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Abstract

The concept of hyperspace can be used, among other things, to describe non-
periodic structures and their degrees of freedom. A phasonic Monte Carlo (MC)
simulation is used to study surface quasicrystals. Additionally, neural networks
were trained to perform regression analysis of hyperangles and phasonic flips.

Zusammenfassung

Das Konzept des Hyperraums kann unter anderem genutzt werden, um nicht-
periodische Strukturen und ihre Freiheitsgrade zu beschreiben. Eine phasonische
Monte Carlo (MC) Simulation wird verwendet, um Oberflächenquasikristalle zu
untersuchen. Darüber hinaus werden neuronale Netze trainiert, um Regressions-
analysen von Hyperwinkeln und phasonischen Flips durchzuführen.



Acknowledgement

I would like to sincerely thank Prof. Michael Schmiedeberg for his guidance and
excellent supervision throughout my master’s thesis.



Contents

1 Introduction 1

2 Hyperlattice description of quasicrystals 3
2.1 Crystallographic restriction . . . . . . . . . . . . . . . . . . . . . 3
2.2 Symmetry group of order 4 . . . . . . . . . . . . . . . . . . . . . 3
2.3 Acceptance window . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Periodic approximant . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Cut-and-project method . . . . . . . . . . . . . . . . . . . . . . . 5

2.5.1 Silver ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.2 Ammann-Beenker . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Theory of tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Monte Carlo simulation of phasonic flips 12
3.1 Hydrodynamic theory for quasicrystals . . . . . . . . . . . . . . . 12
3.2 Quasicrystalline defects . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Theory of Metropolis Monte Carlo simulation . . . . . . . . . . . 13

4 Results: phasonic MC simulations on a periodic substrate 15
4.1 Quantities for the simulated quasicrystal . . . . . . . . . . . . . . 15

4.1.1 Quasicrystalline order parameter Ψ . . . . . . . . . . . . . 16
4.1.2 Analysis of number of tiles . . . . . . . . . . . . . . . . . 16
4.1.3 Number of accepted Monte Carlo steps . . . . . . . . . . 16
4.1.4 Fitted slope of the phasonic distortion . . . . . . . . . . . 17

4.2 MC simulation of an initialized phasonic distortion . . . . . . . . 18
4.3 Influence of an additional external potential on the quasicrystal . 19

4.3.1 Phasonic modes . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Overview: MC-Simulation with external potential . . . . 22

5 Neural network 25
5.1 Result: Finding the orientation of the quasicrystal in hyperspace 27

5.1.1 Complexity of CNN’s for the learning progress . . . . . . 29
5.1.2 More carefully prepared training/test data . . . . . . . . . 32

5.2 Result: Finding phasonic defects . . . . . . . . . . . . . . . . . . 34

6 Resume and outlook 38

7 Appendix 39



1 Introduction

Quasicrystals are structures without translational symmetry. They often are
described as projections of higher-dimensional structures. While symmetries
occurring in periodic crystals are given by the crystallographic point groups,
quasicrystals are characterized by the existence of unusual point groups and
phasonic degrees of freedom. Quasicrystals can grow in a self-assembled manner.
The stability of quasicrystals partially is due to the fact that they can have more
degrees of freedom and therefore higher entropy than periodic crystals. In fact,
most known quasicrystals are high-temperature phases[1].

Literature research on axial quasicrystals of identical particles

Colloids are approximately identical micron-sized particles dispersed in a sol-
vent. Because of their size, colloids are easier to handle and to observe than
atoms, while undergoing Brownian motion. By preventing aggregation they
can be used as a mesoscopic model for quasicrystals. Quasicrystals can form
by applying a suitable external field. They can also self-assemble using modi-
fied interaction potentials with quasicrystalline length scales or with preferred
binding angles. Colloids provide insight into fundamental quasicrystalline prin-
ciples, like emergence of special tilings, stability of a desired rotational symme-
try, occurrence of phasonic excitation; suitable parameters for self-assembly in
experiments can be proposed[2, 3].

In 2013 Stefan Förster et al. discovered a new class of materials: oxide qua-
sicrystals with a nano length scale. They arise from a multilayer heteroepitaxy
of a perovskite on the substrate Pt(111). Monoatomic layers of ternary oxides
are formed. For example, a Niizeki-Gähler tiling and a 12-fold rotational sym-
metry can be identified. Depending on the heating temperature of the annealing
process, different long-range orders can develop[4, 5].

Motivation

In section 2 and 3, it is explained that many quasicrystals, as well as their degrees
of freedom, can be described by using a higher-dimensional periodic crystal. A
quasicrystal occupies certain lattice points of the hyperspace. Phasonic flips
correspond to jumps to certain neighboring unoccupied lattice sites. They are
proposed in the MC simulation to relax the quasicrystal in its phasonic degrees of
freedom. Phasonic flips are largely correlated with one another. The simulation
corresponds to a locally non-isomorphic mapping into the random tiling regime,
which includes tilings that can be reached by single phasonic flips and are mostly
energetically close to the ideal tiling, for an interaction potential that stabilizes
the occurring length scales.

In section 4 the phasonic dynamics of an 8-fold axial quasicrystal on a
substrate is simulated in hyperspace. The phasonic distortion and emerging
anisotropies are investigated. With this simulation method, the hyperspace co-
ordinates of the particles are known at all times. Material properties can be

1



better understood with an overview of the distribution of phasonic flips. With
knowledge of the phasonic distortion, quasicrystals can be produced in the lab-
oratory. Michael Schmiedeberg et al. showed that a substrate potential with
phononic and phasonic distortions can be generated by slightly misaligned laser
beams[6].

Quasicrystals can be observed or simulated directly in physical space, but to
investigate them, a reconstruction in hyperspace is extremely helpful. Johannes
Hielscher et al. reconstructed quasicrystals in a suitable hyperspace by approx-
imately assigning particles to hyperlattice sites[7]. A good knowledge of the
quasicrystal simplifies this task. For this purpose, in section 5 neural networks
are trained to recognize hyperangles and to localize phasonic defects.

2



2 Hyperlattice description of quasicrystals

In the following, the cut-and-project method is presented for the construction
of quasicrystals and periodic approximants in a hyperlattice. For surface crys-
tals, axial quasicrystals are particularly suitable. These are two-dimensional
quasicrystals that can form three-dimensional layers. Other quasicrystals are
icosahedral ; these are aperiodic in any direction. With this method the one-
dimensional Pell quasicrystal and a possible approximant are generated. An
Ammann-Beenker tiling is also demonstrated as an example for a two-dimensional
generalization.

The term hyperlattice is used for a point lattice of dimension n; here we use a
discrete orbit of a Z-module in the euclidean space En. It is therefore generated
by n independent vectors corresponding to a representation of the general linear
group GL(n,Z) and it is isomorphic to Zn. The prerequisite for the cut-and-
project method is an invertible mapping. In the following, mostly elements of
the symmetry group are used, for example, to construct the Ammann-Beenker
tiling.

2.1 Crystallographic restriction

The crystallographic restriction Ordn defines the dimension of the hyperlattice
n in which a particular order of a mapping occurs. It is defined according to
[8, 9] by:

Ordn = {m ∈ N | ∃A ∈ GL(n,Z) with Ord(A) = m}

Where A is an integer matrix. The order of A is the smallest k ∈ N+ for
Ak = I; else of infinite order. The minimal embedding is given by the Euler
totient function ϕ(m):

ϕ(m) = m
∏
p|m

(
1− 1

p

)
For m > 2 and p only prime numbers. ϕ(m) is even: the smallest dimension
where symmetries can be observed is even. A group compatible with a lattice
can be represented as integer matrices, by choosing the corresponding basis.
For the cut-and-project method often the isometry group is considered. An
isometry is a map that preserve the metric. A linear isometry keeps the origin
fixed.

