
Investigations of Symmetry Groups in a Finite
Projective Space

Master’s Thesis in Physics

Presented By
Aakash Bhat

October 15, 2020

Institute for Theoretical Physics I
Friedrich-Alexander-Universität Erlangen-Nürnberg

Supervisors:
Prof. Dr. Klaus Mecke

Alexander Laska, M.Sc. M.A.





Abstract

A finite and projective geometry PKd
p defined over a (d+1)-dimensional vec-

tor space is chosen as the setting for spacetime. The finite nature is endowed
with the field structure of a Galois field Fp with an order p, where p is prime.
The projective nature allows for a breakdown of the space into affine sub-
spaces, such that an n-dimensional projective space has {n,n−1, . . . ,1} dimen-
sional affine subspaces. This breakdown has been theorized to be the reason
why the SU(3)×SU(2)×U(1) symmetry might be seen in the particle fields in
quantum field theory.

Our geometry consists of points and hyperplanes, such that an incidence
relation1 may be defined over them. The entire space is covered by a bi-
quadric field, where a biquadric is an object of the second order. Biquadrics
allow for a definition of neighborhood, order, and distance measures, and
are the analogs of metric tensors in the general theory of relativity. The in-
cidence relation itself can be thought of as an invariant, such that projective
transformations, which are automorphisms of the projective space, preserve
the incidence. A particular subset of these transformations are the Lorentz
transformations, which are the automorphism group of the biquadrics. The
Lorentz group also keeps the centre invariant, and is shown to consist of
boosts or rotations or both, depending upon the dimension and the quadric
signature considered. After a theoretic consideration of the structure of this
group we also show visually the similarity between the group of rotations,
which is an orthogonal group, and the normal rotations in real or complex
space, such that the finite rotations can be said to be embedded in the group
of rotations in complex space2. A similar visual approach shows that boosts
and successive rotations can be axially- or point-symmetric, depending on
the parameter.

While Lorentz Transformations have been discussed previously the same
can not be said of Gauge transformations. To reach a final theory which is
gauge invariant, the thesis builds upon the idea that the important consider-
ations are twofold. The first consideration is the existence of the Local world
domain. This space is a subset of the total space, such that distances (or any
other second order measure) follow the same order relations as defined for
a linear measure3. Points outside this domain, which are still part of the
spacetime, must somehow be mapped back in. This mapping defines a fiber

1Incidence relations encode which point lies on which line and vice versa.
2This is the group U(1).
3This space will not be the same if one considers higher order measures.



space, such that points inside and outside successive local world domains are
connected. The basic gauge invariance is then part of the degrees of freedom
in chosing these mappings. Secondly, it follows from the first that one must
define some sort of a mapping and look at it’s symmetries. For this we look
at the intersections of quadrics. These are called hyperplanes of intersection and
form the basic element of our study of symmetries of this space. A similar
concept is known as interunion and considers along with affine points also
the points of intersection at infinity.

The groups defining the symmetries of the hyperplane of intersection are
found and their orders and properties probed. One parameter finite sub-
groups, with generators, are also found for these groups. The hyperplanes
of intersection are investigated for 2-dimensions, although a generalization
for further parametrization is also provided for higher dimensions. Finally
we also use literature to calculate orders of orthogonal, symplectic, linear,
and unitary groups in the finite case. These allow us to find isomorphisms
between the defined symmetries of the projective space and the groups of
symmetries of the hyperplanes. In the end a particular orthogonal transfor-
mation is looked at, and shown to be central to the idea of Gauge transforma-
tions.
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1 Shifting perspectives: The Finite Spacetime

There are things known and there are
things unknown, and in between are
the doors of perception.

Aldous Huxley, The doors of perception

The last century has proven to be pivotal for the scientific community.
While change was there even before, in 1905 with Einstein’s Annus Mirabilis
papers, physics as a whole began to change. At the crux of this progression
was curiosity: an ultimate search for the Theory of Everything. Since last cen-
tury, many things have changed in our understanding of the universe. In our
quest for answers we have successfuly (to a certain approximation at least)
theorized about the four interactions which we believe exist. Einstein’s ex-
tension of Special Relativity, the theory of General relativity, posits gravitation
as an emergent phenomenon of space itself. On the other hand Quantum Field
Theory came into the picture in the second half of the previous century, build-
ing upon the principles of quantum mechanics. While the predictions of GR
on the one hand involve objects on cosmic scales (see for instance Gravita-
tional waves [Abb16]), QFT predicts for the miniscule, where the strong and
electro-weak forces become important. In recent memory, the observational
evidence for the Higgs Boson, one of the fundamental particles in the stan-
dard model comes to mind [Aa12].

In his article from July 1901 [M.R01], Lord Kelvin began with the following
proclamation:

”The beauty and clearness of the dynamical theory, which asserts
heat and light to be modes of motion, is at present obscured by
two clouds.”

This often misunderstood speech can now be put into perspective for a re-
alization that while physics has made enormous leaps, there are still many
clouds left to clear. The theory of unification is clearly a Cumulonimbus.

There are many theories which try to extend our understanding in an effort
at unification. Theories beyond the standard model, string theory, and loop
quantum gravity have made significant headlines. However, even such theo-
ries require extremely high or extremely low energy thresholds for predicted
quantum gravity effects to become observable [Läm07]. In some cases the
energy requirements can even be higher than what we may ever be able to
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achieve. Such a picture then suggests one of two things. Either one of these
theories is correct and now the problems are merely of measurements, or we
need a fundamental shift in our understanding of physics.
Despite their differences both these theories require some sort of symmetries.
Symmetries are important as part of real-world descriptions of interactions,
but are also in patricular related to conserved quantities as described for fi-
nite and infinite groups by Nöther’s Theorem [Leo18]. In GR for instance, Lo-
cal Lorentz Invariance is a requirement of the theory, although the lorentz in-
variance is not a global invariance unlike in the case of special relativity. This
is because the symmetry group of the Minkowski space on which the theory
is based is the much bigger Poincaré group, of which the Lorentz group is
a sub-group. On the other hand, QFT, which has it’s origins in the quanti-
zation of Maxwell’s equations of electrodynamics is a global Lorentz invari-
ant theory. Furthermore, these are quantum Yang-Mills theories, where the
quanta of fields are interpreted as particles. These fields have internal sym-
metries which are represented by non-abelian transformations. These are the
so called gauge transformations, and for the case of strong, weak, and electro-
magnetic interactions are given by SU(3) × SU(2) ×U(1). However, no such
theory exists for the 4-dimensional space-time (which also takes care of the
mass-gap). This problem is one of the biggest unsolved questions and is one
of the 7 problems laid out in the year 2000 as part of the Milennium Prize
Problems [JW00].
Most attempts at any sort of unification either build anew or use the axioms
of one of the theories in an attempt to reach the other end. The latter is a more
common approach but runs into problems. For instance, attempts to build a
gravitation theory from a QFT run into the problem of non-renormalizability
[Des00].
Attempts at using discretized space-time by using finitely many points have
been made, for instance in the Causal Set Theory approach [Sur19]. This
subset now includes Klaus Mecke’s idea of using finite projective goemetries
[Mec17] as the setting for space-time. Here finite fields, and in particular
Galois fields replace the complex space of numbers. Anologous to the metric
tensor, biquadrics, which are pairs of quadratic forms on the field are defined,
which allow ordering of the set, thereby allowing descriptions of ’neighbor-
hood’. These biquadrics might even be seen as the dynamical setting for de-
veloping a mechanics on the finite space [Mec20], but such an idea will not
be discussed further in this thesis.

There are many reasons why spacetime might be modelled using finite fields.
Previous efforts have been motivated for instance by the fact that singulari-
ties are not in general present in finite settings. In our work however, prime
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motivations are more causal and less phenomenological in nature. They are
based on an understanding that structures used in GR and QFT must arise
from somewhere. Firstly, as was mentioned above GR requires the use of Rie-
mannian and pseudo-riemannian manifolds, which are equipped with a met-
ric. This metric is a second order symmetrix tensor, which can be represented
by a matrix. The matrix representation used in GR for the 4-dimensional
spacetime has the signature (number of negative and positive elements in
the diagonal) as {1,3}, and in particular is written as diag{−1,1,1,1}. The
first coordinate is thought of as the time coordinate while the rest are spa-
tial in nature. However, this choice is artificial, and there is no explanation
as to why this form is used or required (except that it works). However one
can answer this question in a finite setting, and it becomes clear that such a
choice arises from the geometry itself.
In finite fields, one also has solutions to equations of the type a2 + b2 =
−1. This allows for a modification of Sylvester’s law of inertia, such that
all quadrics in 4-dimensions are equivalent in finite geometry. Furthermore,
this equivalence manifests itself also in the case of the biquadrics, where the
canonical biquadrics end up with the Minkowskian (or the Euclidian) signa-
ture introduced above.

Secondly, there exists an even more fundamental question, which is also
philosophical in nature. Why do we live in 4 dimensions, and in particu-
lar in 3 spatial dimensions? There is no answer in the continuous case of
the R,C fields. However, finite fields have a particular property, where in
for dimensions d >= 4, the light cone suppresses all further dimensions. The
points in the higher dimensions are such that their ’distance’ to each other is
0 (like points on a light cone have 0 distance). This allows only the existence
of 3 dimensions which we can see [Mec].
Thirdly, we can ask the question: Why is there an existence of a gauge symmetry
in QFT? Why do we have a ’fiber space’ which defines particles, and is disjoint
from the geometry (the ’intrinsic spacetime’). Naturally the gauge symmetry
also gives rise to particles. But is there any explanation in the finite field,
and in particular in the finite projective geometry? The answer is yes. Firstly,
there is an existence of a local domain of points in the field, and points out-
side the field then need to be mapped back inside. The existence of the local
domain can in particular be seen as arising in the case when ’squares’ are to
be introduced, for instance in the case of distance. The symmetries of the
local domain are then defined by the Lorentz group. However, there exists
a gauge freedom in the choice of the mapping back of the points outside the
local domain. In particular, this is the existence of the ’fiber space’ which con-
nects points in the local domain to the points outside of it. The symmetries
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of this fiber space (for instance in 2-dimensions we have the invariance of a
line) are then the gauge symmetries. The existence of an SU(3)×SU(2)×U(1)
symmetry then comes from the fact that the projective geometry in 4 dimen-
sions can be broken down to affine subspaces which have gauge symmetries
such that:

PK4
p = K

4
p ∪K3

p ∪K2
p ∪K1

p =⇒ G(3)×G(2)×G(1)

Since the space-time consists now of points and lines (hyper-planes) and the
object of interest is defined in terms of point-sets which relate to the bi-
quadrics, the symmetries of these objects must be probed. In particular, the
symmetries of the biquadrics are of fundamental importance, among which
the orthogonal group and the Lorentz transformations in the finite case have
been studied [Rei16]. Attempts at studying gauge transformations however
have been fewer, with an attempt at a description being a part of the bachelor
thesis of Ludwig Peschik [Pes19]. The objective of this thesis is the study of
these gauge transformations, particularly in the 2-dimensional case. Since
we deal with finite fields, the group theoretic representation shall not follow
the same forms as those of Lie groups (of which the gauge groups discussed
above are a subgroup). This thesis first introduces the notions of finite space-
time and projective spaces along with biquadrics and in general translated
biquadric fields which are required for the study of symmetry groups. The
theory and properties of Lorentz transformations are then re-visited and a
more general visual outlook of these transformations is presented. Finally an
attempt is made at understanding the group of transformations which may
define gauge symmetries in the finite setting.

6





2 Theoretical Framework

Ultimately, all moments are really one,
therefore now is an eternity

David Bohm

The idea for setting up space-time in projective spaces begins with pro-
jective geometry, and in particular with the projective line in 1-dimension,
and the projective plane in the 2-dimensional case. The geometry itself has
its roots in the study of perspective in art [Sma09], before the mathematical
setting could be created by the likes of Gino Fano [CCV13]. Here we begin
with the notions of geometry and use set theoretic concepts to understand
projective geometry. We then introduce coordinates and the concept of sub-
spaces, and finally introduce the concept of groups and fields for a complete
setting of our space-time.

