereas CCR is sensitive to how
easily waves are reflected.

[100] The increase in CCR can be traced back to the smearing-out of the dichroic band gap around
Ω = 0.85, which happens faster than the overall decrease in reflectance. The low (to be exact: zero)
coupling of�	modes within the dichroic band gap causes them to be less susceptible to absorption
than the		modes penetrating the material. In contrast, at frequencies below the fundamental band
edge, CCT exhibits an increase, depicting the opposite image: 		 effectively penetrate the structure less
deeply than�	. Note that this effect persists far into the high-absorption regime.

[111] This totally different situation is shown in fig. 5.14: At a first, remark (contrary to [001]), the
reflectance features of [111] inclination exhibit a red-shift on increasing η. CCR proves to amuch higher
extent sensitive to absorbance than in [001] direction, halving in effect at a mere η= 0.2. This mirrors a
much longer effective penetration depth. Contrary, the CCT transmission signal witnesses an inversion
of circular contrast, so the presence of absorption reveals (disturbs) a subtle equilibrium in high		/�	
transmission. Wemay refer to the finite-angle data of sec. 3.5 (esp. fig. 3.9) for another view on the [111]
direction, showing up additional features on switching on k∥.
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Figure 5.13.: (MEEP reflectance) Both CC measures of reflectance (CCR) and transmission (CCT) for an undis-
torted single Gyroid (fromnodal approximation,φ= 20.5%, ε= 2.4), with finite LORENTZian absorption (strength
parameter η, resonance frequencyΩL = 0.695 outside the plot range). Reflectance data with thick lines, trans-
mission with thin lines. Note that, opposed to overall intensity loss (absolute reflectances/transmissions: see
fig. 7 of [Sab+14]), CCR increases at modest absorbance scalings η≈ 0.4, indicating an effective broadening of
circular-dichroic response. The dashed line indicates the imaginary part of the LORENTZ profile, eq. (5.1), which
is directly connected to the absorbance by eq. (2.20).
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Figure 5.14.: (MEEP reflectance) Switching on LORENTZian absorption (η> 0 from eq. (5.1)) within the solid phase
of the 1srs network Gyroid, inclined in [111] direction. Reflectance data, cumulative contrasts of reflectance
(CCR, thick lines) and transmission (CCT, thin lines), compared with lossless material (grey).

98



5.5. (Sinusoidal) Chirp

Once, with increasing real-space correlation length, the number of wavevectors of major contribution
to total distortion becomes small, averaging over realisations by seed statistics gets difficult, or rather
questionable: The approximation of any space point being displaced by the distortion field by vector of
random length and orientation, and, more importantly, with a spatially isotropic correlation length
scale (unless otherwise constructed), breaks down.
For the extreme case of a “monochromatic”, normal-longitudinal (distortion wavevector and polari-

sation vector within inclination direction), low-frequency limit, distortion resembles (on a length scale
of a fractional part of the distortion wavelength) a chirp, i. e. a continuous variation in the (normal)
lattice constant, or, in terms of the helical constituents of the Gyroid, a pitch gradient.
Due to its construction by the smallest possible wavevector commensurable with the simulation box,

it will be, in effect, a harmonic of the slab thickness, hence sinusoidal in profile.
This case can either be witnessed accidentally75, or explicitly constructed. The distortion of any

requested point is proportional to cos(2πz/Lz +ϕ) (z: depth coordinate of the point relative to the
slab surface), introducing as a new system parameter the chirp phase ϕ. Depending on ϕ, chirp
influences local point density76 in different ways (Note that the nomenclature refers to the density
at the surface, rendering the distinction appropriate only with the assumption of high reflectance, i. e.
typical penetration depths less than quarter of the distortion wavelength):

Loosening chirp (ϕ/(2π) ≈ 0.25) Density is
highest at the surface, and gradually loos-
ening with descending into the material
(cf. fig. A.2)