2.2 Symmetry group of order 4

A hyperspace dimension of n ≥ 4 is required in order to construct a two-
dimensional quasicrystal with a quasicrystalline rotational symmetry. This can
be seen by calculating the crystallographic restriction:

• Ord2 = Ord3 = {1, 2, 3, 4, 6}

• Ord4/Ord2 = {5, 8, 10, 12}

3



In the following, the cubic lattice Z4 is used to create two-dimensional quasi-
crystalline structures. Therefore the point group O(2) will be considered; for
this linear isometry a symmetry-adapted basis will be chosen. Every linear
isometry can be represented for a certain orthonormal basis by a n × n block
diagonal matrix R, where each block Ri is either fixed ±1 or stabilized:

Ri =

[
cos Θi − sin Θi

sin Θi cos Θi

]
In the case of the 4-dimensional Euclidean space E4 it’s given by:

R =


cosα − sinα 0 0
sinα cosα 0 0

0 0 cosβ − sinβ
0 0 sinβ cosβ


If you choose α = 2π

kα
and β = 2π

kβ
with ki ∈ N, the order of the combined

cyclic group is given by kα · kβ . By choosing a basis, the hyperspace E4 can be
separated into two-dimensional subspaces[10]:

E4 = E‖ ⊕ E⊥

2.3 Acceptance window

The orbits of the Z-modules are dense everywhere in physical space E‖. There-
fore only a subset of the point lattice is chosen, which consists of lattice sites in
the acceptance window defined in the orthogonal space E⊥; particle properties
are ascribed to these lattice sites. Lattice sites outside correspond to phasonic
degrees of freedom (see section 3.1). In the case of the canonical cut-and-project
method the acceptance window corresponds to a projection of the Wigner-Seitz
cell. This is a primitive cell with a clear construction rule. Details for the
implementation are given in section 7.

2.4 Periodic approximant

Phasonic distortion results by defining the acceptance window by a distorted
basis[11]. For the cut-and-project method used here, the subset is projected
into the basis of the perfect quasicrystal to get equal length scales.

If the physical space E‖ is chosen totally irrational, the orbit is nonperiodic[9]
and the physical space intersects exactly one lattice point, in the following, the
origin. If E‖ is rational, lattice points are intersected at equal intervals. The
cut-and-project method then delivers periodic structures. If the hyperangles are
approximated, a periodic approximant is generated; it’s a periodic crystal whose
unit cell is similar to a part of the quasicrystal. Approximants with large unit
cells closely resemble quasicrystals. The larger the approximant, the smaller
the energy to excite long wavelength phasonic degrees of freedom and therefore
the more realization possibilities there are. They have an increasingly similar
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composition of tiles as quasicrystals and possess similar physical properties[1].
With larger unit cells, there are better periodic approximants. According to the
Hurwitz approximation theorem[12]:∣∣∣∣x− p

q

∣∣∣∣ < 1√
5q2

Where x is a real number and p and q are integers. Quasicrystal growth pro-
cesses could emerge along periodic approximants. In annealing processes there
can also be phase transitions between approximants and quasicrystals[13].

2.5 Cut-and-project method

The cut-and-project algorithm is a method used to generate aperiodic structures
in the physical space. In order to obtain quasicrystalline structures with specific
length scales, a cleverly chosen subset of lattice points is cut out from a suitable
hyperspace and projected onto the physical space. The hyperspace must contain
the desired symmetry. To study surface quasicrystals, the physical space is R2.
By choosing the right orientation of the physical space, symmetries can be
propagated there.

In figure 1 the projection of hypercubes around the origin onto physical space
is visualised. In a) an orthogonal projection of the cube-lattice leads to a regular
hexagon. In b) an orthogonal projection of the 4-cube-lattice leads to a regular
octagon. In b), c) and d) orthogonal projections of the 4-cube-lattice result in
5-, 8-, 10- and 12-fold rotational symmetries in minimal embedding (see section
2.1).

With the canonical cut-and-project method the one-dimensional Pell qua-
sicrystal can be created with the angle φ = π

8 . This method also allows the
two-dimensional Ammann-Beenker tiling to be produced with the hyperangles
of the physical space α = π

4 and β = 3π
4 perpendicular to the axis of the octag-

onal point group 8mm (further details in section 2.5.2).
The well-known Penrose tiling and the Square-Triangle tiling can also be

obtained by the cut-and-project method. A hyperrhombohedral unit cell is re-
quired in the Z4 minimal embedding to generate the Penrose tiling[14]. Using
the Z5 embedding, axial Penrose tiles can be generated with the canonical choice
of the acceptance window. In minimal embedding the acceptance windows can
be arbitrarily complicated: In Z4 to generate the well-known Square-Triangle
tiling, an acceptance window with 12-fold symmetry and fractal borders is re-
quired. This acceptance window can be constructed iteratively[15].

In section 3 a simulation is carried out in hyperspace. Therefore a modi-
fication of the cut-and-project method is the starting point of the hyperspace
MC simulations, instead of the projection an invertible mapping is used[16];
the lattice gets mapped to the respective symmetry-adapted basis. Before the
simulation, lattice sites in the acceptance window are defined occupied ; lattice
sites outside are defined unoccupied. So-called phasonic flips from occupied to
unoccupied lattice sites can be proposed (see section 3.4); while the interaction
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Figure 1: Visualisation of projection in the physical space of the lattice sites
with entries [-1,0,1] and local symmetries: a): 6-fold rotational symmetry of the
cube lattice, b): 8-fold rotational symmetry of the 4-cube lattice, c): 12-fold
rotational symmetry of the 4-cube lattice, d): 5-/10-fold rotational symmetry
of the 4-cube lattice. In 3D there are 27 and in 4D there are 81 possible lattice-
points that are partially superimposed.

potential only works parallel to the physical space. Phasonic flips change the
configuration of occupied or unoccupied lattice sites, but the hyperlattice stays
unchanged. An advantage of this method is, that the distribution of phasonic
flips does not have to be reconstructed, because it is given in the hyperspace
coordinates at all times.
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2.5.1 Silver ratio

Consider a one-dimensional physical space rotated by φ = π
8 inside the two-

dimensional hyperspace Z2. A symmetry adapted basis is given by û‖ and û⊥:

û‖ =

[
cos (φ)
sin (φ)

]
=

1√
4− 2

√
2

[
1√

2− 1

]

û⊥ =

[
− sin (φ)
cos (φ)

]
=

1√
4− 2

√
2

[
−1√
2− 1

]

The canonical cut-and-project method reveals the Pell sequence Pn := 2Pn−1+
Pn−2 with P0 = 0, P1 = 1 for n ∈ N. In figure 2a) a Pell quasicrystal consisting
of two lengths L and S is shown. The arrangement can be described by the
substitution rules: L −→ LSL, S −→ L. The corresponding transition matrix:

T =

[
2 1
1 0

] [
L
S

]
:=

[
LLS
L

]

has eigenvalues: 1±
√

2 and eigenvectors:

[
1±
√

2
1

]
. Hence the numerical ratio

of the number of these length scales, for an infinitely large quasicrystal, is given
by 1±

√
2. With the substitution, the number of occurring lengths correspond

to the Pell sequence: Pn = AL(n) and Pn−1 = AS(n) for n > 0. The ratio of
consecutive Pell numbers approximates the silver ratio:

lim
n→∞

Pn−1
Pn

=
√

2− 1

In figure 2b) the approximant n = 3 with the ratio 5:2 can be seen for the
silver ratio. Here a phasonic distortion is adjusted by rotating the physical space
from 22.5◦ to 21.8◦ so that it intersects the following points in addition to the
origin:

z ·
[
2
5

]
∀ z ∈ Z
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(b) Approximant 5 : 2

Figure 2: The canonical cut-and-project method in 2D to create the Pell se-
quence in (a) and to create a periodic approximant with sequence LSLLLSL in
(b). The green dots are additional intersections with the hyperlattice. The gray
dots are lattice sites outside of the acceptance window.
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2.5.2 Ammann-Beenker

A matrix B where the rows form a basis and BA with A ∈ GL(n,Z) are called
generator matrices of a lattice; the action of the point group 8mm is generated
by the action of eigth-fold rotation and reflection[17].