2.1 Projective Spaces and Finite Fields

Every projective space is a type of geometry, and differs from other geome-
tries in terms of the axioms. To understand this difference it is fundamental
to go over what makes up a geometry, and then to consider why different
geometries are indeed different. Here we refer to chapter 1 of [BR98].

Definition 2.1. A Geometry G

A geometry is a set {O ,I } containing the set of objects , and a binary relation
I : O ×O → O ×O , such that the relation is:

• Symmetric: ∀P ,L ∈ O | (P ,L) ∈I ←→ (L,P ) ∈I .

• Reflexive: {P ,L} ∈I =⇒{L,P } ∈I

Geometries in the minimal setting are then the set O which consists of
subsets, such as the set of points P and a set of lines L . However, for ge-
ometries of more objects, for instance including planes, solids, and so on, we
may have multiple objects in O such that O = {P ,L ,H ...}, and the relation
I defines a binary relation for all these objects. To characterize these objects
and therefore the geometry, we introduce the concepts of flags and rank of a
geometry, so that we have a notion of distinct objects and their enumeration.

Definition 2.2. Flag F and RankR
For a Geometry G = {O ,I } a flag F is the set of distinct disjoint subsets of

O such that the subsets are pairwise incident with each other. A flag is said to be
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maximal if there no element in G /F such that another flag F ∪G /F exists. The
flag is said to have a rank R = r, such that we can write O = {O1, . . . ,Oi , . . . ,Or}.
The object at position i is said to be an object of type i.

Remark. Points P are objects of type 1, and lines L are objects of rank 2. In
general and object of rank i is made up of objects of rank i − 1 and is therefore
incident with them.

In this thesis the central idea is based on finite geometries and therefore
we define a finite geometry to be finite if and only if the point set P = O1
is finite, where the notion of finiteness itself is assumed to be in the general
sense4.

With the concept of a geometry now been established, we may now ask
further questions on the structure of the geometry. From everyday expe-
rience, one is already familiar with multiple geometries. Where do these
distinctions stem from? It is clear then that we must focus on the relations
that our objects have with each other. This relation is exactly the incidence
relation we described above, and so we now move on to an axiomatic repre-
sentation of this incidence relation.

Axiomatic representation: The Affine and the Projective plane

Definition 2.3. Axioms of the Affine PlaneA = G = {P ,L ,I } (pg.9 of [BW11])

A1. For any two different point p,q ∈ P , there exists only one line l ∈ L that
contains p and q.
A2. For a given line l ∈L and a given point p ∈P which is not on l, there exists
unique line passing through p and this line does not intersect l.5

A3. There are three points on the plane such that they are not on any line at once.

Corollary 2.1. On an affine plane of order n, there exist n2 points and n(n + 1)
lines.

Definition 2.4. Axioms of the Projective Plane (pg.4 of [BW11])

P1. For any two distinct points, there is exactly one line incident with both of
them.

4In general finiteness refers to countability of objects in a set, such that there exists a max-
imum upper bound on the number of elements in the set.

5This is the condition of parallel lines, where parallel lines are an equivalence class.
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P2. For any two distinct lines, there is exactly one point incident with both of
them.
P3. There are four distinct points such that no line is incident with more than two
of them.

The main difference between an affine plane and the projective plane is
in the axiom of parallel lines, such that there exist no parallel lines6in the
projective plane. This is an important distinction and results in the following.

Corollary 2.2. The projective plane of order n has n2 +n+1 points and n2 +n+1
lines, such that every point is on n+ 1 lines, and every line has n+ 1 points.

The fact that the number of points and lines is equal is of much impor-
tance in the construction of dual spaces later on. This duality comes directly
from the fact that we have allowed all points to lie on lines and for all lines
to intersect in points. The fact that the projective plane can be broken down
into an affine plane and extra line can be seen from enumeration of points.

Theorem 2.1. Deconstruction of a projective plane

A projective plane can be written as an affine plane plus an extra line added at
infinity.

Proof. We notice that |P P | − |P A| = n + 1, and |L P −L A| = 1, where |P | rep-
resents the number of points and |L | represents the number of lines. The super-
scripts P and A represent the projective plane and affine plane respectively.
This implies that the projective axioms have one extra line and n+ 1 extra points.
Since the projective plane has n + 1 points on 1 line, we interpret this as extra
line in the projective plane. In terms of affine planes, this is the space where the
equivalence class of n parallel lines can be thought of as meeting. Hence we call it
the line at infinity7.

Having the idea of an affine plane and a projective plane, we can move
on to construct projective spaces. However, we must talk more about the
finiteness of the space, which is a fact of the underlying field. Since Field
and later on our transformations are parts of group, we now move on to a
discussion of groups and by extension of fields, where we have referred to
chapter 1 of [LN97].

6Except for the line to itself.
7In higher dimensions this is replaced by a hyperplane at infinity.
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2.2 Groups and Fields

Definition 2.5. Group G

A group is a set G together with a binary operation on G such that the follow-
ing three properties hold:

1. * is associative; that is, for any a,b,c ∈ G,
a ∗ (b ∗ c) = (a ∗ b) ∗ c

2. There is an identity (or unity) element e in G such that for all a ∈ G,
a ∗ e = e ∗ a = a

3. For each a ∈ G, there exists an inverse element a−1 ∈ G such that
a ∗ a−1 = a−1 ∗ a = e

If the group also satisfies:

4. For all a,b ∈ G,
a ∗ b = b ∗ a

then the group is called abelian (or commutative).

Definition 2.6. Cyclic Group

A multiplicative group G is said to be cyclic if there is an element a ∈ G such
that for any b ∈ G there is some integerj with b = aj . Such an element a is called a
generator of the cyclic group, and we write G = (a).

Example 2.1. Cyclic Groups

1. The additive group of integers modulo n, Z (mod n) has the generator 1. The
generators of the multiplicative group which is Z∗/ (mod n) = Z/ (mod n)−
{0} depend on the prime.

2. The group of Integers Z ûnder normal addition has two generators {-1,1}.

3. Except for the identity group, the identity element can never be the generator
of a group.

There are many important properties associated with groups, and the
study of groups is possibly among the most important studies in physics.
Here we go over some of the more pertinent aspects for our work, which in-
volve some basics properties of groups and the definition of an equivalence
relation on it.
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Definition 2.7. Finite Group

A group is called finite (resp. infinite) if it contains finitely (resp. infinitely)
many elements. The number of elements in a finite group is called its order. We
shall write |G| for the order of the finite group G.

Definition 2.8. Subgroup H

A subset H of the group G is a subgroup of G if H is itself a group with respect
to the operation of G. Subgroups of G other than the trivial subgroups {e} and G
itself are called nontrivial subgroups of G.

The subgroup of a group partitions the group into smaller sets, which are
called the co-sets.

Theorem 2.2. Lagrange’s theorem for finite groups (see for instance [Rot01])

Let H ⊂ G, then ∃n ∈ Z+ : |G| = n|H |. n is called the index of H in G, and
defines the number co-sets of H in G.

Corollary 2.3. Let G be a group of prime order8. Then G has no subgroups9and
hence is cyclic.

Corollary 2.4. Any finite group of prime order is isomorphic to the group Z (mod p).

Example 2.2. 1. The additive group of integers modulo 4 has 4 elements Z (mod 4) =
{0,1,2,3}. The subgroup {0,2} has 2 elements and divides the group into
4/2 = 2 subsets, itself and the other subset {1,3}.

2. The group of Integers modulo 5, Z (mod 5) is a group of prime order and
has no sub-group.

3. The group of translations in the 1-dimensional projective line with a homo-
morphism defined from the translations to the group of 2*2 matrices has the

form T =
(
1 t
0 1

)
. The group has p elements, is isomorphic to Z (mod p)

and therefore cyclic, with the generator =
(
1 1
0 1

)
.

The existence of groups allows us to study structures and sub-structures.
Of importance in this study is the fact that one can define mappings between

8This means that the order of the group is a prime number.
9Since in this case, there is no division of the prime order into seperate sets.
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different groups, such that the study of multiple groups can be condensed.
Such mappings are called homomorphisms.

Definition 2.9. Homomorphism Φ

A mapping Φ : G→ H from the group G to the group H is called a homomor-
phism of G into H if Φ preserves the operation of G. If * and · are the operations of
G and H repectively, then we have,

∀(a,b) ∈ G, Φ(a ∗ b) = Φ(a) ·Φ(b)

If Φ is onto H, then it is called an epimorphism. A mapping from G to itself
is called an endomorphism. Importantly, a mapping which is also one-to-one is
called an isomorphism, and the two groups are said to be isomorphic. Finally,
an isomorphism which is an endomorphism is called an automorphism.

Of importance are those elements which are mapped to the identity ele-
ment.

Definition 2.10. Kernel

The kernel of a homomorphism Φ : G→H is the set:

kerΦ = {a ∈ G : Φ(a) = e′}

where e′ is the identity element of the group H.

Remark. The kernel of a group is always a subgroup of the group and has the
special property that if a ∈ G,b ∈ kerΦ then aba−1 ∈ kerΦ .

This allows us to define this special subgroup.

Definition 2.11. Normal subgroup N

A subgroup N of the group G is called the normal subgroup if ∀a ∈ G,n ∈ N :
ana−1 ∈N.

Remark. All subgroups of an abelian group are normal subgroups. The subgroups
of any abelian subgroup of a non-abelian group are normal with respect to the
abelian subgroup only.

Normal subgroups are the most important subgroups of any group. These
and only these can be used to define factor groups of any group.
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Theorem 2.3. If H is a normal subgroup of G, then the set of (left) cosests of G
modulo H forms a group. The group operation is (aH)(bH)=(ab)H.

Definition 2.12. Factor Group
For the normal subgroup H of the group G, the group of left cosets of H formed

with the operation defined above is called the factor or the quotient group, and is
denoted by G/H.

Remark. For finite groups, we have:

|G/H | = |G|
|H |

(2.1)

Theorem 2.4. Let Ψ : G→ Ψ (G) = G1 be a homomorphism of a group G onto a
group G1. Then kerΨ is a normal subgroup of G, and the group G1 is isomorphic
to the factor group G/kerΨ . Conversely, if H is a normal subgroup of G, then the
mapping Φ : G→ G/H defined by Φ(a) = aH, fora ∈ G is a homomorphism of G
onto G/H with kerΦ =H .

One generalizes equivalence relations on groups, since equivalence rela-
tions help partition groups into lesser elements.

Definition 2.13. Equivalence Relation

In general, a subset R of S × S is called an equivalence relation on a set S if it
has the following three properties:

1. (s, s) ∈ R,∀s ∈ S(reflexivity).

2. If (s, t) ∈ R, then (t, s) ∈ R (symmetry).

3. If (s, t), (t,u) ∈ R, then (s,u) ∈ R (transitivity).

Definition 2.14. Ring R

A ring (R,+, ·) is a set R, together with two binary operations, denoted by +and·
, such that:

1. R is an abelian group with respect to +.

2. · is associative; ∀a,b,c ∈ R : a · (b · c) = (a · b) · c

3. The distributive laws hold; that is, ∀a,b,c ∈ R :
a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a
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The concept of a ring becomes important due to the introduction of two
operations as opposed to just one. From the concept of a ring, one can come
to a more specific form, which is that of a field. More generally:

Definition 2.15. Properties of Ring R

1. A ring is called a ring with identity if the ring has a multiplicative identity;
that is, ∃e ∈ R, such that ∀a ∈ R,a · e = e · a = a.

2. A ring is called commutative if · is commutative.

3. A ring is called an integral domain if it is a commutative ring with identity
e , 0 in which ab = 0 implies a = 0 or b = 0.