Compacting chirp (ϕ/(2π) ≈ 0.75) The density
increases from the lowest point at the sur-
face into the PhC

Indifferent surface, towards density max-
imum/minimum below the surface
(ϕ/(2π) ≈ 0 and 0.5, resp.), and mixed
with any intermediate combination of the
two latter.

loosening compacting
chirp from the surface

no

Fig. 5.15 and 5.16 show the chirp dependence of reflectance and CCR for the network and the nodal
Gyroid, respectively, and for different chirp amplitudes. Though the response of the nodal Gyroid shows
up more distinct and feature-rich than that the network data, in the overall behaviour, they equal each
other.

Visible effects For�	 reflectance, mainly the lower band edge is affected (in a rather smooth, mono-
tonous way by either “inserting” or “removing” half a FABRY-PÉROTmaximum) by altering the chirp
phase, resulting in markedly different CD behaviour at frequencies around the band-edge mismatch
75This way, the impressive impact of these kind of distortion has been discovered during the work on this thesis
76The effective coordinate stretching is not necessarily synonymous with an increased volume filling fraction. For the nodal

approximation, e. g., the density of sampling points applied to the void channel is increased in the same way as for the solid
channel, holding φ essentially constant, irrespective of applied distortions.
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Figure 5.15.: (MEEP reflectance) (Sinusoidal) Chirp: Single-mode distortion by the lowest supercell harmonic,
superimposedon thenetworkGyroid. Lower graphs: [001] reflectance, upper graph: cumulative circular contrast,
each indicating its phase difference from a cosine function (0 refers to the lowest density/most extremely
stretched lattice constant at the surface; π/4 “loosening”: surface undistorted, starting with moving points away
from the surface; π: starting with the highest density, etc.). Reference data in grey shows the signal from the
undistorted Gyroid.

(Ω≈ 0.78). For some chirp phases, even a optical handedness inversion appears (similar to what has
been witnessed before at the lateral helix subsets).

		 reflectance reacts very sensitive to the phase, qualitatively altering behaviour: in the loosening
case, CCR reaches nearly double as high as the one of the undistorted case, caused by amarkedly higher
		 transmission in the regionΩ= 0.83 · · ·0.88.

For compacting chirp, a narrow dichroic band (with a handedness “opposite” to the dichroic band
known from the undistorted Gyroid) causes		 to dominate overall reflectance (steep downward slopes
of the blue curves in fig. 5.16).
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Figure 5.16.: (MEEP reflectance) Full phase-sweep scan over a single chirp amplitude σr /a = 0.24 of the nodal
Gyroid in [001] direction: cumulative CCR data showing strong dependence of chirping slope on circular
character of reflectance. For a small range of selected phases in the compacting-chirp regime around 0.65×2π,
the CCR even runs to negative values (frequency region with pronounced		 transmission and�	 reflectance).

On the causes As the Nodal gyroid is—in contrast to the network or helix Gyroids—preserving local
volume density under distortions, the distinct data for the nodal Gyroid reliably exclude the explanation
that the observed chirp dependence might be a mere effect of varying volume fraction.
From the known properties of the undistorted Gyroid PhC response and the given “experimental”

reflectance data, reliable conclusions of chirp dependence may state that

• Chirp is a distortion of sufficiently low-frequency not to give rise to out-levelling observed on
random distortions (as seen in the previous sections).

• Chirp improves coupling of CP light into the known low-coupling bands77, namely dependent of
phase: compacting chirp will improve�	 transmission while impairing		 coupling (		-major

77In the awkward approximation that band structure stays essentially intact on imposing the chirp.
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character of CCR will be lessened up to inverted), whereas loosening chirp greatly enhances		
transmission, hence overall CCR rise.