Projecting the canonical subset of Z4 onto the physical space with hyperspace
angles α = π

4 and β = 3π
4 results in the Ammann-Beenker tiling. In section 2.2

all isometries in 4D are given. A possible generator of 8 fold symmetry in 4D
is: 

0 0 1 0
0 0 0 −1
0 1 0 0
1 0 0 0


A compatible basis is spanned by x̂‖, ŷ‖, x̂⊥, ŷ⊥; by this choice the quasicrystal
is also rotational symmetric for a distorted acceptance window:

x̂‖ =


√

2/2
1/2
0
−1/2

 , ŷ‖ =


0

1/2√
2/2

1/2

 , x̂⊥ =


√

2/2
−1/2

0
1/2

 , ŷ⊥ =


0

1/2

−
√

2/2
1/2


In figure 3 a section of the perfect Ammann-Beenker quasicrystal can be

seen. Ammann-Beenker is related to the Pell quasicrystal via the dual multigrid
method [15].
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Figure 3: Ammann-Beenker tiling received with the cut-and-projection method.
Inside the Pell sequence from figure 2 can be identified.
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2.6 Theory of tilings

In the following, some theoretical considerations for Ammann-Beenker and
Square-Triangle tiling are presented. This motivates suitable interaction po-
tentials; the regression analysis with neural networks also depends on it.

The Ammann-Beenker tiling parquets the plane with an eight-fold ro-
tational symmetry. It consists of an arrangement of squares and of rhombuses
(with an angle π/2), that obeys following substitution matrix:(

N ′r
N ′s

)
=

(
3 2
4 3

)(
Nr
Ns

)
Nr stands for the number of rhombuses and Ns for the number of squares. For
an infinite tiling the ratio of rhombuses to squares is therefore given by

√
2.

Without overlaps, each vertex can have a circle with a radius r = sinπ/8. For
these dense packed circles, each rhombus is covered by the ratio: Rr =

√
2π · r2

and each square is covered by a full circle: Rs = π · r2.
The packing density for the close packed Ammann-Beenker quasicrystal is given
by:

Rr ·
√

2 +Rs · 1√
2 + 1

≈ 0.57

The Ammann-Beenker quasicrystal has the smallest possible length scales 2r
and 1. The interaction potential must be carefully chosen so that the quasicrys-
tal prevails. The quasicrystal could compete with the square phase with length
1√
2

or
√

2.

The length scale 1 occurs
(
2 +
√

2
)
≈ 3.41 times more often than 2r. There-

fore, it can be reasonable to model the lengths in the interaction potential
individually; such that the quasicrystal has lower energy than a square phase.

The Square-Triangle tiling parquets the plane with a 12-fold symmetry.
It consists of an arrangement of squares and equilateral triangles, that obeys
following substitution matrix:(

N ′t
N ′s

)
=

(
3 7
7 16

)(
Nt
Ns

)
Nt is equal to the number of triangles. Ns is equal to the number of squares.
The ratio of triangles to squares is therefore given by 4√

3
. Each triangle is

covered by dense packed circles of radius r = 0.5 by the ratio: Rt = π
2
√
3
. Each

square is covered by a full circle: Rs = π
4 .

The packing density for the closed packed Square-Triangle quasicrystal is given
by:

Rt · 4√
3

+Rs · 1
4√
3

+ 1
≈ 0.87

For comparison the densest packing of equal circles is given by: π
√
3

6 ≈ 0.91.
For the square lattice circle packing it’s given by: π

4 ≈ 0.79.
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3 Monte Carlo simulation of phasonic flips

3.1 Hydrodynamic theory for quasicrystals

Quasicrystals have ϕ(m) degrees of freedom (see section 2.1). These exist as
phononic and phasonic modes or quasiparticles:

Phononic modes correspond to elementary lattice vibrations; they describe
the collective translation at specific frequencies of lattice sites in physical space.
Phonons play a role in determining properties such as the conductivity of heat
and electricity. The dimension n of the structure corresponds to the number of
phononic degrees of freedom available in the system.

Phasonic modes are collective excitations of the orthogonal space. In the
physical space they correspond to a rearrangement of the tiling. All possible
configurations that can be reached by single phasonic flips are described below
as general random tiling regime. In contrast to the random tiling regime, the
number of tiles may change by defects, open boundary conditions or by periodic
boundary conditions with the special MC method introduced in section 3.3.
Phasons play a role in elastic and dynamic properties of quasicrystals[18]. There
are ϕ(m)− n phasonic degrees of freedom in the system.

Phonons relax quickly (in picosecond timescales). Phasonic strains are dif-
fusive and slow; they relax on timescales between 0.1 and 100s[18]. To study
the behavior of quasicrystals over large timescales, a phasonic MC simulation is
proposed in section 3.4. The simulation method neglects phononic excitations
and focuses on finding stable or metastable states over long timescales.

In a phasonic MC simulation, phasonic flips to neighboring lattice sites in hyper-
space are proposed. Particles tend to move to energetically favorable positions.
In contrast to the example of a continuous phase field model, particles are clearly
given on lattice sites in hyperspace. Because of the wave-particle duality it is
conceivable that a particle can tunnel through a potential barrier. It can be
measured at another energetically favorable position according to the tunneling
probability.

However, this obvious explanation for phasonic flips is not suitable for some
quasicrystals, e.g. consisting of colloids; since the tunneling probability depends
on the mass and the potential difference of neighboring particles. The flips
do not happen instantaneously, but the occurrence is beyond theory. For a
large number of flips this unphysical assumption can be neglected. Individual
simulation steps of the MC simulation may be improbable and do not reflect
the time course of a real quasicrystal. But by favoring configurations with a low
energy, the MC simulation can find for a high number of MC steps, stable and
metastable states.

3.2 Quasicrystalline defects

Similar defects occur in quasicrystals as in periodic crystals. The cut-and-
project method used can produce defect-free starting configurations. However,
it is possible to incorporate quasicrystalline defects in hyperspace[19]. Certain
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defects may appear during the simulation, influenced by the potential and tem-
perature.

Topological defects in quasicrystals can lead to a long-range phasonic strain
field, where multiple phasonic flips can build up a phasonic distortion. Phasonic
degrees of freedom impact the distribution of stress or can substitute crystalline
defects[20].

A phasonic defect is a non-topological defect and is here defined to be par-
ticles outside of the acceptance window; for a selected interaction potential the
corresponding phasonic flips cause often a higher energy. Like phonons, phasons
are hydrodynamic modes and therefore do not cost free energy in the limit of
long wavelength[2]. In order to localize these phasonic defects, a neural network
can be used as described in section 5.2.

3.3 Boundary conditions

Gold or platinum have a lattice constant of about 4Å. In experiments it is
possible to stabilize a quasicrystal on a smooth crystal substrate[4]. Considering
a surface of size 1cm2, there are about 1016 atoms in this area. In the simulation
used, particle numbers of the order 104 are simulated. It therefore makes sense
to think about the boundary conditions.

Periodic boundary conditions can be used to minimize boundary effects by
using periodic approximants. In figure 4 a simulation for the periodic approx-
imant with the length 17√

2
+ 12 with few phasonic MC steps is shown. It is

noticeable that the number of individual tiles does not change as a result of the
steps of the random tiling regime. In order for them to change, collective pha-
sonic flips towards a new approximant can be proposed, while the new physical
space must be scaled accordingly. This can be done with a second type of canon-
ical MC step: First, an adjacent lattice site of a point of contact with physical
space is randomly selected. Than the occupied lattice sites must be shifted into
the acceptance window of this new periodic approximant. Now it’s possible that
the number of different tiles changes depending on the chosen potentials, while
the number of particles stays constant. More on that in the outlook.

In section 4 for the research on the influence of an external potential, open
boundary conditions are used because they are implemented speed-optimized.
The advantage is that a section of the perfect quasicrystal with its phasonic
degrees of freedom can be simulated directly. The number of different tiles in
the random tiling regime can also change as a result of phasonic MC steps.