4. A ring is called a division ring (or skew field) if the nonzero elements of R
form a group under ·.

5. A commutative division ring is called a field.

The requirement of an integral domain is important since it is the gener-
alization of integers on the real number line. This allows a more real world
mapping of properties. It can be shown trivially then that every finite inte-
gral domain is also a field

Example 2.3. 1. Let R be any abelian group with group operation +. Define
ab=0 ∀a,b ∈ R. Then R is a ring.

2. The integers Z form an integral domain10and not a field.

3. The set of all 2 × 2 matrices with real numbers as entries forms a non-
commutative ring with identity with respect to matrix addition and mul-
tiplication.

4. The ring formed by the equivalence (residue) classes of the integers modulo
the principal ideal11 generated by a prime p, Z/(p) is a field12.

The last example underlies the field we shall be working with.

Galois Fields

In theory one can define a projective geometry or any other sort of geom-
etry by choosing the elements from a field. The fields R and C are usually

10Again, the idea of integral domains is actually a generalization of the integers.
11An ideal is the equivalent of the normal subgroup for a ring.
12Since this ring is finite and is also an integral domain.
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used to define space-times. Here, however, we work specifically with Galois
Fields (pg.15 of [LN97]).

Definition 2.16. Galois Fields Fp

For a prime p, let Fp be the set {0,1, . . . ,p − 1} of integers. Let φ : Z/(p)→ Fp
be the mapping defined by φ([a]) = a for a = 0,1, . . . ,p − 1. Then Fp, with the field
structure induced by φ, is a finite field, called the Galois Field of order p.

The mapping φ is an isomorphism and allows the definition in terms of
Z/p. The field Fp then has the zero element 0, the identity element as 1, and
the elements of Fp follow arithmentic operations +,∗ defined over Integers
modulo p.

The usage of Galois Fields as the underlying structure has two specific ad-
vantages. Firstly, in the large number or classical limit, working with Fp is the
same as working with Z. An example of this, talking about the Local World
Domain will be shown in the next section. The second advantage is in the
modelling of possible quantum effects, which may arise naturally in such a
field due to the periodic nature of the field for smaller primes. An example
of this will be discussed in the section of Gauge Transformations.

Projective Spaces over Galois Fields

We now move to a more analytic expression of projective spaces. The
introduction of Fields allow us to coordinatize the space, and to define vector
spaces over them.

Definition 2.17. Projective Space PG(n,K) (see pg.29 of [Hir79])

Let V = V (n + 1, k) be an (n + 1)−dimensional vector space over the field K ,
without the origin. We consider the equivalence relation on the points of V \ {0}
whose equivalence classes are the one-dimensional subspaces of V without the
origin. Formally,

If X,Y ∈ V \ {0},where X = (x0,x1 . . . ,xn),Y = (y0, y1, . . . , yn) in some basis

then, X ≡ Y if, for some λ ∈ K,yi = λxi∀i.

Then the set of equivalence classes is the n-dimensional projective space over the
field K, and we denote it by PG(n,K).

When the Field is the Galois Field, we denote the Projective space as
PG(n,q), where q is the characteristic of the Galois Field. Sometimes the d-
dimensional projective space is also denoted as PKd

p .
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The elements of PG(n,K) are called points. If the point P(X) is the equiv-
alence class of the vector X, then we say that X is a vector representing P(X).
Therefore, λX, ∀λ ∈ K also represents P(X). For elements other than points,
like lines, planes, and so on, we define sub-spaces of the projective space.

Definition 2.18. Subspace of dimension m of PG(n,K)

A subspace of dimension m of PG(n,K) or an m-space is a set of points, all of
whose representing vectors form (together with the origin) a subspace of dimension
m+ 1 of V (n+ 1,K). We represent the subspace as πm.
Points are subspaces of dimension 0. 1−dimensional subspaces are called lines,
while 2−dimensional are called planes. The subspaces of dimension (n − 1) are
called hyperplanes.

If a point P lies on a hyperplane H , then P is incident with H , and con-
versely H is incident with P . We represent this by writing the point as X and
the representational matrix of the hyperplane as A, which then follows that

XA = 0, X ∈M(1×n+1), A ∈M(n+1×n−m)
13 (2.2)

The incidence of points and hyperplanes is the most important property
of the projective space, and distinguishes it from other forms of geometry.
This incidence structure allows us to define mappings on it, and especially
important are those mappings which keep the incidence structure invariant.
We call these mapping collineations, since they map co-linear points to co-
linear points.

Definition 2.19. Collineation ζ

If S and S ′ are two projective spaces, a collineation is a bijection ζ : S → S ′,
such that the incidence is preserved. Therefore,

πr ⊂ πs=⇒πrζ ⊂ πsζ (2.3)

Since a collineation is by defintion a bijection, inverses exist, and the ones
of particular interest are then the subset which we call projectivities.

Definition 2.20. Projectivity Π

A projectivity is a bijection Π : S→ S ′ given by a matrix ρ. If P(X ′) = P(X)Π,
then %X ′ = Xρ, where X,X’ are the coordinate vectors of P(X) and P(X ′), and
% ∈ K . Furthermore, for the projectivity Π : M(ρ) the matrix M(λρ) defines the
same projectivity ∀λ ∈ K .

13Mi×j denotes the set of matrices of dimension i × j.
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Since the projectivities are again bijections, their matrices are non-singular.
Furthermore, in this thesis we are concerned with the case when the bijection
is defined from the projective space to itself. Therefore, we work with Auto-
morphisms of the projective space. The automorphisms of the space form a
group Aut(K), which are represented by invertible matrices. The group of
projectivities from PG(n,K) to itself is denoted PGL(n + 1,K), where (n + 1)
represents elements of matrices of (n+ 1)× (n+ 1) dimension.

The fundamental theorem of Projective Geometry states that for a projectiv-
ity Π such that the point set P(X)Π = P(X)ρ, P(X)Π = P(Xσρ), where σ ⊂
Aut(PG(n,K)) [HT16].

A subset of the projectivities are the so called Affinities which define au-
tomorphisms of the affine subspace. However, for these we must first define
the affine subspace itself.

Affine Spaces and Lines at Infinity
A projective space can be thought of as the generalization of an affine

space with an extra plane added. This extra plane is called the hyperplane at
infinity, which from here on will be written as H∞. The hyperplane at infinity
for the case of PG(2,q) is the line at inifinity, written as `∞.14

Definition 2.21. Affine subspace

An affine subspace K of dimension (n) for the projective space PG(n,q) is the
vector space V (n,q) including the centre. In general an affine subspace can be an
r−dimensional space Kr defined by V (r,q). The affine subspace allows us to define
the projective space as:

PG(n,q) = K
n ∪H∞ (2.4)

This decomposition is not only limited to the affine plane however, and
one can further decompose the hyperplane at infinity into affine subspaces.
This is the generalization of the two-dimensional case of a projective plane
being decomposed into an affine plane and a line at infinity, where the line at
infinity can be further written down as an affine line and a point at infinity.
Since projective spaces are defined by 2-dimensional subsets, it is always pos-
sible to decompose a projective space into such components. Here we refer
to pg.2 of [Mec17].

14In general a line is just a hyperplane in 2-dimensions, but we distinguish them here for
future use.
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Definition 2.22. Affine subspaces of the hyperplane at infinity

For any PG(n,q) = K
n∪H∞, where H∞ is a (n−1) dimensional space, one has

further that:

H∞ = K
n−1 ∪Kn−2 . . .∪K1 (2.5)

such that the projective space can be written as:

PG(n,q) = K
n ∪Kn−1 ∪Kn−2 . . .∪K1 (2.6)

The breakdown of the projective space along with the definition of equiv-
alence classes clearly suggests that the projective space is not the same di-
mension as the underlying vector space. Since we have defined equivalence
classes of 1-dimensional subsets, this means that all points of the form λP
are the same as the point P . This feature of projective spaces goes back to
before their geometric considerations, wherein all points lying on the same
line were considered to be equivalent. Therefore for any point P we have the
p − 1 points λP , which all together equivalent. This equivalence is also the
reason why the vector space is considered without the {0}, since this point
has no equivalent points.

The understanding of this peculiar feature allows us to define coordi-
nates. For an n+1 dimensional vector space one can select any arbitrary basis
of n + 1 vectors, such that the vector space is spanned by them. One writes
the points then as P = {p1,p2, . . . ,pn+1}. However the equivalence allows us
to write the affine points instead as P ∼ Paff = {~p,1}, where we now have the
n-dimensional vector ~p. We then chose the centre of this affine space to be
the ’centre’ of the n-dimensional vector space, and so the centre becomes the
point {0,0, . . . ,1}.

Similarly the breakdown of the hyperplane at infinity becomes clear as
well, and we define the n − 1 dimensional hyperplane at infinity with the
coordinates of the form Pinf = {p,0}. The breakdown of the hyperplane at
infinity into lower order subspaces is then also analytically clear, since one
can now write:

Pinf→ P aff
inf = {~p,1,0}, (2.7)

Pinf→ P inf
inf = {p,0,0} (2.8)

and so on till we reach the final point at infinity which is given by the coor-
dinates {1,0,0, . . . ,0}.
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Figure 1: The breakdown into an affine plane (blue), an affine part for the
line at infinity (green), and a point at infinity (red) for the 2-dimensional
projective space as given by equation (2.6). Number of points are according
to prime p = 31.

The breakdown of the two-dimensional projective space in the 3-dimensional
vector space is given in figure 1.

Dual Spaces

The idea of dual spaces is central to projective geometry and allows any
property of projective spaces to carry on to affine spaces (pg.31 of [Hir79]).

Definition 2.23. Principle of Duality

For any S = PG(n,K) there exists a dual space S∗. The dual space S∗ is defined
by interchanging the points and the hyper-planes of the space S. Formally,

S = {P ,H,I} =⇒ S∗ = {H,P , I}

such that the incidence relation is invariant. Any theorem that holds for S, then
also hold for S∗.

In PG(2,K) the points are dual to lines, in PG(3,K) the points and the
planes are dual to each other. In general for PG(n,K) the subspace πr will be
dual to πn−r−1. The duality allows us to define hyperplanes from points and
vice versa, employing the use of a cross product. A similar mapping called the
dot product further enables us to check for incidence as well [Las14].
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Definition 2.24. Dot Product ·

Dot Product · is defined as a product between points and their duals, such that:

· : PdF ×PdF ∗→ F : (2.9)

P ·H =
d+1∑
i=1

pihi = P TH (2.10)

Definition 2.25. Cross Product

The cross product is an operation which exists for both a projective space and
it’s dual, and is allows one to go from one space to the other. Therefore we define
the cross product as existing for both points and hyperplanes, such that:

(PdF × . . .PdF )→ P
d
F
∗ (2.11)

(PdF ∗ × . . .PdF ∗)→ P
d
F (2.12)

Where the operator is defined as:

× : (v1 . . .vn)→ (v′1 . . .v
′
n) : det


v1
...
vn
. . .
ê


, ê = (ê1 . . . êd+1) (2.13)

In the projective plane, the cross product of two lines is the point at which
they intersect, whereas the cross product of two points is the line on which
both the points lie. For projective spaces, the definition is expanded to in-
clude higher subspaces which define hyperplanes. Similarly a dot product
allows us to define an incidence relation between a point and a hyperplane.

Definition 2.26. Condition of Incidence

If a point P ∈ H , then P is said to incident with H , and the condition is given
as:

P ·H = P TH = 0 (2.14)

The cross product then allows us to define the dual space of points in the
following manner.
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Definition 2.27. Hyperplane dual to a Point

A hyperplane H is defined as k-dimensional space which is dual to a point P0
and is given by the cross-product of a set of points P0, . . . , Pk−1 , where the cross-
product is the determinant of the form:

H = det


P0
...

Pk−1
. . .
ê


(2.15)

2.3 Neighborhood, Quadric, Biquadrics

Now that we have defined our space and equiped it with structure we move
on to defining neighborhoods. From here on, projective spaces shall refer to
n-dimensional spaces over Galois Fields, unless states otherwise. While the
use of Galois Fields has many advantages in imparting minimal structure to
our spacetime, the biggest drawback is the lack of an order relation on it.
This means that there is no way to know what point (in general event) comes
before or after. To solve this problem, a bilinear form is introduced. This is
know as a quadric and is analogous to the metric tensor used in GTR.