Reflectance at finite incident angles Eventually (for the [001] direction), chirp effects will be
investigated with respect to tilting the incident light to a finite incident angle against the surface
normal/inclination direction. Figure 5.17 collects the (non-cumulative) colour-coded circular contrast
maps, of two azimuthal angles and the two extreme chirp cases, respectively.
The high-CC impact of loosening chirp parallels the softening of the band-gap itself (together with

the red-shift due to the enlarging real-space periodicity), proving similarly robust against tilting. Rather
differently, the “wrong-handedness” reflectance domains (red areas, largely based on band-edge mis-
match) prove sensitive to finite incident angles, totally disappearing at k∥a/(2π)& 0.1.
In conclusion, the CCR benefits of chirp (loosening) are pronouncedly more angle-robust than its

detriments for compacting gradients. So, no control over the chirp phase (see, e. g., fig. 5.3) will lead to,
at least under incident angle averaging, an increase in CCR.

5.5.1. Chirp along [111] direction

At a first, note that chirp wavevector is defined as the (001) amplitude within the orthorhombic supercell
lattice, i. e. directing in cubic [111] when inclined in this direction; consequently, the “same” chirp for
different directions does not describe the same system; in other words: this subsection is not directly
comparable to the effects seen in the former.
The qualitative appearance of reflectance—a series of narrow-band peaks up toΩ= 0.82, followed

by a near-achiral low-coupling band—undergoes only minor changes (such as an increased reflectance
in this low-coupling regime), cf. 5.18. The overall chiral response stays negligible when compared to the
[001]direction, with all chirp phases but a narrow interval aroundϕ/(2π) = 0.5, exhibiting systematically
more pronounced�	-major reflectance peaks, leading to a significant (but in absolute terms still small)
CCR end-value.
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Figure 5.17.: (MEEP reflectance) Angle dependence of CP-resolved reflectance (red: 		-major, blue: �	-major
reflectance) for a chirped (amplitude 0.2 a) network Gyroid with additional noise distortion (σr /a = 0.05,
σq a/(2π) = 0.7). Rows: azimuthal viewing angles, each at a chirp phase of loosening (left column) or compacting
(right column) distortion density beneath the irradiated surface. Compare with fig. 3.9 on page 46 (also, for
details to k∥ directions).
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Figure 5.18.: (MEEP reflectance) Chirp imposed on a 1srs network Gyroid, inclined in [111] direction. Reflectance
and CCR data from the undistorted geometry (grey), with σr /a = 0.1 (thin lines) and σr /a = 0.2 (thick lines),
colouring encodes the sinusoidal chirp offset phase. In addition, data from the undistorted [001] shown, to
depict the relatively weak CD in both the perfect and the chirped [111]-inclined situations.
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5.6. Discussion: CP reflectance of distorted chiral structures

For the discussion of polarisation-dependent CP light response of a medium determined solely by its
geometry, the detail-concealing approaches of (effective-)mediumdescriptions (as the intrinsic chirality
of continuous media, see sec. 2.2.2) do not suffice. Neither can, in this case of all-dielectric systems
(opposed to, e. g., plasmonic metamaterials), the currents on the “structure-photonic” or smaller length
scales, be used to describe and interpret response. Hence they restrict the analysis vocabulary to
(self-contained) true “field-only” treatment.
Note that the single Gyroid exhibits, in [001] direction, a�	-major reflectance and a		-major trans-

mission: light of the same handedness of theGyroid is transmitted preferred, in contrast to the behaviour
of cholesteric structures (see sec. 2.3.3), but in agreement with helix arrays.

Length scales of distortion

Least correlated randomness For a totally random structure, one expects finite reflectance with
weak frequency dependence (ensemble averaging over “MIE-like” scatterers). This “short-range corre-
lation” case has been approached with the multiple-subdivision network Gyroid, with the distortion
scale as the parameter to switch between small noise-like distortions and “scrub”, solely having topol-
ogy in common with a Gyroid crystal (see real-space fig. A.1). In essence, the local disorder between
single subdivision vertices conceals potential chiral response of the Gyroid arising frommedium- and
long-range regularity.
Another special case of neglecting correlation is for helices—whose “distortion length” does only

scale down to their extent limiting from rigidity—given by the “nematic gas”, where (in the case of the
normal gas, cf. fig. 5.11) their local handedness accounts only to a minor extent reason for the chirality
of the ordered structure.