3.4 Theory of Metropolis Monte Carlo simulation

The Metropolis Monte Carlo (MC) simulation is used to calculate expected val-
ues. In the following, systems in the canonical ensemble are considered, with
constant particle number N, volume V and temperature T. An MC step corre-
sponds to the sampling of N possible new configurations. The occurrence of a
configuration is proportional to the Boltzmann factor: ∝ exp−βE with β = 1

kbT
and kb the Boltzmann constant. The algorithm is chosen to be time-invariant in
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(a) Ammann-Beenker tiling (b) Random tiling configuration

Figure 4: Illustration of the phasonic MC simulation of the periodic approximant
with the length 17√

2
+ 12 in the tiling representation (seen in (a)). After 200

MC steps at a temperature of 0.01 with no external potential (seen in (b)).
The number of individual tiles is retained in this random tiling regime. For
examining anisotropies in periodic boundary conditions a simulation method is
proposed in section 3.3 for which the number of tiles can change.

equilibrium; the principle detailed balance applies. In the MC simulation used,
new configurations are suggested symmetrically; all configurations are suggested
equally often. If a new configuration has a lower energy, it should always be
accepted. Otherwise the acceptance probability is chosen to be proportional to
the Boltzmann factor[21]:

paccold−→new =

{
exp (−β (Enew − Eold)) if Enew > Eold

1 if Enew ≤ Eold

There are too many configurations, especially for large systems, to review
them all. The MC method scans random trajectories through phase space, to
study statistical ensembles. It samples configurations with a frequency depen-
dent on the Boltzmann factor. Configurations with small energies are therefore
more important for the calculation of the expected value.

However, nothing can be said about the real dynamics on small time scales
with this basic method. Details for the implementation will be described in
section 7.
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4 Results: phasonic MC simulations on a peri-
odic substrate

The influence of an external potential on the phasonic distortion is to be in-
vestigated using the hyperspace MC simulation method. In the orthogonal
components superstructures are observed.

Quasicrystals can be created on periodic substrates in experiments. For ex-
ample, it is possible to grow an axial quasicrystal on a platinum 111 layer. With
the proposed MC simulation, this experiment can be better understood. While
surface reconstructions are neglected, the substrate on which the quasicrystal
develops, can be approximated by the external potential Uext:

Uext(h) ∝
(

1 + sin

[
2π

λ

(
x− y

h

)])(
1 + sin

[
2π

λ

(
x+

y

h

)])
It corresponds to a square substrate for h → ∞ and a triangular substrate for

h =
√
3
2 . The interaction potential of the quasicrystalline layer is approximated,

in the following, by the Lennard-Jones-Gauss potential ULJG, introduced by
Engel et al.[22]:

ULJG (r) =
r0
r

12
− 2

r0
r

6
− a exp

(
− (r − rG)

2

2r0σ2

)
− ULJG (rc)

With r0 =
√

1− 1√
2
, rG = 1√

2
, a = 0.66, σ = 0.02 and rc = 2 it is possible

to stabilize the random tiling regime. Theoretically, the interaction potential
is chosen so that it approximates the negative radial pair correlation function
of the Ammann-Beenker tiling. With the help of simulations, it turned out
that these parameters suffice at small enough temperatures T . With unsuitable
parameters the quasicrystalline configuration is not very stable or the general
random tiling regime can break up at different locations. A low number of
vacancy defects is tolerated.

Other parameters in the simulation are the number of MC steps and the de-
fined phasonic flips. Due to high complexity, open boundary conditions are used
for around 9000 particles in the following results. The starting configurations
are chosen similarly to the canonical cut-and-project method.

4.1 Quantities for the simulated quasicrystal

Quantities used to characterize the results will now be presented. They are
defined in the general random tiling regime.
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4.1.1 Quasicrystalline order parameter Ψ

In the general random tiling regime a phase transition between a periodic crystal
and the quasicrystal will be defined by a quasicrystalline order parameter Ψ:

Ψ := 1− N1 −N1 (0)

Nt
=

{
1 for perfect quasicrystal

0 for perfect periodic crystal

Where N1 is the number of particles with neighbors at distance S = 1√
2

with

angle π. N1 (0) is this number for a perfect quasicrystal and Nt is the total
number of particles.

4.1.2 Analysis of number of tiles

• A pseudo order parameter similar to Ψ exists in the general random tiling
regime as the ratio of rhombus tiles to square tiles:

ρ :=
Nr
Ns

=


√

2 for perfect quasicrystal

0 for periodic crystal of basic squares

−→∞ for periodic crystal of basic rhombus tiles

Deviations from ρ =
√

2 indicate possible periodic approximants. In sec-
tion 4.3 this quantity is defined for one-dimension as the number ratio of
the length S = 1√

2
to the length L = 1 as n1

n2
along both axes.

• Li consists of the number ratio of individual tiles with length S to tiles
with length L along an axis i ∈ {x, y}. The quantity L := Lx − Ly can
indicate an asymmetry, which may develop from a symmetrically chosen
starting configuration:

L := Lx − Ly =
Nr
(
π
8

)
+Nr

(
7π
8

)
−Nr

(
3π
8

)
−Nr

(
5π
8

)
Ns
(
π
4

)
Where Nr (θ) is the number of rhombuses with the direction of their long
side defined by θ with respect to the coordinate axis. Ns

(
π
4

)
is the number

of by π
4 rotated squares.

4.1.3 Number of accepted Monte Carlo steps

N is the number of accepted Monte Carlo steps; this quantity provides informa-
tion about the quality of the simulation. However, it can also depend on the
length of the phasonic strains. It is noticeable that it varies locally when using
an external potential. Figure 5 shows the frequency of MC flips in physical
space for different wavelengths that have a similar period of the superstructure.
In figure 8 an indirect connection between Ψ and N is noticeable.
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Figure 5: Normalized spatial distribution of Gaussian peaks at the location of
phasonic flips for left: λ = 0.1, a bad approximant; right: λ = 0.6, a good
approximant; here the quasicrystal is well preserved.

4.1.4 Fitted slope of the phasonic distortion

The fitted slope of the phasonic distortion along the coordinate axis ∆ai is
defined for a direct insight into the phasonic distortion. If this quantity is
averaged along all possible coordinate axes, ∆a results. This quantity depends
strongly on the system size and possible superstructures. The quantity a can
be obtained by cutting off the edges before the fitting and considering the mean
value over several simulations.
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4.2 MC simulation of an initialized phasonic distortion

The hyperspace simulation simplifies the initialization and fitting of arbitrary
phasonic distortions. A quasicrystal similar to Ammann-Beenker is initialized
with the canonical acceptance window shifted in both orthogonal directions by
the linear gradient adis (êx + êy), depending on the distance along the axes.
The change in phasonic distortion is connected to the number of different tiles.
Therefore, open boundary conditions are used (see section 3.3).

The mean value of the fitted phasonic distortion ∆a, averaged over 5 simula-
tions each, is given below as a. The number of MC steps is set to 106: a starting
configuration without a phasonic distortion results in a = (7.17 ± 0.04)10−5.
For adis = (8.34 ± 0.10)10−3 without an external potential, a slight approx-
imation to the expected angles is noticeable: a = (8.16 ± 0.10)10−3. For
adis = (8.34 ± 0.10)10−3 additional averaged over 10 different external poten-
tials, the result is a = (9.1 ± 0.9)10−3. On average, the external potential
in the simulation does not simplify finding the perfect hyperspace angles of a
quasicrystal or an approximant. However, the quasicrystalline structure on an
external potential is mostly better preserved (see ψ in section 4.3.2).

It is remarkable that with a set phasonic distortion, steps occured in addition
to overstructures. The fitted phasonic distortion ∆a varies widely within the
steps. Figure 6 gives examples of the phasonic distortion for a large gradient
with adis = (1.6± 0.05)10−2 and a square external potential and 106 MC steps.
For λ = 1 a step with a small gradient is noticeable: ∆a = (9.3± 2.8)10−3. For
λ = 0.6, ∆a can also have negative values within a superstructure or a step.
Please note that only in this subsection the axes of the physical space are not
chosen to be symmetrical for an applied phasonic distortion. This is partially
the reason for the observed anisotropies in the figure 6.
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Figure 6: Spatial distribution of the phasonic distortion interpolated by Gaus-
sian peaks at 106 MC steps: adis = (1.6±0.05)10−2, left: λ = 1.0, right λ = 0.6.
The colorbar shows an orthogonal component. Only in this section the basis is
chosen to be asymmetrically in x1 and x2 direction.
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4.3 Influence of an additional external potential on the
quasicrystal

4.3.1 Phasonic modes

For the following analysis, the quasicrystal is chosen to be symmetric in x1 and
x2 direction. The period of the substrate can stabilize a periodic approximant
and thus the quasicrystalline order. In simulations superstructures can form in
the phasonic distortion. If a multiple n of the wavelength λ corresponds to a
length of the random tiling regime up to ε, a periodic phasonic distortion will
develop at this length:

nλ = n1S + n2L+ ε {n, n1, n2 ∈ N}

It is noticeable that the superstructure is more distinct for a small ε and a
quasicrystalline ratio of n1

n2
≈
√

2. Since this equation has infinitely many solu-
tions, only superstructures with a maximum length of ≈ 200 are allowed here.
It is observed that for most triangular external potentials it is more difficult to
obtain strong phasonic modes, compared to square external potentials. If an
asymmetric external potential with respect to the axes of the physical space is
used, specific directions along angles inside the quasicrystal have an influence on
the superstructure. A coupling between possible superstructures with different
angles is suspected.