Definition 2.28. Bilinear Form B [Edg04]

A Bilinear form B on F
n
p is a map from F

n
p × F n

p → Fp, which is defined by
(x,y)→ B(x,y) such that:

1. B(x+ x′ , y) = B(x,y) +B(x′ , y)

2. B(x,y + y′) = B(x,y) +B(x,y′)

3. B(λx,y) = λB(x,y) = B(x,λy)

Quadratic forms which we are concerned with also have the property of
symmetry such that:

B(x,y) = B(y,x) (2.16)

The property of symmetry implies that a point which has a neighbor point is
also the neighbor of that point.
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Definition 2.29. Quadratic form F and Quadric Q

A quadratic form F ∈ Fq[X0, . . . ,Xn], where,

F =
n∑
i=0

aiX
2
i +

∑
i<j

aijXiXj , (2.17)

The form can be represented by a matrix MQ such that

∀F,∃MQ :Mij = aij (2.18)

Then the quadric Q is the kernel of the representation and we denote the represen-
tation by Q ∈MQ, such that given a point set PQ

∀p ∈ PQ⇐⇒ pTQp = 0 (2.19)

An alternative definition also exists in terms of the bilinear forms intro-
duced above.

Definition 2.30. A Quadratic Form Q is a map from F
n
p → Fp, defined by x→

Q(x) such that:

1. Q(λx) = λ2Q(x),∀λ ∈ Fp and ∀x ∈ F n
p .

2. B(x,y) =Q(x+ y)−Q(x)−Q(y) is bilinear. We call B the polarization of Q.

Quadrics allow for an ordering of space, and due to being a quadratic
function, one has two solutions in either direction (hence a before or an after
can be defined). The canonical forms of a quadric can be found and they can
be divided into parabolic, hyperbolic, and elliptic quadrics. The difference in
using a finite field though is that fewer quadrics are projectively distinct than
in the R case for instance. This is because in the case of p ≡ 3 (mod 4), the
equation x2 + y2 = −1 has solutions, and it is possible to change the signature
of the matrix (see for instance Sylvester’s law of inertia for the real case).

The number and form of the quadrics depends on the dimension, but in
general one can define three canonical quadric forms (pg.7 of [Edg04]).

Theorem 2.5. Any quadratic form over Fp is of one of the following forms:

1. Parabolic: Q0(x) = x1x2 +x3x4 + . . .+xn−2xn−1 +cx2
n, c ∈ {1, a} where a ∈ F ∗2p

if p is odd and c is 1 if p is even.

2. Hyperbolic: Q1(x) = x1x2 + . . .+ xn−1xn.
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3. Elliptic: Q2(x) = x1x2 + . . .+ xn−3xn−2 + p(xn−1,xn), where p(xn−1,xn) is an
irreducible quadratic form in 2 variables.

The representations of these quadrics in even dimension d is given by the
canonical parabolic form

Qpar =
(
Id 0
0 1

)
(2.20)

and in the odd dimensions d + 1 either as the hyperbolic or the elliptic form
as

Qhyp =
(
I(d+1) 0

0 1

)
, Qell =

(
I(d+1) 0

0 ns

)
(2.21)

where ns is a non-square in a Galois field.

Lemma 2.1. The quadric centre on a point p allows us to define a polar hyper-
plane. The polar hyperplane wrt a quadric Qp centred at p is given as:

Hpol =QpP

Furthermore, for the centre C = {0,0, . . . ,1}T , the hyperplane at infinity H∞ =
{0,0, . . . ,1}T is the polar hyperplane wrt to canonical quadrics Qmin and Qeuc.

In general any line that passes through the centre will intersect the quadric
in two points. However the existence of a quadric doesn’t guarantee a point
in every direction, meaning that we have too few points and too many lines
(passing through the centre). We show the proof here as follows.

Theorem 2.6. A quadric Q intersects only half the lines passing through its cen-
tre.

Proof. A quadric Q has points which are solutions of pTQp = 0. These are a total
of p+ 1 points. We now see that:

pTQp = 0=⇒(− p)TQ(−p) = 0 (2.22)

This means that the point −p is also a quadric point. Now let a line l be a line
through the centre. Then this line belongs to a family of p+ 1 lines, and if the line
intersects the quadric point p we have:

pT l = 0, (2.23)

=⇒ (−p)T l = 0 (2.24)
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This further shows that a line through the centre intersects the quadric in two
points p and −p. Therefore for (p + 1) points we only have (p + 1)/2 lines actually
interesecting the quadric.

The above case happens because in a finite field not all numbers are
squares. The solution for this problem is then to add another quadric to the
centre, which takes care of the non-square values. The two quadrics together
are then called a biquadric ( see pg.54 of [Las14]).

Definition 2.31. Biquadric Q±

A Biquadric is defined as the pair of matrices {Q+,Q−}, such that every line
passing through the centre intersects the lines. The form of the two matrices is
given by adding a non-square (ns ∈ Fp) as the last element of the matrix, such that
we have the Minkowski biquadric as:

Q+
min =


−1 0 0
0T I 0T

0 0 1

 ,Q−min =


−1 0 0
0T I 0T

0 0 ns

 (2.25)

and the Euclidian biquadric as:

Q+
euc =


1 0 0
0T I 0T

0 0 1

 ,Q−euc =


1 0 0
0T I 0T

0 0 ns

 (2.26)

The quadric Q+ used in this thesis will be represented by a pre-metric G,
where we define it as

Definition 2.32. The pre-metric G

The pre-metric G is defined either as being Minkowskian Gmin or as being
Euclidian Geuc. The difference is naming arises due to difference in the signature
of the two matrices. We have:

Gmin =
(
−1 0
0T I

)
,Geuc =

(
1 0
0T I

)
(2.27)

The neighborhood for the biquadrics centred at {0,0,1} is shown in figure
2. One can see that there is a line intersecting the biquadric in every direc-
tion, except for the two lines (asymptotes to the hyperbola) in the Minkowski
biquadric which intersect the quadric at the quadric point at infinity. In the
Euclidian case this distinction is lost.
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Figure 2: The Minkowski biquadric (top) and the Euclidian biquadric (bot-
tom). The blue point represents the centre of which the rest of the points in
green and orange are neighbors. The points shown here satisfy the quadric
equations for the matrix forms given in (2.25) and (2.26).

2.4 Form and Types of Transformations

The goal of this thesis is to look at the transformations of the space, in par-
ticular of the so called Lorentz and the Gauge transformations. For this we
now define the action of projectivities on points, hyperplanes, and quadrics.

Definition 2.33. Transformation of points
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Let Π be a projectivity represented by the matrix ρ. Then for any point p in
the point set P, we have:

p′ = ρp =⇒ p′i = ρijp
j , ∀i, j ∈ {0, . . . ,n} (2.28)

Theorem 2.7. Transformation of hyperplanes

For a given projectivity Π acting on the projective space PG(n,q), the action of
the projectivity on any hyperplane H is given by:

H ′ = ρ−TH (2.29)

Proof. The proof of above uses the fact that projectivities keep the incidence struc-
ture invariant. Therefore, Let point p ∈H , and the new point p′ be in H ′ then:

p′TH ′ = 0

=⇒(ρp)TH ′ = 0

=⇒ρTH ′ =H,
=⇒H ′ = ρ−TH

Corollary 2.5. The transformation of the representation matrix of quadric Q fol-
lows similarly as Q′ = ρ−TQρ−1

Types of Transformations

Since we have discussed how points, their duals, and quadrics transform,
and we have the spaces within which we wish to work, we can also talk
about what kind of transformations might exist. In particular the discus-
sion about projectivities has already introduced the concept of automorphisms
of the space. The representation of a projectivity can be represented by the
matrix form:

ρ =
(

A t
hT κ

)
(2.30)

Due to projective nature of the space and the breakdown into affine sub-
spaces, we can set the element κ such that the projective groups are the factor
groups of the generalized groups over vector spaces, with the factor being the
projective identity group, such that a transformation ρ is the same as another
up to a scale factor κ ∈ Fp.15

The projectivities can then be broken down further, and we define the fur-
ther groups of Affinities.

15This is usually set as 1.
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Definition 2.34. Affinities

Affinities A ⊂ Π which define the group of automorphisms of affine subspaces
in the projective space. They can be represented by the matrix from:(

A t
0T 1

)
(2.31)

such that we have for a point in the affine space P = (p,1)T : P → Ap+ t.

In particular the Affinities have two subgroups of affine transformations
and translations.

Definition 2.35. Affine Transformations

The affine transformations are the subgroup of affinities without the transla-
tion vector, such that we have the form:(

A 0
0T 1

)
(2.32)

Definition 2.36. Translations T

The subgroup of Translations are defined by the matrix form:(
I t
0T 1

)
(2.33)

where we have the translation vector t such that the points in the subspace are
transformed by an addition of this translation vector.

Corollary 2.6. The group of translations in 1-dimension is isomorphic to the
group of integers modulo p, Z (mod p) and are therefore generated by the canon-
ical translations. In 1-dimensions this is the translation with the vector t = {1}.
In 2-dimensions we have a breadown of the group into two 1-dimensional trans-
lations which are the canonical translations defined by:

tt =
(
1
0

)
, ts =

(
0
1

)
(2.34)

Here we have use subscripts ’t’ and ’s’ to represent translations along the time and
along the space axis respectively. Higher dimensional counterparts follow similar
canonical generators.
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Remark. The group of affine transformations keep the centre {0,0, . . . ,1}T invari-
ant and include Boosts and rotations. On the other hand translations do not keep
the centre invariant, and the entire affine subspace can be reached by these trans-
formations.

Finally another important transformation is represented by the tilt vector,
which act on the hyperplane at infinity. These are a subgroup of the projec-
tivities.

Definition 2.37. Tilts H

The subgroup of tilts are defined by the matrix form:(
I 0
hT 1

)
(2.35)

where we have the tilt vector h. The tilt vector is defined by it’s action on the
hyperplane at infinity, such that for the hyperplane H∞ = {0,1}T , we have the
new hyperplane given by {h,1}T .
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3 The case for Finite Projective Geomeries: Motivations
through a symmetric lens

But in my opinion, all things in nature
occur mathematically.

René Descartes

Before moving on to talk about the symmetry group representations which
exist in our spacetime, it is fundamental to understand the setting and to ask
the following questions.

Why might finite projective geometries be a good way of understanding
nature? In particular, what roles do the terms finite and projective have to
play in this understanding?

These questions and certain motivations were already glimpsed at in the
introduction. In section 2 we discussed what finite and projective means,
both synthetically (set-theoretic) and mathematically (coordinates). But we
have not yet understood completely what it is we are looking for. What is a
lorentz transformation and why is it important? What is a gauge transforma-
tion, and why is it important? The import of these ideas from the theories
of gravitation and quantum mechanics makes sense. But there is a need to
understand how the continuous symmetries correspond to the case of finite
space. In this section, we will discuss these ideas in general, before moving
on to a more mathematical treatment in the next sections.

At its simplest then we have a geometry which is a set of points and lines.
The points and lines follow an incidence relation, and this tells us which
point (line) lies on which line(point). We limit then the number of such points
and lines that can exist in our space. Furthermore we define at each point an
object called a ’biquadric’ which allows us to define a ’neighborhood’. The
neighborhood is important because it gives us a way to mathematically rep-
resent causality; what comes before, and what comes afte.r16The biquadric is
then the element in our space, which is analogous to the metric tensor in GR.

The first idea in favour of finite geometry is the equivalence of quadrics
(pg. 21 of [Mec]).

Theorem 3.1. All quadrics in even dimensions are equivalent. The choice of using
the signature (1,3) is arbitrary.

Proof. Quadrics are objects which are kernels of second order polynomials. In the
case of the Galois Fields, Sylvesters Law of Inertia is extended. This is because one

16The idea of what is before and what is after is not yet distinct.
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has now solutions for equations of the form:

n∑
i=1

a2
i = −1 (3.1)

This allows us to change the signature of any matrix, such that the canonical forms
are all equivalent to the Minkowski case.