Long-range correlations: Chirp Long-wavelength distortions with wavevector and polarisation
along inclination direction substantially alter the amount of reflectance over the spectrum, without
changing the frequency positions of the respective signals (i. e. band edges, resonances, etc. stay essen-
tially fixed).
Subsequently they impose no fundamental qualitative changes on real-space field–structure inter-

action (possibly making them a promising subject of semi-analytic perturbation theory), rather they
mainly change the coupling of CP vacuummodes into the nearly-crystal (increase/hinder transmission
into/out of the structure). It be subject to further research to trace this behaviour, e. g. by comparing
(at frequencies identified by this work,Ω= 0.88 or 0.97 as examples) PhC BLOCH eigenmodes to FDTD
field patterns, to identify and isolate its underlying mechanisms.

About the origins of single Gyroid’s PhC features

The helix Gyroid model allowed to separately study the contributions of the Gyroid’s respective helical
geometry elements, resolved by their orientation to the normal/inclination direction (sec. 5.3.1). Indeed,
we identified for the [001] inclination a separation of band gap mismatch CD (most prominent for the
helices in normal direction), and the CD arising from a pronounced dichroic band (for laterally oriented
helices). For undistorted structures, all three cases reach essentially the same CCR final value as the
Gyroid (fig. 5.9).
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Both effects are combined in the cubic Gyroid spectrum. Their construction by uniaxial structures
help to identify the underlying geometric principle giving rise to the observed behaviour: The existence
of the dichroic band gap, backed by the band structure, is on account of lateral helical elements, whereas
the existence of normal-oriented helices cause a broader�	 reflectance band gap (even more clearly
seen for the SC basis), in agreement with the optical handedness of the hexagonal helix arrays.

Absorbance and effective penetration depth Finite absorbance allows indirect probe-assisted
penetration depth heuristics: revealed by difference between CCR and CCT. The smearing–broadening
of the [001] Gyroid dichroic band gap by absorbance has already been described in [Sab+14], and gets
backed by the observations for CCR and CCT. The Gyroid shows “real”, non-trivial circular-dichroic
dispersion: The CPmodes, exposed to the chiral structure with finite real-dielectric contrast, are subject
to an increase (�	) or decrease (		) of effective absorbance around 0.78 < Ω < 0.83, stronger than
predicted from the solid-medium absorbance from Im(ε) (See immersion simulations in [Sab+14] for
an example where the handedness of the structure does not cause CD signal when Re(ε) is the same for
both channels).

A structure-photonic “bottom-up” view of chirality?

Studying systems of both “nematic” and a orientationally random helix gases (sec. 5.3.2) showed hardly
optical chirality—in spite of consisting from “maximally chiral elements” (helices). This shows up two
major implications on perfect dielectrics as carriers of chirality:

• The notion of “chiral building blocks” does not (or only to little extent, in case of helix axes aligned
with inclination) translate on superstructures, i. e. locally handed dielectrics cannot straight-
forwardly explain global chirality. This puts great demand on geometric yet optics-compatible
chirality measures.
Moreover, these observations underline the conceptual difference of the chiral response of “pho-
tonic length-scale” media compared to those with intrinsic chirality (e. g. sugar solutions), the
latter being badly described by an all-dielectric geometry model.

• “CD Helicity” (i. e., visibility of handedness by light) gets greatly augmented by periodicity. Al-
though a genuine property of the dielectric building blocks themselves, the (discrete and uniform)
organisation of a structure-photonic medium plays as well an essential role in the emergence of
optical chirality—though conceptually incompatible lateral continuity of plane waves! To dissect
that process, tunable distortion is the appropriate “probe”, as it allows continuous intermediate
steps in between.