As an estimate for strong superstructures, it is possible to use only the
lengths of the perfect Ammann-Beenker quasicrystal for the quantities n1 and
n2. The quasicrystalline lengths along the x-/y-axis can be calculated with the
substitution rules. This results in the following transition matrix:(

S′

L′

)
=

(
3 2
4 3

)(
S
L

)
.

Here S = 1/
√

2 and L = 1 are lengths occurring in the quasicrystal along the
axes. The initial sequence of the canonical cut-and-project method is given by:
SLSLSSLSLSLSSLSLSSLSLSLSSLSLSSLSLSSLSLSLSSLSLSSLSLSLSSLSLSS.

Figure 7 shows examples of how superstructures can be predicted for a tri-
angular external potential. In figure 7A) an averaged result is shown for a
simulation without an external potential. Here the occurring orthogonal modes

are evenly distributed. In figure 7B) and C) for h =
√
3
2 is shown, that certain

orthogonal modes can be amplified with an external potential. A triangular ex-
ternal potential is used here to show that an asymmetry can arise between the
axes. In B) a wavelength of λ = 0.05 is used. Despite a limited simulation box,
this mechanism can be illustrated for small wavelengths, since a multiple of the
wavelength can correspond to many lengths in the random tiling regime. Table
1 shows theoretically calculated possible superstructures along the i ∈ {x, y}
direction. Here, εi indicates the difference between the quasicrystalline length
and a multiple of the wavelength. In figure 7 the theoretically calculated super-
structures from table 1 are shown in color. Thus, in this example, strong modes
of phasonic distortion can be traced back to this theoretical calculation.
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In C) another example of a triangular superstructure can be seen; for the
theoretical prediction it’s required to consider periodic approximants. The
lengths of the notable superstructure Li are: Lx ≈ 13.36396 = 89 · λ ± ε and
Ly ≈ 13.66430 = 91 · λ± ε, with a small ε ≈ 1.2 · 10−5.

In addition to the strong superstructures discussed, the spectrum also con-
tains other frequencies and a noise that increases at low frequencies. On the
one hand, this is due to the finite simulation box, on the other hand, the spec-
trum can also be overlaid by other suitable superstructures in the random tiling
regime.
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Figure 7: Prediction of the periodic superstructure in the phasonic distortion
over a quasicrystal interpolated by Gaussian peaks at 106 MC steps. A: Without
external potential, B: λ = 0.05 stretched triangular superstructure, C: λ =
0.150157 triangular superstructure. The calculated modes of figure B can be
seen in table 1. Further quantities can be seen in table 2.
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x-period εx y-period εy

1.08 4.87 · 10−2 6.31 · 10−1 5.05 · 10−3

6.80 · 10−1 8.72 · 10−2 3.16 · 10−1 1.01 · 10−2

5.39 · 10−1 9.74 · 10−2 2.18 · 10−1 1.52 · 10−2

4.25 · 10−1 3.45 · 10−2 2.10 · 10−1 1.52 · 10−2

3.05 · 10−1 8.32 · 10−2 1.62 · 10−1 2.02 · 10−2

2.62 · 10−1 5.27 · 10−2 1.58 · 10−1 2.02 · 10−2

2.10 · 10−1 4.04 · 10−3 1.29 · 10−1 2.53 · 10−2

1.76 · 10−1 4.46 · 10−2 1.26 · 10−1 2.53 · 10−2

1.62 · 10−1 1.82 · 10−2 1.07 · 10−1 3.03 · 10−2

1.51 · 10−1 9.33 · 10−2 1.05 · 10−1 3.03 · 10−2

Table 1: Some theoretical possible periods for length of the Ammann-Beenker
quasicrystal up to 200 for the simulation in figure 7-B. A small ε and small
periods indicate a fitting superstructure, marked in colors.

A B C

ρ 1.485± 0.025 1.445± 0.004 1.449± 0.005
Lx 1.222± 0.009 1.2153± 0.0020 1.210± 0.006
Ly 1.216± 0.013 1.2163± 0.0024 1.215± 0.005
N (2.26± 0.09) · 105 (1.267± 0.022) · 105 (1.291± 0.018) · 105

Ψ (4.27± 0.07) · 10−1 (7.053± 0.027) · 10−1 (7.078± 0.025) · 10−1

∆a (7.17± 0.04) · 10−5 (1.0259± 0.0004) · 10−4 (1.4767± 0.0015) · 10−5

Table 2: The quantities from section 4.1 for the results of figure 7. The quantities
are explained in section 4.3.2.
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4.3.2 Overview: MC-Simulation with external potential

Now several simulations with 105 MC steps each are carried out for λ ∈ Λ:

Λ := {0.05n |n ∈ N ∧ n ≤ 30}

In figure 8, an overview of the quantities from section 4.3, averaged over 5
simulations with random quasicrystalline starting configurations and over the
course of each simulation in 10 equal steps, is presented. The results are plotted
against λ. In order to stabilize the perfect Ammann-Beenker tiling, a much more
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Figure 8: The averaged quantities from section 4.1 are plotted against λ with
105 MC steps. Errors are impacted by open boundary conditions. For a perfect
quasicrystal Ψ = 1.

complicated interaction potential than the Lennard-Jones-Gauss potential used
is needed. For this reason, the quantities for the perfect Ammann-Beenker
tiling differ from those obtained using the chosen interaction potential. The
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expectation that an additional external potential can better stabilize an axial
quasicrystal is confirmed. Important results about figure 8 are discussed below:

It is noticeable that the order parameter Ψ for an external potential is usu-
ally closer to the quasicrystal than without an external potential. An external
potential can stabilize the initialized quasicrystal. It is also noticeable that the
parameter increases for longer wavelengths, while less strong modes can be ob-
served. This could be due to the fact that possible superstructures cannot be
found because of the size of the initialized quasicrystal.

A rather direct connection between the number of particles N and the order
parameter Ψ is striking, especially for the square external potential. An exter-
nal potential can restructure phasonic strains (see figure 6) and, by doing so,
possibly change the phasonic degrees of freedom. Configurations with a higher
Ψ may have a larger entropy (see outlook).

The ρ quantity differs for the triangular and the square external potential at
small wavelengths. It takes on similar values for a square external potential as
for a simulation conducted without an external potential; while a triangular ex-
ternal potential takes on values closer to a perfect quasicrystal. This difference
is due to the fact that a square external potential generates mostly stronger
superstructures compared to the triangular external potential; in contrast, the
triangle external potential generates modes in the superstructure that are less
clearly distributed. Therefore, smaller approximants are accepted more easily
for the square external potential. At longer wavelengths, the quantities of the
square external potential approach the quantities of the triangular external po-
tential. In this range, the values for ρ are similar because the number of possible
superstructures decreases and because of the limited simulation box used.

As motivated in section 4.3, the quantity Lx − Ly takes on larger values
for a triangular external potential. The initialized structure is symmetric in x
and y direction. By using an asymmetric external potential anisotropy will be
induced.