The Minkowski quadric itself is also equivalent to the Euclidian quadric
given by the pre-metric in equation (2.27). However, when the transforma-
tions required are for biquadrics Q±, the allowed projectivities are fewer,
since now both the quadrics must transform. In this case, the two pairs of
biquadrics we are left with are the canonical biquadrics given by equations
(2.25) and (2.26).

Example 3.1. In the Galois Field with p=5, we have:

22 = 4 = −1 (mod 5)

In case of the normal Lorentz transformations then one has the projective
Lorentz transformations, which keep the quadric and the point it is centred
on invariant. This is the condition of keeping the neighborhood of a point
invariant, and therefore, one of the central symmetry arises from the symme-
tries of the central object: The biquadric.

The second idea which relates especially to the present thesis is the idea
of a fiber space emerging out of the geometry itself. We build upon it here.

Theorem 3.2. There exists a local domain of points and points outside of the local
domain can be mapped back in.

Proof. A Galois field is a periodic field and consists of equivalence classes. This
means that for any n1,n2 ∈ Fp,n1 + n2 −→ (n1 + n2) mod (p) = n3. Such that
n1 + n2 ∼ [n3]. Furthermore, let ni ∈ Fp, and let ni >

√
p. Then we have S = n2

i

and S > p. Therefore
√
S =

√
S mod (p).

This means that for elements greater than
√
p, the square root of the square

will be mapped back to another element which is not neccessarily the same. This
is of fundamental importance, since we calculate distance with squares using the
quadric (see Lorentz transformations).

Therefore we have now shown the existence of a local world domain ex-
isting below certain values of the field (

√
p in the 1-dimensional case) . This
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means that points outside the local domain must in some way be mapped
back to the points. So for a neighborhood of a point C we have elements at
a unit distance both inside and outside the local world domain. However,
these points themselves are different.

Definition 3.1. Fiber Space

The fiber space of finite projective geometry is the hyperplane connecting ’sim-
ilar’ points outside the Local world domain to the point in the local world domain
they correspond to. This is a re-folding of the space such that the local world
domain has a geometric connection to the global domain.

Remark. Let z be the integer closest to
√
p. In the 2-dimensional affine space the

fiber space is the union of (z)2 lines. Similarly for the line at infinity one has z
lines.

The existence of a fiber space leads directly to the idea of gauge degrees
of freedom, which are in general particle degrees of freedom. In our case we
have

Definition 3.2. The Existence of Gauge Transformations

For the fiber space, gauge invariance refers to the freedom in choosing how the
mapping GD −→ LD 17shall exist. Transformations which keep the fiber space
invariant are known as the gauge transformations.

One may now ask the question: How does this relate to the gauge symme-
tries we have so far observed, namely the SU(3)×SU(2)×U(1) symmetry of the
standard model. The answer to this question relates to the fact that we work
in a projective geometry, but first we theorize about the transformations in
the 2-dimensional affine plane.

Definition 3.3. The gauge transformations in the 2-dimensional affine space are
the set of transformations which keep the fiber space of lines, connecting quadric
points in the local world domain with quadric points outside it, invariant. There-
fore we have the decomposition of a 2-dimensional object into a 1-dimensional
one. The group is then denoted G(1).

Applying the logic above, it is clear that in higher dimensions, the fiber
space must consist of planes (3-d) and solids (4-d), such that for each affine
space K

d , we have the gauge group G(d −1). The final idea then is of uniting
the three groups, which happens naturally in the 4-dimensional case.

17GD represents points in the global domain outside of the local domain (LD).
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Theorem 3.3. Gauge transformations of 4-dimensions

Using equation (2.6) we can write the 4-dimensional projective space as:

P4 = K
4 ∪K3 ∪K2 ∪K1 (3.2)

Therefore the gauge group can be written as the product: G(3)×G(2)×G(1)

Now an important question arises: How can we parametrize these gauge
transformations? This a fundamental question and the main topic of this
thesis relates to this parametrization. The central idea here is to use the in-
tersection of two quadrics and to search for those transformations which keep
this intersection invariant. But which quadrics and their intersections must
we consider? Here we use the concept of a biquadric field. This is the field
of biquadrics which is generated across the affine plane by translations of
the center point. We choose a center18and equip it with a biquadric. The
group of translations then generates a biquadric field across the affine plane.
19We choose one of these translated biquadrics, and in general this can be
any translated biquadric. The intersection of these two biquadrics will then
be the object of our interest.

Before we move on, it is important to talk about the rest of the reasons
why a finite projective geometry is a valid approach to unification. These rea-
sons relate to what we have talked about but will not be expounded upon in
the sections to come. Possibly among the most interesting reasons is the non-
existence of ovoids20for dimensions greater than 3 (see pg.24 of [Bro00]).

Theorem 3.4. The maximal space that can realistically21exist is the space with
dimension d = 4.

Proof. For projective spaces with dimensions greater than or equal to 4, the higher
dimensional light cone can be seen as a cylinder. In these higher dimensions a
quadratic shape like a hyperboloid can be seen as a connection of lines, such that
it is possible by the use of a coordinate system to suppress the hyperboloid to it’s
d < 4 dimensional form. The coordinate system one uses is that of the light cone

18In this thesis, the center is assumed to be the point {0,0, . . . ,1}T and the corresponding
hyperplane at infinity will be {0,0, . . . ,1}T .

19These transformations do not generate biquadrics for points at infinity.
20An ovoid is the projective equivalent of an oval in real space. In general no 3 points on an

ovoid are collinear. An example is the quadric we have discussed before.
21We use realistic to distinguish what we see and can live in, as opposed to a mathematical

structural existence.
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itself, such that points in these higher dimensions are at a distance 0 from each
other. Since the light cone has quadric points only at the hyperplane at infinity, the
structure of the light cone is one-dimensional less than that of the projective space.
This means that the hyperplane at infinity can only have a maximum dimension
of 3, and therefore the projective space is only possible for 4-dimensions.

Therefore, we have mathematically theorized not only the existence of the
4-dimensional space time, but also the existence of Lorentz Transformations,
Fiber space, and the symmetries relating to the fiber space. It is important
to stress again that this is possible only in a finite and projective space. In
the next sections a visualization of Lorentz Transformation will be shown,
for a better understanding of how the finite group connects to the continuous
one22. Afterwards, the intersection of two quadrics shall be expounded upon,
with a focus on the study of their symmetries.

22In general a finite group can be thought of as being embedded within a continuous one.
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4 Lorentz Transformations

Nature uses only the longest threads to
weave her patterns, so each small piece
of her fabric reveals the organization
of the entire tapestry.

Richard P. Feynman

The first set of transformations which are defined by the symmetries of
the biquadric are the Lorentz Transformations. The name is taken as an ana-
log of the Lorentz group in the continuous spacetime, although a complete
one-to-one analogy might not exist. The parametrization of these transfor-
mations is done by looking at their specific action on the biquadrics.

Definition 4.1. Lorentz Transformations L

For a set of quadrics Q± centred at point C, Lorentz Transformations are the
set of those transformations which leave the point set of one of the quadrics and
the centre point C of the biquadric invariant.
If PQ be the point set belonging to the quadric Q with points given by P iQ, P

j
Q where

i, j = {1, . . . , |PQ|}, then the above condition implies:

LkP
i
Q = P jQ, ∀P

i
Q, P

j
Q ∈ PQ,∀Lk ∈ L (4.1)

LkC = C,∀Lk ∈ L (4.2)

It is clear from the definition of the biquadric then, that the action of the
Lorentz Group preserves not only the biquadric structure, but also the line
at infinity, which is defined as the polar dual to the centre with respect to the
quadric.

As we have discussed in the previous section, this action can be repre-
sented using the representation matrices of the quadric (or in general the
biquadric).

Definition 4.2. Lorentz Transformations L on quadric

For a given quadric representationQ, we define the action of the Lorentz group
using their matrix representation as follows:

Q = L−TQL−1 (4.3)
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This can then be further simplified, using the fact that a group has inverses to:

Q = LTQL (4.4)

For the chosen centre C = {~0
T
,1}T , we can write the group representation

as:

L =
(
L 0
0 1

)
(4.5)

It is clear that L ⊂ Aut(Qmin), specifically those which also keep the cen-
tre invariant. More generally, L ⊂ Aut(Qmin). This is an important property
because it distinguishes Lorentz transformations from other automorphisms,
namely from the orthogonal group which keeps the Euclidian quadrics in-
variant. However, for subspaces of the projective space, an embedding of
a Euclidian quadric can exist in a Minkowskian one, and then the group
O(n − 1,q) becomes a subgroup of L(n,q), where n is the dimension of the
space. This will be shown for the 3-dimensional case later where spatial ro-
tations given by an orthogonal group are a subgroup of the bigger Lorentz
group.

The sub-matrix element L defines the lorentz group, since it keeps the
Minkowskian pre-metric given in equation (2.27) invariant. We define this
as follows:

Definition 4.3. Action of L
For the sub-matrix element L, which defines the Lorentz Transformation, we

have the conditon:

Gmin = LTGminL (4.6)

These Transformations can be broken down into different forms depend-
ing on the space-time dimension we are working in, as we now see.

4.1 The 2-dimensional Case: Boost

For the two-dimensional case the pre-metric is given by the form diag{−1,1}.

Theorem 4.1. Representation matrix L for 2-dimensions

For the 2-dimensional case, the matrix L is given by:

L =
(

λ
√
λ2 − 1

±
√
λ2 − 1 ±λ

)
, λ ∈ Fp (4.7)
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Proof. We have the equation LTGminL = Gmin, where Gmin = diag{−1,1}. For

L =
(
λ1 λ2
λ3 λ4

)
, we have:

−λ2
1 +λ2

3 = −1 (4.8)

−λ2
2 +λ2

4 = 1 (4.9)

−λ1λ2 +λ3λ4 = 0 (4.10)

The parameterization is then that given above.

These are |L| = p transformations and are the analogous to the boosts in
classical relativity. For the case when Qmin is replaced by Qeuc, the L(n)→
O(n),23and we then have the case of rotations. This will become clearer in
the next section, but first we look at the action of this group elements. This
is given in fig. 3, where we consider the case of successive boosts using one
element of the boosts (for which a square root exists). The important obser-
vation here is the symmetric nature of both the plots with respect to the x
axis, such that half the boosted points are reflections of points along the x
axis.

4.2 The 3-dimensional Case: Boosts and Rotations

The three dimensional case is slightly more complex but can be broken down
to solutions that apply to 2-dimensional sub-spaces, and therefore can be
seen as rotations or boosts, depending on whether the time axis is kept in-
variant or not.

4.2.1 Rotation

Let the representational form L be written as:

L =
(
1 0
0 R

)
(4.11)

Then R solves the equation:

RTR = I2d (4.12)

23In general we always concern ourselves with the Minkowski quadric, however subspaces
in the projective space can have induced Euclidian quadrics, and so we note the difference in
the two Aut(Q±) groups.
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Figure 3: Successive boosts are defined by multiple applications of 1 element
of the matrix given in equation (4.7) to point 1 in figure. The action is re-
peated till point 1 is reached back again. Top: Minkowski quadric points
Middle: Successive boost for quadric point 1. Bottom: Successive boost for
non-quadric point 1. Seen here is the axial symmetric nature of the boosts
for both quadric and non-quadric points.

Therefore R belongs to the group of 2-d orthogonal matrices, and can be
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represented as:

R1 =
(

α ∓
√

1−α2

±
√

1−α2 α

)
(4.13)

R2 =
(

α ±
√

1−α2

±
√

1−α2 −α

)
(4.14)

Due to the fact that α can be written as cosθ in the continuum limit when
the prime p→∞, this particular set of solutions corresponds to 2-d rotations
in a plane. This can be seen even more clearly if we look at the action of
Lorentz group on a point P = {p1, Ps,1}T . We then have:

LiP = {p1,RPs,1}T ,∀Li ∈ L (4.15)

Here we see that only the spatial part of the point is affected by the Lorentz
transformation, and therefore we call them rotations. However, the finite
group is only embedded in the bigger continuous counterpart.