CCR: A measure for chiro-optical response of structure-photonic media

The cumulative circular contrast CCR (and CCT, when, in the case of lossy media, they do not coincide)
proves as a versatile measure to quickly and robustly judge a given scattering geometry for its chiral
properties: by answering both “Howmuch CD?” (effective dichroic bandwidth) and “At which colour?”
(preserved frequency dependence/spectrum character). Implications, limitations and interpretation
have been discussed in sections 3.1.2 and 5.4.
However, besides discussing a link to complementary (e. g., experimental) techniques, surveying

reflectances and/or transmissions will at least have to include a way to visualise the absolute reflectance
besides.
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5.7. Outlook

5.7.1. Further approaches and variations of the PhC system

• Linear chirp: prove sinusoidal observations with a non-periodic “true” chirp by either spatially
constant gradient pitch, or discrete, i. e. Assemble chirp by stacking uniformly distorted crystals
with constant distortion in normal direction (of which we can calculate the band structure
separately)

• Other types of deterministic low-wavevector distortions throughout the structure

• Helical model(s): 〈111〉78, or 〈100〉with complementary smaller/bigger helices

• Polarisation analysis: This thesis does not study the ellipticity of reflected/transmitted light. Study
partial CCRs (“elliptic contrasts”, including discrimination between handedness-conserving and
handedness-inverting fractions).

• CD is, in its traditional definition, caused by CP-sensitive attenuation. Study partialCCR andCCT
elliptic contrasts

• Polycrystalline/“Amorphous” types of disorder (grain boundaries, topological defects)—require a
lot more computational power

• Helix array azimuthal (phase) noise

• 4srswith higher ε, and testing robustness against incident angle, distortion

• Investigate the feasibility of an “AmorphousGyroid” (inspired by “amorphousDiamond” [Bur+14],
or disordered self-assembly of LAVES phases): the behaviour of its geometric/optical chirality
while disturbing its global topology (while preserving the local order).

5.7.2. Circular polarisation, the photon’s chirality, and Lipkin’s Zilch

Lipkin [Lip64] discovered and described the quantity

Z 00 = E · (∇×E)+H · (∇×H) (5.2)

In free space, it • is a conserved quantity of the EM field/Maxwell equations • is related to the photon
spin, i. e. its circular polarisation, and thus • could serve as a “natural” measure of the light’s CP (at least
in free space, possibly generalisable towards ε 6= 1 media).
Bliokh and Nori [BN11] underlined a remarkable symmetry between Energy density–Poynting vector

↔ “Chiral Density”–“Chirality Flow” (analogue to the Zilch). The introduction of a “natural” measure
of the chirality of electromagnetic waves, being generalisable over plane-wave, may help to more
comprehensively describe the “degree of chirality” of field patterns in the interior of non-uniform
media, and eventually help identify the “chiro-optically active geometry features” of dielectric structures
(perhaps, resembling the way the H field patterns unveil the active geometric features of the plasmonic
Gyroid within [Oh+12]).

78These are the rods forming the Gyroid solid phase in [ER14].
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Appendix
Cornelis Gijsbrechts: “Quodlibet” (1675)
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A. Gallery of real-space structures

Note that, due to anHDF5 import bugwithin theuseddata visualisationprogramVisIt (https://visit.
llnl.gov/), the x and z coordinates get swapped on export. Thus, within the structure depictions, the
handedness is inverted with respect to the absolute spatial configuration.