The results of the quantity |∆a| may appear random at first glance, with
outliers being noticeable. An attempt is made to arrange this quantity along
the length of the phasonic superstructures; with the expectation that for simu-
lations with a larger superstructure better approximants and therefore smaller
fitted slopes can be found. In table 3 the averaged fitted slopes for different ε
are compared to simulations with visually identified superstructures: For the
theoretically calculated superstructures 100 simulations with randomly shifted
initial configurations are averaged. Those superstructures correspond to the
smallest possible occurring length that differs only by ε (as motivated in section
4.3.1); only lengths corresponding to the perfect Ammann-Beenker tiling (AB)
as well as good approximants (Ap) are taken as reference. Additional errors for
the theoretical calculation result from the fact that it is not taken into account
which superstructures finally prevail. For the visually identified superstructures,
5 simulations with randomly shifted initial configurations are averaged. A pos-
sible phasonic superstructure can only be visually identified in about half of the
simulations. This approach is therefore particularly error prone.

Further contributions to the errors are the possibility that superstructures
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may not develop due to the limited number of particles and the boundary con-
ditions used. The results also depend on the set of used wavelengths of the
substrate (see figure 8). Despite the large number of sources of error, it is
still possible to significantly confirm the expected outcome for the square ex-
ternal potential. However, it should be noted that the results for the triangular
external potential just provide a tendency, they lack statistical significance.
Compared to a square external potential, the superstructures for a triangular
external potential are typically less distinctive; their theoretical prediction is
more complex.

Square Triangle

AB: ε = 0.007 (−8.3± 0.6) · 10−6 (−0.3± 1.9) · 10−6

AB: ε = 0.3 (−6.7± 0.7) · 10−5 (1± 9) · 10−6

Ap: ε = 0.0013 (−2.2± 0.9) · 10−5 (−0.4± 1.0) · 10−6

Ap: ε = 0.007 (−3.9± 0.9) · 10−5 (−1.0± 1.2) · 10−5

Visually: (−2.7± 2.1) · 10−5 (−9.8± 2.5) · 10−5

Table 3: Fitted |∆a| along the associated superstructures; with 5 units of the
boundary cut off and averaged over 100 simulations each with randomly chosen
initial configurations. The theoretical superstructures are calculated depending
on ε (see section 4.3.1). They are compared to visually identified superstruc-
tures; averaged over 5 simulations with randomly chosen initial configurations.
The expectation that better approximants are found more easily for larger su-
perstructures is partially be confirmed.
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5 Neural network

This section examines how well neural networks can identify quasicrystals. A
quasicrystalline structure is fully described by its representation in hyperspace.
Thus, neural networks are proposed that can contribute to the reconstruction
of quasicrystals in hyperspace.

The neural network model used is based on the perceptron algorithm, which
is in its basic form, a single-layer linear classifier with a binary classification.
In 1958 this algorithm was introduced by Frank Rosenblatt[23]. The nodes of
the network are designed to mimic the neurons in our brains. The network was
initially created for image recognition and classification of sonar echoes.

Based on the spike response model of neurons, the output of a neuron is a
sigmoidal activation function of an incoming weighted sum and possibly a bias;
while in the following, the input values of the nodes of the first layer correspond
to the brightness of individual pixels. The network uses a sigmoidal activation
function, like the rectified linear unit (relu) or its smooth version softplus rec-
tifier, to speed up the training process and to prevent the vanishing gradient
problem during training, by reducing vanishingly small gradients in the learning
algorithm. With supervised learning it is common for layers that are further
away from the output to be harder to train, since the error signal decreases ex-
ponentially as a result of the composition of the neurons. A neural network with
a continuous output is called a regression problem. The output layer can be
adjusted for negative validation data, by using a final linear activation function.

By adapting the weighting functions through a learning process, the neural
network can be enabled to evaluate previously unknown images. The learning
progress is given by a loss function, which indicates the difference between the
prediction and the desired result. To minimize the loss function, the Adam
(derived from ’Adaptive Moment Estimation’) algorithm, a stochastic gradi-
ent descent method, is used for its superior performance. The algorithm was
introduced by Kingma and Ba in 2014[24]. It’s stochastic, because every iter-
ation uses only a randomly chosen subset of the training data for the training.
In order to determine the descent direction and the optimal increment of the
weights, the gradient of the loss function along the weight parameters of the
network is calculated.

The Adam method tries to optimize the weights as effectively as possible by
also approximating the second order of the gradient. For this purpose, the bias-
corrected exponential moving average of the gradient m̂t and of the elementwise
squared gradient v̂t is calculated, including past time steps. With this estimation
of the first and second moment the step size of the learning rate is adjusted:

∆t ∝
m̂t√
v̂t + ε

with a proposed default value for ε = 10−8.
The processing power can be increased by a modified model of the percep-

tron with several layers. For more precise associations, multilayer perceptrons
with hidden layers inserted are used, where each node is connected to every node
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of the following layer. By using two layers with at least one neuron each, it is
possible to overcome the XOR problem; therefore hidden layer architecture is
used to give the network the opportunity to access important neural logic gates
(eg. AND, OR, NAND, XOR). Neural networks are not restricted to Boolean
logic, according to the universal approximation theorem there is always a net-
work structure that can approximate any real-valued function with arbitrary
precision.

Each neuron can be a features detector. The features to be recognized be-
come increasingly abstract the further away they are from the input. Quasicrys-
taline input data include built-in symmetries. The results of the neural network
often are independent of translation, rotation and scaling. Theoretically, even
in a general multilayer perceptron, larger feature detectors should emerge auto-
matically. But by building the locality and the translation invariance directly
into the architecture, learning can be improved. The architecture of the convo-
lutional neural network (CNN) is used for this. It consists of a convolutional
layer with locally overlapping identical feature detectors and a pooling layer to
reduce the dimension of the data. By adding a pooling layer, rotational and
scale invariance can also develop, for a carefully chosen training data set[25].

The reconstruction of quasicrystals in hyperspace is performed in [7] by
reversing the projection method. An orthogonal contribution can be approxi-
mately ascribed to a particle position. To do this, the orientation of the physical
space must first be determined; given by the already introduced continuous an-
gles α and β. Then the quasicrystal with its phasonic defects is embedded in
the hyperspace. To refine the approximation, possible neural networks can be
used:

For the detection of hyperangles in section 5.1 a CNN is used. For the
detection of phasonic flips in section 5.2, a parallel structure with a CNN and
a multilayer perceptron enables good results. Since there is a large number of
hyperparameters, a brief analysis is conducted to determine the optimal network
architecture.

Data with a quasicrystalline structure and possible phasonic defects, are
generated with the cut-and-project method (see section 2) and the phasonic
MC simulation (see section 3). For the loss function the mean squared error
(MSE) is used.
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5.1 Result: Finding the orientation of the quasicrystal in
hyperspace

This section aims to predict the hyperangles α and β of a quasicrystal with
rank 4. It is also used to analyze how CNN’s work. The data are carefully
prepared using the cut-and-project method. It should be noted that different
tilings can have different densities (see section 2.6). Because there is no obvious
way of converting the acceptance window for the ideal tilings into one another
depending on the hyperangles, a round acceptance window with radius 1 is
assumed. Rotations in the range α ∈ (π4 ,

π
6 ) and β ∈ ( 3π

4 ,
5π
6 ) are used to

generate the data sets. This corresponds to a continuous transition between
quasicrystals with an 8-fold and a 12-fold rotational symmetry. A compatible
basis is spanned by x̂‖, ŷ‖, x̂⊥, ŷ⊥:

x̂‖ = −


sin(2 · α)
sin(0 · α)
sin(1 · α)
sin(3 · α)

 , ŷ‖ =


cos(2 · α)
cos(0 · α)
cos(1 · α)
cos(3 · α)

 , x̂⊥ =


sin(1 · β)
sin(3 · β)
sin(2 · β)
sin(0 · β)

 , ŷ⊥ =


cos(1 · β)
cos(3 · β)
cos(2 · β)
cos(0 · β)


In this section neural networks are trained to learn the angles α and β with

bitmaps of the size 512x512. A bitmap is generated by superimposing, for
example, Gaussian peaks centered around the lattice sides.

How does an artificial neural network learn? Persons tasked with recon-
structing hyperangles will likely search for and classify centers of symmetry.
Then they will look for quasicrystalline defects and then they will make an es-
timate of the frequency of the length scales that occur. These properties are
compared to quasicrystals with known hyperangles.