An example in the prime field with p = 43 can be seen in figure 4 . The
quadric points in the 2-d affine sub-space and in the 3-d affine space are
shown here. Both cases show the initial quadric as well as the 180 degree
rotated quadric, for a sub-set of the quadric points (second coordinate pos-
itive). For the entire quadric point space, any rotation gives back the same
quadric, and therefore only a sub-set of points is shown here.

The invariance can be further seen for a counter-clockwise rotation of
90 degrees. For the points on the positive second axis, this corresponds to
an overlap with the original quadric points. This can be seen below in fig-
ure 5, where we plot those points for which the time coordinate is the same.
Of note here is the fact that the quadric points shown here belong to the 2-
dimensional Euclidian quadric, and hence the difference with the case when
one might look at a slicing with the Minkowskian quadric (as seen in figure
3). These are the 2 types of embeddings in the subspaces which were men-
tioned before.

Finally, to complete the discussion, we can talk about the rotation pa-
rameter α. While α ∈ Fp can always be chosen amongst the p elements, a
corresponding square root doesn’t necessarily always exist. One can how-
ever still find roots which then give us different rotation matrices, such that
a full rotation is completed in steps. For instance, in the prime field F43
(3 (mod ()4) = 1, so -1 is a non-square), one has 22 elements having roots.
One can also show that these roots can be divided into two sub-sets where
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Figure 4: The Minkowski quadric and the corresponding 180 degree rotated
quadric for a sub-set of points in 2-d (slice of 3-d) and 3-d spaces. The rota-
tion is an element of L given by equation (4.11), and the action is defined in
equation (4.15). Results are for prime p=43.

the sub-set has positive and negative roots. The entire sets of matrices forms
the complete group of rotations. In the figure 6, one can see the application
of these rotation matrices on a point of the quadric (point labeled as 1). In
the 2-dimensional projection of the three-dimensional case (taking a slice of
the 3-d points), one can compare and see that all the quadric points that lie
in a plane can be generated by all possible rotations of a quadric point.
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Figure 5: The Minkowski quadric and the 90 degree rotated quadric for a
sub-set of points in 2-d showing the overlap of quadric points. Results are
for prime p=43.

4.2.2 Successive Rotations and the Local World Domain

Another interesting case of rotation is the case of succesive similar rotations,
which in the representational space means the consecutive application of the
same rotational matrix to a point. Suppose we have any element Li of the
Lorentz Group such that the form of Li is given by equation (4.11), where we
have the representational matrix Ri . The successive action of such a rotation
can be described as,

Lmi =
(

1 0
0T Rmi

)
(4.16)

where we have for the mth rotation the form above.
Figure 7 shows the symmetric quality of these succesive rotations for an

arbitrary value of the rotational parameter α.
An important feature of the finite fields lies in the ability to model real

space-time in terms of what is called the local world domain. This was stud-
ied by both [Hö18] and [Gim18]. The local world domain is defined in terms
of coordinate values which lie between ∓√p, where p is prime. The idea of
having such a domain comes from the fact that due to the finiteness of the
field, the order relation which exists due to biquadric points can be destroyed
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Figure 6: The application of all elements of the Lorentz rotations are shown
here for prime p=43. We apply every possible element for which a square
root exists in equations (4.13) and (4.14). Above: All points generated by the
complete set of rotations on point 1. Below: The 2-dimensional projection of
the quadric points.

in cases where we want to work with second-order quantities. An example
of such a quantity is distance, and while distances in finite projective geome-
tries often use cross-ratios, one can also define a quadric distance. Without a
lack of generality, we can consider the distance of a point P from the centre
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Figure 7: Points generated by application of consecutive rotations as given
by (4.16). Top: Rotations of point 1 for both y, z coordinates less than 10.
Middle: Rotations of point 1 for both y, z coordinates more than 10. Bottom:
Projective quadric points for prime 107.

of our geometry by defining it as:

D2 = |(Gijpipj ) (mod p)| (4.17)

where theGij are elements of the Minkowskian pre-metric given by equa-
tion (2.27), and pi and pj are the coordinates of the point P . It is clear then
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that for the quadric Q+
min at the centre any affine quadric point has a unit

distance to the centre.

One can then see that for the two-dimensional sub-space, in which the
time coordinate is kept constant, the above distance is essentially just the
cartesian-distance of coordinates. In the real space-time then, the group of
rotations keeps this distance invariant. Therefore, if one were to choose a
point in the 2-d space, the application of consecutive rotations would lead to
a circle in this space. However, as is clear from figure 7, it doesn’t seem like
this is the case with finite fields. This is indeed true to a certain extent since
one can see that the values of the points are not lying in a finite circle.

But, the distance measure of these points is the same. Points with coordi-
nate values greater than ∓√p will have their distances mapped back to lower
values due to the modulo operation, since any value greater than the square
root of the prime will be greater than the prime, when squared, and therefore
the modulo operation shall bring the cartesian distance back to it’s lower val-
ues. A good case study for this is for values of bigger primes. One can then
see what happens in the domain defined with coordinate values less than the
square root of the prime. Figure 8 shows the local world domain for a prime
p=10007. There exist 4 points in this domain, all of whom are at the same
cartesian distance from the centre.
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Rotations of point 1 for prime p = 10007

Figure 8: Rotations showing points in the complete space, and in the local
world domain
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4.2.3 Boost

To get the complete Lorentz group in 3-d one must also have the second case
which keeps one of the space dimension invariant. This representation can
be written as:

L =
(
B 0
0 1

)
(2.9)

In this case B solves the same equation as the 2-d Lorentz case and is given
by L2d as in equation (4.7). These are also called boosts, since the form for B
can also be written in terms of sinh(θ) and cosh(θ), if λ is instead parameter-
ized as cosh(θ).
Therefore, the 3-dimensional case breaks down into the case of 2-dimensional
subspaces, such that we have embeddings of the 2-dimensional Minkowski
and 2-dimensional Euclidian biquadrics. The Lorentz transformation in 3-
dimensions are then the union of those transformations which keep these
embedded subspaces invariant. In particular we have two boosts (since we
have 1 temporal and 2 spatial directions) and 1 rotation (for the two spa-
tial directions). Therefore the 3-dimensional Lorentz transformations is a 3
parameter group.

4.3 Extension to 4-dimensions

Our discussion above allows us to extend the results for the 4-dimensions.
The Lorentz group in 4-dimensions can again be broken down into 3 boosts
(1 temporal and 3 spatial directions), and 3 rotations (between the 3 spatial
directions), such that we have a 6 parameter Lorentz group. Since the discus-
sion for both boosts and rotations has already taken place, the 4-dimensional
case will not be probed further. We move therefore to the discussions about
gauge transformations, and the structures underlying them.
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5 Gauge Transformations

If I have seen further, it is by standing
upon the shoulders of giants

Sir Isaac Newton

An even more interesting aspect of symmetries are related to the gauge
transformations. In this work we will look at transformations which keep the
intersection of two quadrics invariant. Here the initial discussion of transla-
tion becomes important, as we will try to preserve the structure for the case
when the second quadric is the translated first quadric.

Translations and Intersections

Theorem 5.1. Translated quadric

For a quadric representationQ with a pre-metricG centred at C, the translated
quadric is given as:

Q′trans =
(

G −Gt
(−Gt)T 1 + tTGt

)
(5.1)

and the new centre is given as:

Ctrans = {t,1}T (5.2)

Proof. For the case of translations, the quadric can be written as Qtrans =
T−TQT−1. Then since T ⊂ UT (n+ 1)24, the inverse is given by the mapping:
t → -t. The transpose is then the subgroup of LT (n + 1)25, and the matrix
multiplaction gives the expression above.
Similarly since T ⊂ A the group of affinities given by equation (2.31), the
last coordinate of the centre remains invariant, and the affine coordinates are
given by the translation vector.

In general for translations along a line, that is the case of successive trans-
lations, one can define the ’direction’ of translations by the hyperplane join-
ing the two centres.

Definition 5.1. The hyperplane of centres

24Group of Upper Trinagular matrices of ((n+ 1)× (n+ 1)) dimensions
25Group of Lower Triangular matrices
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The hyperplane of centres is the hyperplane connecting the two centres. It is
defined as the cross-product of the two centres and we denote it by Hc. Then:

Hc = C×Ctrans (5.3)

we calculate the cross-product for the two given centres using equation (2.13), to
get:

Hc =


−t2
t1
0

 (5.4)

Remark. The hyperplane of centres is named as such since it defines all the pos-
sible future and past centres of our translated quadrics.

For the quadric points which belong to both the quadrics such that P ∈
Qmin ∩Qtrans then solve simultaneously:

P TQminP = 0, P TQtransP = 0 (5.5)

5.1 Symmetries in the 1-Dimensional Projective Space

The first case we have is of the 1-dimensional case, wherein the quadric is a
2×2 matrix, and we have 2 points in the affine plane, and the point at infinity
is also in the quadric. A translation of the quadric can intersect in 1 point at
the affine plane, such that the intersection has 2 total points.

Definition 5.2. Intersection of 1-dimensional quadrics

For the quadric given by diag(−1,1) and the translation by the generator t = t,
we have the intersection as the solution of the equation:

p2(tp2 − 2p1) = 0 (5.6)

Thie solution is for any general point with coordinates {p1,p2}T and only has a
solution when t=2. Then we have the point in the affine plane (1,1) with (p − 1)
scalings in the 2-d vector space representing PK1, and the point at infinity P∞ =
{1,0}.

The group of transformations keeping both the points (intersection point
and the point at infinity) invariant is just the identity group. The transfor-
mations keeping only the affine point invariant are p − 1 permutations of the
other p − 1 affine points isomorphic to the group Z

∗/ mod (p), given as:(
g 1− g
0 1

)
(5.7)
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However as we have seen, only one particular translation (and it’s inverse)
have an intersection of two quadrics. In the general case, there is no such
intersection, except for the point at infinity. This is why we look first at the
transformations keeping the quadric invariant.

As we have seen before, in the 2-dimensional and higher we have the
Lorentz group. However, the Lorentz group is the group of automorphisms
of the biquadric. For only one quadric, we have the automorphism group
Aut(Q+), and in particular this has a subgroup of transformations which keep
the quadric invariant, but not the centre.

For the 1-dimensional case we have the group26:

G(1D) :
(

λ
√
λ2 − 1√

λ2 − 1 λ

)
=

(
1 λ
λ 1

)
,
√
λ2 − 1/λ→ λ (5.8)

where we have redefined the parameter to get the projective equivalent. We
have then that G(1D) ⊂ Aut(Q+) with the effect GC = {λ,1}T . This group
shall later serve as an inspiration for higher dimensional equivalents.

5.2 Symmetries in the 2-Dimensional Projective Space

We look at the general case of the 2-dimensional translated quadric and it’s
intersection with the initial one. Then writing the translation vector t as
{t1, t2}T , the translated quadric is given as:

Qtrans =


−1 0 t1
0 1 −t2
t1 −t2 1 + tm

 , tm = t22 − t
2
1 (5.9)

According to (5.5) using homogeneous coordinates P = (p1,p2,p3)T for the
quadric points we now have:

−p2
1 + p2

2 + p2
3 = 0, (5.10)

−p2
1 + p2

2 + (1 + tm)p2
3 + 2t1p1p3 − 2t2p2p3 = 0 (5.11)

The solutions of this equation and the spaces they are part of have mul-
tiple elements. We divide the discussion now into 4 parts: Points at Infinity,
Points in the Affine Plane, The Hyperplane of Intersection, and the Interunion.