Figure A.1.: Different network Gyroid initialisations (for fig. 5.3), all with the same σr /a = 0.2, but differing in
correlation length scale: σq a/(2π) = 0.3 (red, upper left), σq a/(2π) = 0.7 (yellow, upper right), σq a/(2π) = 1.0
(green, lower left), and σq a/(2π) = 2.3 (blue, lower right).

https://visit.llnl.gov/
https://visit.llnl.gov/


Figure A.2.: Nodal Gyroid subject to loosening chirp: the structure is compressed in the vicinity of the surfaces
and stretched in the middle of the simulation box (chirp phase 0.25×2π). Chirp amplitude σr /a = 0.2.

Figure A.3.: Simulation box: “Nematic gas” consisting of effectively uncorrelated helices oriented in normal
direction (green, upper image) or perpendicular to normal/“inclination” direction (brown, lower image).
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Figure A.4.: Top view of the simulation box of the SC- (upper image, blue, three helices per unitcube) and BCC-
helical Gyroid (lower image, red, six helices per unitcube).
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B. Auxiliary calculations

B.1. Self-correlation of Fourier-decomposed vector field

This computation has been carried out in section 4.3.3 to deliver an exact expression for the autocorre-
lation of an arbitrary field u(r), solely expressed in terms of real-valued amplitudes and scalar phases. It
determines normalisation, and is an intermediate step for further interpretation, once a realistic model
for u is inserted.

G(x) =(u∗u)(x) =

=
∫
SC

d3r

VSC
u(r) ·u(r+x) =

=2Υ
∑
q,q′

uquq′
∫
SC

d3r

VSC
cos(q · r+ϕq)cos(q′ · (r+x)+ϕq′ ) =

=2Υ
∑
q,q′

uq ·uq′
∫
SC

d3r

VSC
×

× (
cos(q · r)cos(ϕq)− sin(q · r)sin(ϕq)

)×
× (

cos(q′ · r)cos(q′ ·x+ϕq′ )− sin(q′ · r)sin(q′ ·x+ϕq′ )
)

=2Υ
∑
q,q′

uq ·uq′
∫
SC

d3r

VSC

(
0+

+cos(q · r)cos(ϕq) ·cos(q′ · r)cos(q′ ·x+ϕq′ )+
+ sin(q · r)sin(ϕq) · sin(q′ · r)sin(q′ ·x+ϕq′ )+
−cos(q · r)cos(ϕq) · sin(q′ · r)sin(q′ ·x+ϕq′ )+
− sin(q · r)sin(ϕq) ·cos(q′ · r)cos(q′ ·x+ϕq′ )

)=
=Υ∑

q,q′
uq ·uq′

∫
SC

d3r

VSC

(
0+

+cos(ϕq)cos(q′ ·x+ϕq′ ) · (cos
(
(q−q′) · r

)+cos
(
(q+q′) · r

))+
+ sin(ϕq)sin(q′ ·x+ϕq′ ) · (cos

(
(q−q′) · r

)−cos
(
(q+q′) · r

))+
−cos(ϕq)sin(q′ ·x+ϕq′ ) · (sin

(−(q−q′) · r
)+ sin

(
(q+q′) · r

))+
− sin(ϕq)cos(q′ ·x+ϕq′ ) · (sin

(
(q−q′) · r

)+ sin
(
(q+q′) · r

)) )=



=Υ∑
q,q′

uq ·uq′
(

0+

+cos(ϕq)cos(q′ ·x+ϕq′ ) ·
(
δ

q′
q +δq′

−q

)
+

+ sin(ϕq)sin(q′ ·x+ϕq′ ) ·
(
δ

q′
q −δq′

−q

)
+

−cos(ϕq)sin(q′ ·x+ϕq′ ) ·0

− sin(ϕq)cos(q′ ·x+ϕq′ ) ·0
)=

=Υ∑
q

(
u2

q ·
(
cos(ϕq)cos(q ·x+ϕq)+ sin(ϕq)sin(q ·x+ϕq)

)+
+uq ·u−q ·

(
cos(ϕq)cos(q ·x−ϕq)+ sin(ϕq)sin(q ·x−ϕ−q)