Artificial neural networks with their concentrated computing power can usu-
ally calculate short-range correlations faster and more precisely than the human
brain. Depending on the hyperangles, there are specific length scales and cen-
ters of symmetry (see section 2.2). A neural network can weight certain fea-
tures more heavily and thus make statements about the frequencies of particular
length scales or centers of symmetry. A regression network with two output neu-
rons is used for this; since long-range orders are not particularly important a
CNN is chosen.

In figure 9 and 10 examples of the test data can be seen. For rotations around
the hyperangle α there are more distinctive structures than for β. There are
also areas of hyperangles in which the neural network recognizes the test data
differently well. The neural network does not learn the angles continuously but
it’s trained on certain features.
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Figure 9: Example of special configurations for different hyperangles α.
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Figure 10: Example of special configurations for different hyperangles β.

To search for an efficient network structure the differentiability δ gets in-
troduced. This function indicates how many correlations are available to the
network, with more distant contributions being weighted more heavily:

δ :=

〈
N∑

i,j=0
i>j

|g (ri)− g (rj)|
gmax (ri, rj)

· (i− j)
N

〉

With g (ri) is the radial distribution function, for ri,j ≤ 1, with the associated
resolution N and gmax (ri, rj) is a normalization factor.
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Figure 11: Test data of data set A: Predictions against reality of the hyper-
angles α and β of neural network A after 5 epochs. The colormap is given by δ.
With increasing epochs the predictions are approaching the test data. Changes
of α provide more distinctive patterns (see example in figure 9 and 10).

5.1.1 Complexity of CNN’s for the learning progress

Data set A, consisting of 1000 training data and 249 test data, is generated by
choosing random hyperangles in the discussed range. In figure 11 the training
progress of the neural network is plotted after 5 epochs. The data set used,
can contain several scales due to the chosen acceptance window. The decision
criteria of a neural network are difficult to understand; therefore the results of
three CNN’s are compared with each other. These differ in the complexity of
the network; here the number of convolutional and pooling layer (i.e. variable
size of the kernel and the number of filters). The complexity of a neural network
is the amount of neurons and weights.

The network A consists of two, B of three and C of four convolutional and
max pooling layers. The test data is divided into 3 ranges according to the
calculated δ, each range containing 83 test data: [high δ,medium δ, low δ].
〈a'〉 is the averaged fitted deviation of the test input from the ideal slope. 〈σ〉

is here the averaged standard deviation of the difference between prediction and
reality for each test input. The results are averaged over 10 full training sessions.
The training data are mixed in each case. The results are also comparable to a
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Figure 12: The data from figure 11 is divided into 3 ranges [low, medium, high]
depending on the colorbar δ. For the learning process neural network A is
used. 〈a'〉 and 〈σ〉 are plotted against the epochs of the learning process; they
are described in section 5.1.1. The mean value over 10 full training sessions is
considered here. High values of δ lead to better results, because the images have
obvious lengthscales, which can be easily linked in the simple neural network
through the learning process.

data set with a randomly generated initial configuration; there is no significant
difference.

In figure 12 the simple network A is used. The high δ data set has a small
〈σ〉 and has a good fitted slope compared to the other data sets. In figure 13 the
more complex network B is used. For the high δ data set 〈a'〉 has the best results
after 10 epochs, also compared to the other neural networks. It is possible that
the high δ data set is initially less prone of learning wrong features, because 〈σ〉
is larger. In figure 14 you can see that for the high δ data set a further increase
in complexity leads to a bad validation result relative to the other data sets.
This time not because of learning wrong features - 〈σ〉 is still large - but because
it’s time consuming to train such a deep network.

Therefore a kind of phase transition can be seen with increasing complexity.
It is striking that the differentiability δ between length scales has an impact
on the training process. One possible explanation is, that higher values of δ
are clearer to the human eye, but since the neural networks used perform the
operations for each neuron at a similar speed, data with a lower δ have more in-
formation. More complex neural networks have better access to this additional
information. Because of the round acceptance window, different scales are avail-
able. The predictions also depend on the complexity of the neural network at
which scale invariance can effectively develop.
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Figure 13: Continuation of figure 12: The complexity of the network has been
increased in neural network B. The network is initially relatively bad at pre-
dicting the high δ data. After 7 Epochs it’s quite good at it. The predictions
are more evenly distributed than in figure 12 (smaller 〈σ〉). The neural network
could therefore be less prone to learn wrong features.
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Figure 14: Continuation of figure 12 and 13: The complexity of the network
has been further increased in neural network C. Now the high δ data performs
worse. The network arguably has the ability to look at more complex features.
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Figure 15: Example of special configurations of the data set B.

5.1.2 More carefully prepared training/test data

Since a neural network can recognize patterns by different features, it is impor-
tant to prepare the training data carefully. In order to avoid that the neural
network is strongly oriented towards unspecific properties (i.e. number of parti-
cles, density, certain patterns, certain defects), data sets are used with randomly
chosen translations T = ±5~ei in hyperspace and variances σ2 = 0.05 ± 0.025
of the Gaussian peaks. Rotations of the quasicrystal or different sizes of the
acceptance range are neglected here. Perfect quasicrystals have a clear rota-
tional symmetry, so it is possible to rotate the test data accordingly. The size
of the acceptance window is also neglected; though the number of length scales
that occur could change. Like motivated in section 5.1.1, scale invariance can
develop. For real quasicrystals, no cross-scale model is usually required; the
input data can be scaled accordingly. Now 1000 training data and 249 test data
are generated for the data set B. In figure 15 an example of the input data of
this training set is given.

If a more complex neural network D is used, the regression also works for any
translations in hyperspace and variances of the Gaussian peaks. At this point
it should only be mentioned, that with five convolutional and pooling layers
it’s possible to bring the standard deviation of the predictions to reality below
0.01. It should be noted that in order to achieve better results, more training
data are probably required in this larger parameter space. In figures 16 and 17
the training progress of data set A can be compared with data set B after 100
epochs.
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Figure 16: Predictions of data set A with neural network D after 100 epochs.
The progress after 5 epochs with neural network A is shown in figure 11.
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Figure 17: Predictions of data set B with neural network D after 100 epochs.
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5.2 Result: Finding phasonic defects

As motivated in section 3.2, phasonic defects are here defined as rearrange-
ments of the Ammann-Beenker tiling; the phasonic distortion depends on their
distribution. Please note that the interaction potential used only approximately
stabilizes the Ammann-Beenker tiling.

It will be investigated whether phasonic defects can be identified with the
help of a neural network. The detection by neural networks has the advantage
that only weighted sums with pre-trained weights have to be calculated. In this
way, the detection of phasonic defects could be carried out easily and quickly.
To motivate the model used - let’s do a thought experiment:

If persons are given the task of detecting phasonic defects, they can identify
them from nearby patterns. However, this procedure requires an arbitrarily
complex preparation in order to be applicable for all possible phasonic flips.
For configurations close to an ideal quasicrystal, detection may be easier since
only certain patterns obeying the substitution rules are possible. The detection
for a periodic approximant with restricted phasonic degrees of freedom is even
simpler. Therefore, the model used consists partly of convolutional layers; these
could recognize the short-range patterns independently of translations.

Alternatively a person can calculate the energy difference between the config-
urations with and without a suspected phasonic defect. To do this, the distances
between neighboring particles in a certain radius are measured. The associated
interaction potentials are then added up. Phasonic flips usually cause only a
small change in energy; the interaction potentials of many neighboring particles
again may have to be added up in order to be able to determine a difference.
With a computer program and a known interaction potential, it is possible to
calculate the energy analytically. A model of dense layers can learn the inter-
action potential from the training data; then long-range energetic contributions
are added up.