26These are not all the elements, since we have also the case when the last matrix element
is the negative of the first. Here we focus only on this subset, and the results carry over to the
other elements.
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Points at Infinity
As was mentioned before, every quadric has two points at infinity. Since

T ⊂A, these points are unmoved due to translations. We have the two points
Pinf = {±1,1,0}T . All the other points at infinity which solve equation in ho-
mogeneous coordinates are equivalent to these two points. Here these points
correspond to the hyperplane of intersection which is the line at infinity
(upto a factor λ):

Hinf =


0
0
−2

 =


0
0
1

 (5.12)

In general the affinities also belong to the group of automorphisms of the
hyperplane at infinity Aut(H∞). In particular there exist the ’translations at
infinity’, which are those transformations which act on the affine subsection
of the hyperplane at infinity.

Points in the affine plane
Apart from the two points at infinity one has two points in the affine

plane, given by,

Paff = {P ,1}T (5.13)

The points set of these 4 intersection points is denoted Pins, and Pins = Paff ∪
Pinf.

The group Aut(Pins) consists only of the identity element.

Hyperplane of Intersection
We consider now the points solving the equations of intersection, and

in particular for those solutions which have p3! = 0. Subtracting the two
equations given by (5.11) we have:

2p1t1 − 2p2t2 + p3(tm) = 0 (5.14)

This equation defines the hyperplane spanned by the two affine points of
intersection. We call this plane the hyperplane of intersection Hins.

Definition 5.3. Hyperplane of Intersection
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Figure 9: The 4 points of intersection. The two green points represent the
affine points (given by the shaded plane), and the two blue points are the
points at infinity (for t1 = 2 and t2 = 1) and prime p = 31. The cross is the
centre.

For the difference of two quadratic equations the points Paff = {Paff,1}T span a
hyperplane given by:

H =


2t1
−2t2
tm

 (5.15)

The hyperplane has p+1 total points, with p points in the affine plane and 1 point
at infinity.

Lemma 5.1. H intersects the quadrics in the affine plane (given in inhomogenous
coordinates) at the two points defined in the previous section.

Lemma 5.2. For the 2-dimensional case with the hyperplane of intersection, one
can also solve the cross-product of two points which satisfy (5.14). In the affine
plane with p3 set as 1, we choose the two points:

P1 =


0

t22−t
2
1

2t2
1

 , P2 =


−(t22−t

2
1 )

2t1
0
1

 (5.16)
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The hyperplane of intersection is then given by equation (2.15).

H = det


0 t22−t

2
1

2t2
1

−(t22−t
2
1 )

2t1
0 1

ê1 ê2 ê3

 (5.17)

We then get the same representation as in (5.29).

In the homogenous coordinates the hyperplane of intersection is a plane
and we plot it in figure 10 below.
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Figure 10: The hyperplane of intersection as given by equation (5.29) in
the homogenous coordinates for the prime p=31 and translation vector t =
{2,1}T . The affine plane is the shaded region.

The plane itself shows the periodicity of the galois field, since in the 3-
dimensional vector space the plane looks like a series of planes. This also
defines the line in the affine plane which is where the scaled out coordinates
of the plane appear, as can be seen in the figure 11 below.

Before we move on to the next topic, it is important to discuss also the
second quadric which together makes up the biquadric. The existence of the
hyperplane of intersection is not limited just to the quadric we have so far
discussed. The second quadric also has intersection point with its translated
counterpart. For the quadric Q− the translated quadric can be calculated
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Figure 11: The hyperplane of intersection as defined in equation(5.29) for the
translation vector t = {2,1}T and p=31. Here the points in the affine plane are
shown, along with the two affine points which span the line, given in orange.

using equation (5.1) by replacing the 1 with a non-square ns and it is given
as:

Q− =


−1 0 0
0 1 0
0 0 ns

 =⇒ Q−trans =


−1 0 t1
0 1 −t2
t1 −t2 ns+ tm

 (5.18)

We see then, that the intersection points of the second quadric also lie on
H .

Union of intersection planes
A more general structure exists for the equations. We call this the Union

of Intersection Planes, and it is the structure which includes also the hyper-
plane at infinity along with the hyperplane of intersection. The generalized
form represents the difference of two quadratic equations

Definition 5.4. Union of intersection planes

For the difference of two quadratic equations defining the quadrics the point
set PU defines the Union of Intersection planes (Interunion from here on). It is
given as the union of the hyperplanes, and defined by the equation:
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p3(2p1t1 − 2p2t2 + p3(tm)) = 0 (5.19)

The explicit form can be written as a matrix as:

IU =


0 0 t1
0 0 −t2
t1 −t2 tm

 =
(

02×2 −Gmint
−(Gmint)T tm

)
(5.20)

In general the representation on the right can be extended to greater dimensions.

Corollary 5.1. ∀PU ∈ PU we can write equation (5.19) as: P TUIUPU = 0.

Corollary 5.2. The order of the Interunion |IU| = p+ p+ 1 = 2p+ 1.

Remark. In general for any affinity, the span of the two points at infinity will
always be the line at infinity. This means that the interunion will always contain
the line at infinity, while the hyperplane of intersection will change depending on
the transformation.

The union is plotted below, where we add the line at infinity to the hyper-
plane of intersection.
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Figure 12: The union of intersection planes in the homogenous coordinates
for the prime p = 31 as given by equation (5.19) for the translation vector
t = {2,1}T . The blue points represent the points at infinity with the red point
being the point at infinity given as P∞ = {1,0,0}T .
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5.2.1 Symmetries of the hyperplane of intersection

A centre with a quadric defined on it allows us to define a neighborhood.
The Lorentz group has been discussed as being the Aut(Q,C) which for the
case of unique centre is also the Aut(Q±).27 For the consideration of gauge
invariances and gauge degrees of freedom, the idea of the intersection of two
quadrics comes into play. In general, for the affine plane, especially in the
flat field approximation28, one can use the translations to generate a flat
biquadric field. Since we already have the group of automorphisms of the
quadrics, we know first concern ourselves with the automorphisms of the
hyperplanes (and later of the interunion). This is the group Aut(H ) which
keep the hyperplane of intersection invariant. In particular we will be in-
terested in those elements of the group which have some other symmetries
associated with them as well.

A general translation is given by the translation vector t, however as was
discussed before, this group is generated by the two elements tt ,ts as given by
equation (2.34). Therefore we will first simplify the results and discussions
by looking at the case for one of these generators. A more general outlook
for an arbitrary translation will be provided later. To show however that the
discussion holds for any translation we provide the following argument.

Theorem 5.2. Extension of Generators
The set of transformations which define how the gauge transformations them-

selves transform for every point in the affine plane are a sub-set of the projec-
tivites without the translations. Formally, the set of matrices R which allow

H (t1, t2) = R−TH (1,0) ∀t1, t2 ∈ Fp have the form R =
(
R 0
0T 1

)
,R ∈M{2× 2,Fp}.

Proof. Here we use the fact that we have so far defined H as the intersection
plane spanned by the points of intersection of the quadrics centred on C and
another Ctrans. It is sufficient for the proof then that the group of transfor-
mations we are interested in keeps the centre invariant, and maps Ctrans to a
different point, which is defined for a different translation. Such that we have
for a set of transformations R:

RC = C (5.21)

RT1C = T2C,∀T1,T2 ∈ T (5.22)

27It is possible in our geometry to have biquadrics which have multiple centres, such that
the different centres have the same neighborhood. See for instance section 3 in [Las14].

28All the points in the affine plane are in the same number of neighborhood. This can be
generated using translations for the affine plane.
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The set of transformations following this are given by:

R =
(
R 0
0T 1

)
,R ∈M{2× 2,Fp} (5.23)

Remark. These transformations allow us to find the hyperplanes of intersection
between the origin and the required point. For a more general case of shifting be-
tween two arbitrary points, the transformations will be the set of all projectvities.

In the following discussion then we restrict ourselves to the reduced rep-
resentation, where we choose tt = {1,0}T as our translation vector. For this
case, the hyperplane of intersection is given in figure 13.

The automorphisms can then be represented and broken down into two
types, which we call type 1 and type 2, which are distinguished according to
the scaling of the matrix representation. A further distinction appears later
in our discussion as well. These transformations are given as:

G = Aut(H ) ⊂M(n+1)×(n+1) (5.24)

G = G1 ∪G2,where, (5.25)

G1 ∈
(
Λ α
βT 1

)
,G2 ∈

(
1 αT

β Λ

)
(5.26)

Transformations of Type 1

The first transformations are those we call type 1 transformations which
involve the last element of the matrix to be set to 1. We represent these with
a ’1’ in the subscript. Then the group G1 solves

G−T1 H =H (5.27)

and can be parameterized as:

G1 =


g1 g2 0
g3 g4 tp

2(g1 − 1) 2g2 1

 ; g1, g2, g3, g4 ∈ Fp (5.28)

That the parameterization exists as above can be seen by looking at the
hyperplane of intersection for the canonical translation, which according to
equation (5.29) is now

H =


−2
0
1

 (5.29)
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Figure 13: Hyperplane of intersection in the homogenous (top) and inhomo-
geneous (bottom) coordinates for prime p=31 for the reduced representation
given by the canonical translation with t = {1,0}T .
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Then the matrix given by equation (5.28) solves equation (5.27).
This is a big group with p4(p − 1) elements, where the factor p4 which

is subtracted represents singular matrices, which don’t have inverses. This
means that the group can be broken down into smaller subgroups since |G1|
has factors which can be broken down further, as explained by Lagrange’s
theorem for finite groups. These subgroups are expected to have aditional
symmetries, so we define them in terms of the invariant structures. The first
thing to notice is that the group can be broken down into transformations
which keep the centre invariant and those which don’t.

Definition 5.5. Transformations keeping the centre invariant G1(C)

The biggest non-trivial subgroup is the group of transformations which also
keep the centre C = {0,0,1}T invariant. We denote it as G1(C), where |G1(C)| =
p3(p − 1), and the subgroup divides the bigger group into p co-sets. The action of
this subgroup is especially clear by it’s action on the line at infinity, since there is
a tilt vector which allows for a shift of the line at infinity. The representation of
the subgroup is given as: (

G 0
hT 1

)
(5.30)

where we have used along with equation (5.27) the condition

G1(C)C = C

which implies tp = 0 in equation (5.28).

A subgroup of G1(C) is the group G1(Hc), which keeps the hyperplane
of centres invariant. These are reflections around the space direction, where
the mapping of points is dependent on the tilt of the hyperplane at infinity.
Further subgroups of p and p − 1 elements each exist, depending on whether
the time coordinates are mapped to time coordinates or otherwise.

Definition 5.6. Transformations keeping the direction of translation invariant

These are transformations given by:

G1(Hc) =


g1 g2 0
0 1 0

2(g1 − 1) 2g2 1

 (5.31)
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Corollary 5.3. The subgroup SG1(Hc) of matrices with determinant 1 are defined
by the generator:

SG1(Hc) =


1 g2 0
0 1 0
0 2g2 1

 → ð1(Hc) =


1 1 0
0 1 0
0 2 1


The group is then isomorphic to Z (mod p)

A second subgroup of importance is the subgroup which keeps the hy-
perplane at infinity invariant. This is the subgroup G1(H∞) with |G1(H∞)| =
p2(p − 1) elements. The action of this subgroup can be broken down into
transformations keeping the centre invariant which belong to the groupAGL(n+
1,p) and transformations which don’t keep the centre invariant, which are
translations along the hyperplane of intersection and are a subgroup of T(n+
1,p).