) )=
=Υ∑

q

(
cos(q ·x) ·

(
u2

q

(
cos2(ϕq)+ sin2(ϕq)

)+uq ·u−q
(
cos2(ϕq)− sin2(ϕ−q)

))+
+ sin(q ·x) ·

(
u2

q · sin(ϕq)cos(ϕq) · (1−1)+uq ·u−q
(
sin(ϕq)cos(ϕq)+ sin(ϕq)cos(ϕ−q)

)) )
=

=Υ∑
q

uq ·
(

cos(q ·x)
(
uq +u−q

(
cos2(ϕq)− sin2(ϕ−q)

))+
+ sin(q ·x) ·u−q

(
sin(ϕq)cos(ϕq)+ sin(ϕq)cos(ϕ−q)

) )
This all shrinks to a one-liner if carried out in complex notation. Therefore, it is largely to be understood
as trigonometric callisthenics, and a “pedestrian” test if the four (instead of six) parameters {uq,ϕq}
suffice to fully describe the Fourier coefficients.

B.2. Self-correlation of a finite volume

Assume you want to calculate the radial averaged pair distribution function (RDF)

g (r ) =N
N∑

j=1

N∑
i=1

δ(r −|ri − r j |) (B.1)

from a set of N points i in the EUCLIDean space Rd , each lying at ri within a convex volumeV . The “box
dimensions” impose a length scale L of the order dpV , d being the number of coordinates per point
(the spatial dimension).
A sensible requirement for the normalisationN is to have the equal probability value to unity at

any radius. Let us have a closer look to the pair detection statistics: Obviously, the contributions for
the smallest occurring r (r ¿V for large N ) come from “neighbours” predominantly deep within the
volume, and thus increase their contribution with enlarging radius r by the (d −1)th power of r (the
surface area of the sphere with radius r , which is for almost every point fully contained within V ). So,
N is essentially proportional to r 1/(d−1) for small r .
In contrast, the (small) solid angle in which the “last possible” distances r & L still fully contained in

V are seen, demands a near-constant normalisation scaling. In between, a function dependent on the
exact shape of V is expected.
Rather than to reject any length information from your RDF longer than, say, the shortest diameter

of V , to “hopefully” avoid “most of” the finite-volume effects (deviations from r 1/(d−1) behaviour), you
can actively compensate them: The RDF, as shown in eq. (B.1), is essentially the convolution of the
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point density %(r) = ∑N
i=1δ(r− ri ) with itself (followed by integrating out the angle dependency). In

words of reintroducing the integrals:

g (r ) =N
∫
R2d

ddx ddy ·
N∑

j=1
δ(r j −x) ·

N∑
i=1

δ(ri −y) ·δ(r −|y−x|) (B.2)

The outside of the volume V is distinct from its inside in that it must not contain any point. So, for any
given vector y−x to test for a point, we can decide a priori if it may contain a point at all: by testing
x,y

?∈V . If the vector pair is invalid, reject it, and “count” howmany acceptances and rejections have
occurred per possible distance r = |y−x|.
This is (trivially) equivalent to the natural restriction of the integration volume to V alone, and leads

to a normalisation condition in the following way: It should hold for arbitrary points sets, including
ones with a homogeneous79 density throughout V . In this case, the point density must be replaceable
by just unity, or, more precisely the characteristic function

%(r) ∝χV (r) =
{

1 r ∈V

0 outside ,
(B.3)

giving with eq. (B.2) and the intention to get unity correlation for homogeneous densities (within V ):

g (r ) =N
∫
V

ddx
∫
V

ddy ·δ(r −|y−x|) != 1

r 7→N−1 =
∫
V

ddx
∫
V

ddy ·δ(r −|y−x|) =
∫
Rd

ddx
∫
Rd

ddy ·χV (x) ·χV (y) ·δ(r −|y−x|) =

=
∫
Rd

dda
∫
Rd

ddb ·χV

(
a−b

2

)
·χV

(
a+b

2

)
·δ(r −|a|) =

=
∫
Rd

dd−1Ω

∫
Rd

ddb ·χV

(
r eΩ−b

2

)
·χV

(
r eΩ+b

2

)
(B.4)

This represents the self-correlation of the volume V , averaged over the solid angleΩ, or, in other words,
how probable it is for a distance starting withing V , having the length r and random orientation, to end
within the volume.