In figure 18 a possible architecture of a neural network for detecting phasons
is presented: A parallel structure of dense layers and a mixture of convolution
and pooling layers is proposed. The influence of phasons on the energy of the
system is mostly localized, since the choice of the interaction potential means
that distant neighbors only make a very small contribution to the energy. With
the connection of dense layering and convolutional layering, the model is con-
verging in a reasonable time. The parallel connection can help the dense layer to
train, since convolutional layers, because of their special construction, converge
faster. By connecting convolutional layers in series, more and more compli-
cated features can be extracted. During the training process, the dropout layer
randomly sets certain input units to 0 with a specified rate, which serves as a
regularization technique to reduce overfitting by preventing the network from
relying too heavily on specific input features. In the following, with the MC
simulation from section 3, data sets are generated with a number of phasonic
flips built into a perfect initial configuration (i.e. Ammann-Beenker or periodic
approximant). It should be noted again that the occurring phasonic flips and
therefore the data sets depend on the chosen temperature and the interaction
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Input 52x52

Conv2D(relu activation) + 

MaxPooling2D(Pool: (2,2)):

Filters: 16, Kernel: (5,5)

Filters: 32, Kernel: (4,4)

Filters: 64, Kernel: (3,3)

Dense(relu activation):

Units: 512

Units: 64

Units: 32

Output 52x52

Dropout: Rate: 0.5

Dense(linear activation):

Units: 2704

Figure 18: Neural network model used to detect phasonic defects. Conv2D : 2D
convolutional layer to extract features. MaxPooling2D : dimensionality reducing
layer. Dense: densly connected layer to previous layer. Dropout : layer that
randomly sets certain inputs to 0 to prevent overfitting. The green numbers
indicate the hyperparameters used[26].

potential. A randomly shifted section of the MC simulation with 52x52 pixels is
used as input, by assigning Gaussian peaks to particle positions. The difference
to the ideal tiling is used as the output.

Now the motivated model will be trained. Therefore a periodic approximant
7√
2

+ 5 with periodic boundaries is chosen for generating the data set A con-

sisting of 500 training data and 50 test data, because with periodic boundary
conditions and limited phasonic degrees of freedom possible configurations can
be learned easily. Later, a random tiling initial configuration based on the per-
fect Ammann-Beenker tiling is used to generate test data set B consisting of 50
test data, to further validate the progress of the trained network.

Validating the network with the test data of A, the loss function is at 0.51±
0.03. By ignoring 5 pixels at the edge, a detection rate of 83% is achieved.
8% of defects are not detected. Defects are erroneously detected with 9%.
When validating phasonic deviations from the test data of B, the loss function
2.03 ± 0.03 is significantly worse. The loss function is averaged over different
numbers of MC steps (104, 103, 102) and temperatures 0.1 and 0.05. The bad
result for the reconstruction of the perfect Ammann-Beenker is not surprising.
It turns out that there are significantly more possible configurations and some
phasonic defects differ only by a very small energy. It therefore requires a larger
bitmap and more training data for better detection; the model must also be
adjusted to look more closely at long-range orders. Figure 19 shows sample test
data with multiple phasonic defects and the output of the neural network.
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Figure 19: Left: random tiling configuration, middle: prediction of the neu-
ral network, right: actual phasonic flips. Bright dots correspond to possible
defects; dark dots to ideal particle position. Detection of phasonic defects of
the approximant 7√

2
+ 5 with a neural network (see A and B). Obvious errors

occasionally occur at the edge because the network lacks information there.
For phasonic defects with a small energy, the network has problems because a
larger section is required. In C an attempt is made to detect deviations from
the Ammann-Beenker quasicrystal.
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More detailed analysis

A section twice as large is now considered and the physical space is increased
to the range [0,60]. Again a neural network is trained similar to figure 18.

For data set A, 2000 sections are chosen with random translations within
physical space. For data set B, 2000 sections are chosen with random transla-
tions both within physical space and within the orthogonal space. The test data
are identical for both sets of data and are independent of the training data.

In order to be able to make a quantitative statement, the number of detected
defects is now given in addition to the loss function. 5 pixels are cut off at every
edge, because errors often occur there. For this purpose, a color coding is
introduced for following quantities, as can be seen in figure 20.

• correctly detected phasonic defects

• missing phasonic defects

• wrongly detected phasonic defects

For detection, pixels exceeding a certain threshold are used to determine the
center. The prediction and the actual output are compared to analyze the type
of defect.

For data set A the loss function is at 1.78 after 20 Epochs. The detection
rates are: (4.37%, 30.41%, 65.22%). For data set B the loss function is at
0.65 after 20 Epochs. The detection rates are: (71.05%, 15.84%, 13.11%). An
example of the validation of the test data can be seen in figure 20.
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Figure 20: Left: random tiling configuration, right: prediction of the neural
network trained on data set B. 5 pixels are cut off at every edge: 5 correct, 3
missing and 1 wrong.
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6 Resume and outlook

In this master’s thesis quasicrystals with its degrees of freedom were described
by using the hyperspace concept. In section 4 the behaviour of 8-fold quasicrys-
tals on square or triangular substrates were investigated, using phasonic MC
simulations. In particular, phasonic distortion and anisotropy were studied de-
pending on wavelengths of the substrates. In section 5, neural networks were
created to identify the hyperangles of quasicrystalline structures and phasonic
defects.

In future work, neural networks can be used to reconstruct quasicrystals in hy-
perspace. This gives an insight into the distribution of phasonic defects and
gives starting configurations for phasonic MC simulations, to recreate experi-
ments and make predictions about physical properties. Further, the phasonic
MC method can be applied to explore the following topics:

• Quasicrystals have some special properties compared to periodic crystals[27].
On a periodic substrate synergies between crystalline and quasicrystalline
properties can emerge.

• Studying the self-assembly of quasicrystals on a periodic substrate, by
defining a grand canonical simulation method to determine if growth oc-
curs along periodic approximants (motivated in section 2.4) or is depen-
dent on the phasonic distortion in detail.

• Simulating multi-layer axial quasicrystals in higher-dimensional hyper-
spaces on substrates.

• Simulating topological defects by adapting the hyperspace[19].

• Replacing the Lennard-Jones-Gauss interaction potential by the oscillat-
ing pair potential [28] to improve the description of adsorption physics.

• Prediction of the influence of a periodic substrate on phasonic strains (as
illustrated in figure 5), by analyzing high modes in the phasonic distortion
and by calculating the entropy. The phasonic degrees of freedom can be
changed by the periodic arrangement of tiles in the tiling representation.

• Improving the prediction of the superstructures in the phasonic distortion,
caused by a periodic substrate (see section 4.3.1), by weighting modes
depending on their period and the ε, by considering that different modes
may influence each other and that discrete occupied lattice sites may cause
a sawtooth-like orthogonal contribution.
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7 Appendix

Implementation of the canonical cut-and-project method

For this method it is important to classify whether a point is inside or outside
of the acceptance window, given by the convex set of the orthogonally projected
unit cell. The first step is therefore to find the convex hull {Hi}: The cardinality
of the set of edges of an n-dimensional unit cell increases by power of two. For
low hyperspace-dimensions it is sufficient to implement an exhaustive algorithm,
following the orientation of the surface.

To check if a hyperspace-point lies inside the acceptance window, it might
be important to pay attention to the programming complexity. The Jordan
algorithm counts the numbers of intersections with the hull of a ray, from the
point of interest to infinity. The complexity scales linearly with the number of
vertexes of the polygon. Because for Ammann-Beenker the acceptance window
is a convex polygon and the vertex-points are sorted, it is more efficient to
use a binary search to look for a triangle, with a starting point H0 and two
neighboring vertexes Hi, Hi+1 of the convex hull that can contain the point of
interest. The point is in the polygon, only if it is in the triangle. The complexity
scales now logarithmically with the number of vertexes of the polygon.

Implementation of Monte Carlo method

To decide if a phasonic flip is accepted, the potential at the current position
EA and the potential at a possible destination EB , have to be compared. The
calculation of the potentials has a linear complexity. It is time-consuming to add
up the potential for all points up to a certain distance. For long simulations and
suitable temperatures a stable or metastable configuration can be found; then
the probability of acceptance decreases. Therefore the energies rarely change
and they don’t have to be recalculated over and over again. The acceptance
probability decreases. Only when a transition gets accepted the energies of
all neighboring points need to be updated. To validate stable or metastable
configurations many MC steps are simulated.

Optimizing is also done by precomputing all possible neighborhood relations;
and only updating mapping functions for the indices.

Consideration of boundary condition

To minimize the occurring errors, either a larger section could be simulated,
or an attempt could be made to improve the boundary conditions. A possible
approach that includes periodic boundary conditions is described in section 3.3.
To do this, MC steps need to change the lattice sites into the symmetry-adapted
basis of a proposed approximant. Previously, hyperspace coordinates were saved
with all neighborhood relations to optimize computing time.
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