The box

Wewant to compute the normalisation function of the suggesting shape of a finite volume in EUCLIDean
space: the (hyper)rectangle, or simply “box”, definedby intervals on the coordinate axes (In the following,
I will stick to the d = 3 three-dimensional case). The box may be defined as

χbox(r) =
{

1 −L j < j < L j ∀ j = x, y, z

0 else ,
(B.5)

the product of three independent 1-D box functionsΘ( j +L j )Θ(L j − j ) along the coordinate axes. By
applying the self-convolution of this box function, one comes to the triangle function |L j − j | ·Θ( j +
79Homogeneous in the sense that no radial structure is perceptible at the smallest distances r subject to investigation.
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L j )Θ(L j − j ), By expressing the remaining space integration in spherical coordinates, one gets80

N−1 =8

π/2∫
0

dϑ

π/2∫
0

dϕsin(ϑ) · (Lx − r ·cos(ϕ) · sin(ϑ)) · (Ly − r · sin(ϕ) · sin(ϑ)) · (Lz − r ·cos(ϑ)) =

=Lx ·Ly ·Lz − 1

2
r (Lx ·Ly +Lx ·Lz +Ly ·Lz )+ 2

3π
r 2 · (Lx +Ly +Lz )− 3

4π
r 3 .

(B.6)

As long as the viewed distance does not exceed any L j , this formula exactly normalises RDF data to
unity in the continuous-density limit.

B.3. Convert light frequency to colour

Frequency reference colour bar

In order to draw fancy bars of equivalent light colour aside frequency-resolved data in the optical
frequency range, you have to know at first how the respective frequencies stimulate your colour
vision receptors, and second, how this data translates to the colour system of your display device.
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Figure B.1.: Frequency-to-RGB conversion

Here (although this work is intended for
print), we will stick to the additive (RGB)
colour composition of monitors, due to their
natural relation to light (self-illuminating),
ease of concept and reproducibility (printing
colours (subtractive synthesis via pigment
mixing) are subject to much greater devia-
tions than light mixing).
Once an explicit scale for a is introduced

(as described in sec. 2.1.6), an interconver-
sion of reduced frequency to RGB values can
be applied. The scheme presented here is
adapted from [Bru96].81 Every colour chan-
nel is referred to with a trapezium function,
linearly interpolating between the corner
colours; an additional red hump in the region adjacent to (invisible) UV mimics the eye’s red sen-
sitivity for the distinction of deep blue and violet.

80By exploiting symmetry of the three x j = 0 mirror planes, it suffices to compute within the first octant x j ≥ 0 and to multiply
the result with 8.

81As this data is given in terms of vacuumwavelengths λ0, this representation is also parametrised that way, and conversion to
frequencies via ω= 2πc0/λ0 is done at the output.
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C. Computing power and tea statistics
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Figure C.1.: Estimated environmental impact from the electrical energy consumed by computing power (sep-
arated by host names) and tea preparation (inset: origins of tea; bar heights scaling factor: 159 kmL−1;
Yerba Maté neglected) throughout writing this thesis, at the location in Erlangen. Assessment base: http:
//www.estw.de/stromkennzeichnung for the Erlangen electric fuel mix disclosure (CO2 emissions and frac-
tion of nuclear energy), andBDEWLeitfaden „Stromkennzeichnung“ (nuclearwaste accumulation rate 7.5µg J−1

of delivered electrical power).

http://www.estw.de/stromkennzeichnung
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