Definition 5.7. Transformations about the H∞

The group G1(H∞) has solutions for equation (5.27) and for keeping the hy-
perplane at infinity invariant, thereby also solving

G1(H∞)−TH∞ = H∞

It has the subgroups A ∈ AGL(n+ 1,p) and Tp ∈ T(n+ 1,p) of order p(p − 1) and
p where we have |G1(H∞)| = |A||Tp|. They divide the group action according to
whether the centre is kept invariant or not. The representations are of the form:

A =


1 0 0
g1 g2 0
0 0 1

 ,Tp =


1 0 0
0 1 tp
0 0 1

 , g1, g2, tp ∈ Fp (5.32)

Corollary 5.4. The group Tp of translations along H are generated by the ele-
ment:

ð(Tp) =


1 0 0
0 1 1
0 0 1

 (5.33)

Corollary 5.5. The group A has two further subgroups SA, GA which are dis-
tinguished by the action on the space coordinate in the affine plane. We have
SAP (t,x,1) −→ P (t,gt + x,1) and GAP (t,x,1) −→ P (t,gx,1).
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Corollary 5.6. |SA| = p and it is isomorphic to Z/ (mod p). It is the set of matrices
with determinant 1. Therefore we have the generator:

ð(SA) =


1 0 0
1 1 0
0 0 1


Corollary 5.7. |GA| = p − 1 and it is isomorphic to Z

∗/ (mod p)

So far we have looked at the two main structures which can be kept in-
variant. A common transformation might also exist however which keeps
both the centre and the line at infiinity invariant. We find that there is 1
transformation ∈ Aut(Q,C) = L, which keeps (along with the hyperplane of
intersection) the initial centre and the initial Minkowski quadric invariant.

Definition 5.8. Quadric symmetry group

The group Gs defined by the two elements I and the element given as:

Rs =


−1 0 0
0 1 0
0 0 1

 (5.34)

is the group of transformations keeping the hyperplane of Intersection, the initial
quadric, and the centre invariant.

Corollary 5.8. Gs ⊂ L, and in particular has the transformation which is a reflec-
tion along the space axis (with p − 1 scalings).

A more general form of the above transformation is discussed in the sec-
tion on general transformations. The important point here is that there exists
another transformation apart from the identity which keeps the intial two ob-
jects invariant along with the hyperplane of intersection. Since the quadric
and the centre also define the hyperplane at infinity, one finds that this trans-
formation keeps the entire initial structure constant.

Our results on the general forms of type-1 transformations are presented
below in the table 1.

Before we move on to other types of transformations, we look at some of
the normal subgroups of the above groups.

Theorem 5.3. Subgroup A+

59



Group Subgroup Order Form Elements and Generators

G1 Itself p4(p − 1)

 G tp
hT 1

 G ∈M{2× 2,Fp},hT = 2{g1 − 1, g2}

G1(C) p3(p − 1)

 G 0

hT 1


G1(Hc) p(p − 1)

Gt 0

kT 1

 Gt =

g1 g2

0 1


SG1(Hc) p g1 = 1 ð

HC =


1 1 0

0 1 0

0 2 1


GG1(Hc) p − 1 g2 = 0

G1(H∞) p2(p − 1)

Gs tp
0T 1

 Gs =

 1 0

g1 g2


Tp p

 I tp
0T 1

 tp = {0, tp}T , ðT =


1 0 0

0 1 1

0 0 1


A p(p − 1)

Gs 0

0T 1


SA p g2 = 1 ð

A =


1 0 0

1 1 0

0 0 1


GA p − 1 g1 = 0

Gs 2 I,Rs

Table 1: Table of all important transformations of type-1 for t1 = 1, t2 = 0.

The subgroup A+ generated by the group actions SA and GA+, where GA+ is
the subgroup of (p − 1)/2 elements of GA with a positive determinant is a normal
subgroup of A.

Proof. Using Lagrange’s Theorem we know that the order of a subgroup divides
the order of it’s group. Furthermore the subgroup partitions the group into co-sets.
Now, for the case when |G|/ |H | = 2,∀H ⊂ G, the group is divided into 2 co-sets one
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of which is the subgroup itself. This means that the right and left co-sets of the
subgroup must be the same, and therefore the subgroup H is normal.

The decomposition of any group into normal subgroups allows us to cre-
ate what is known as a subnormal series. A series which is completely refined
such that no other subgroups can be added to make a longer series is called
a composition series. The composition series for a group G with maximal nor-
mal subgroup H and the identity element {e} is represented by: {e}CH CG. A
fundamental result is that the factor groups in any two different composition
series are isomorphic to each other. This is a consequence of the Jordan-
Hölder-Schreier theorem. Further notes can be found in [Bau06].

Remark. We have here the composition series:

{e}CGA+ CGA (5.35)

{e}CA+ CA (5.36)

Similarly the group G+
1 (H∞) is the normal subgroup of G1(H∞) and is

defined by the group action of A+ with Tp, such that we have the composition
series:

{e}CA+ CG+
1 (H∞)CG1(H∞) (5.37)

Transformations of Type 2

These can be written similar to before as:

G2 =


1 α1 α2
β1 λ1 λ2
0 2α1 1 +α2

 (5.38)

The transformations allows us to find further symmetries. Due to the
nature of the scaling however, we have the point at infinity which replaces
the centre as a source of the lagest symmetries.

Definition 5.9. Transformations about P∞

The group of transformations given by:

G2(P∞) =
(
1 k′

0 G

)
=


1 g3/2 (g4 − 1/)2
0 g1 g2
0 g3 g4

 (5.39)

keeps the point at infinity invariant. In general the line at infinity is not kept
invariant.
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Corollary 5.9. |G2(P∞)| = p3(p − 1), and the group is broken into p co-sets.

Corollary 5.10. The subgroup of G2 which don’t keep the point at infinity invari-
ant, are the same as the subgroup A given by equation (5.32), and generated by
group element.

Therefore, the transformations are broken down into those which don’t
move the P∞ and those that move it but only along L∞. The latter is a map-
ping from the affine subspace U1 to U0.

The subgroup G2(Hc) ⊂ G2(P∞) keeps the hyperplane of centres invari-
ant.

Definition 5.10. Transformations for the hyperplane of centres

The subgroup G2(Hc) has (p(p − 1)) elements and is generated by the group
SG2(Hc) with determinant 1 and the generator:

ð =


1 1/2 0
0 1 0
0 1 1

 , (5.40)

where the inverse of 2 is defined on the field, and the group GG2(Hc) with (p-1)
elements with the representation:

GG2(Hc) =


1 0 (g − 1)/2
0 1 0
0 0 g

 (5.41)

Remark. The group GG2(Hc) doesn’t keep the centre invariant and represents
the translations along the hyperplane of intersection in the 3-dimensional vector
space, such that for an affine point {a,b,1}T , one has the transformed point {a +
(g−1)/2,b,g}, such that the points on the hyperplane of intersection are mapped to
the homogenous representation of another point on the hyperplane of intersection.

Definition 5.11. Transformations about H∞

Transformations keeping the hyperplane at infinity invariant are of the form:

G2(H∞) =
(

1 0
tt Gt

)
=


1 0 0
t g1 g2
0 0 1

 (5.42)

Corollary 5.11. |G2(H∞)| = p2(p−1) and is the same as the group G1(H∞), such
that these are the only transformations we can have to keep the hyperplane at
infinty invariant. This means G(H∞) = G2(H∞)∪G1(H∞) = G1(H∞).
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Finally we look for another element which keeps also the quadric invari-
ant. We find again another group of order 2 containing the identity and the
Lorentz element which is a reflection along the x axis (time axis), given as:

Rt =


1 0 0
0 −1 0
0 0 1

 (5.43)

The two elements define again a group Gt, and one can combine this with Gs
given in equation (5.34) to get the maximal symmetry group.

Definition 5.12. Maximal Symmetry group

The group of order 3 containing the elements I,Rt ,Rs is called the Maximal
Symmetry group G, where G =Gt ∪Gs.

Corollary 5.12. The group G ⊂ L.

Corollary 5.13. The elements Rt and Rs generate the element RtRs = RsRt which
is a space-time reflection.

We summarize the results for the generators of the groups here:

Definition 5.13. Generators of the groups

The group has generators for subgroups which are isomorphic to Z (mod p) of
the form: 

1 0 0
0 1 1
0 0 1

 ,

1 0 0
1 1 0
0 0 1

 ,

1 1 0
0 1 0
0 1 1

 (5.44)

5.2.2 Symmetries of the Union of Intersection planes

We have so far discussed the transformations which keep theH and H∞ sep-
arately invariant and this is the group G(H∞). There are two of the possible
solutions that exist for keeping also the interunion invariant, and so we have
G(H∞) ⊂ Aut(IU ) . However, these are not the only solutions. Another set
of solutions inverts the structure, which is the mapping H → H∞ and vice
versa. Here we now talk about this inversion mapping, and the mathemat-
ical solution of this breakdown using the interunion representation itself is
talked about later.
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Group Subgroup Order Form Elements and Generators

G2 Itself p4(p − 1)

1 k′

tt G

 k′ = {g1,g2−1}
2 ,tt = {t,0}T

G2(P∞) p3(p − 1)

1 k′

0 G


G2(C) p2(p − 1)


1 g3/2 0

t g1 0

0 g3 1


G2(Hc) p(p − 1)

1 k′

0 Gs


SG2(Hc) p ð

SG
2 =


1 1/2 0

0 1 0

0 1 1


GG2(Hc) p − 1


1 0 (g − 1)/2

0 1 0

0 0 g


G2(H∞) = G1(H∞) p2(p − 1)

1 0T

tt Gt


SA p ð

A
2 =


1 0 0

1 1 0

0 0 1


T p ð

T
2 =


1 0 0

0 1 1

0 0 1


GA p − 1


1 0 0

0 g 0

0 0 1


Table 2: Table of all important transformations for type 2 for t1 = 1, t2 = 0.

Theorem 5.4. Let GD be the transformations keeping the interunion invariant.
For the case of the interunion in 2-dimensions, the possible symmetries are given
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by:

GDH =H ,GDH
∞ = H∞ (5.45)

GDH = H∞,GDH
∞ =H (5.46)

Proof. The general form of invariance requires the interunion to be kept invariant.
This is the equation for the representation of the interunion and is given as:

G−TD IUG
−1 =IU (5.47)

However the above can only have two solutions. Since the interunion is the dis-
joint union of the hyperplane of intersection and the line at infinity, one has either
the mappings of the lines to themselves, or the mappings where the lines are ex-
changed.

The fact that the solution dissolves into these two transformations is re-
visited later for general transformations. We arrive now at a fundamental
property of these transformations.

Theorem 5.5. The group G(H∞) is a normal subgroup of GD .

Proof. Let the transformations which exchange the point set of the hyperplanes
be given as Ge such that GD = G(H∞) ∪Ge. The transformations Ge however
do not form a group, but instead belong to the Co-sets, such that |GD | = |Co −
sets||G(H∞)|, where |Co− sets| = 2, such that we have |GD | = 2|G(H∞)|. Therefore
since we have now two co-sets and one of them is G(H∞) we have again that
G(H∞) is a normal subgroup.

Remark. We have the quotient group F = GD /G(H∞), and the composition series:

{e}CG(H∞)CGD (5.48)

We now look at the representation of the co-set.

Definition 5.14. Exchange Transformation for hyperplanes

The set of exhange transformations of type 1 are represented by:

Ge1
=


−1 0 0
g1 g2 g3
−2 0 1

 (5.49)
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For the case of reduced transformations transformations of type 2 are just the scal-
ings of type 1. So we have:

Ge2
= −1Ge1

(5.50)

We therefore drop the numbering for this case.

It is possible to have transformations which are not scaled, and these are
discussed later.

As we can see the representation has a tilt vector, which is now required
due to the condition that we change the line at infinity. This is trivial for our
case, since the last row is the representation of the hyperplane of intersection
(transposed) while the first row is the line perpendicular to the movement of
translation, which in this case is simply the space (y) axis. This allows us to
write the transformations as:

Ge =


. . . (Ht)T . . .
. . .LT . . .
. . .H T . . .

 (5.51)

The above parametrisation then allows us to define the action in terms of
incidence relations. We can parametrize subsets according to the line LT .
For instance a representation is given by the line through the centre such
that L = {g1, g2,0}. This is the subset without any in plane translations with
p(p − 1) elements.

The table 3 has the representations for the transformations which invert
the line at infinity and the hyperplane of intersection.

Group Subgroup Number of elements Form Notes

Ge Itself p2(p − 1)


−1 0 0

g1 g2 g3

−2 0 1


GT
e p

 I ts
C −1

 C={2,0}

GL
e p(p − 1)

Gs 0T

C −1


Table 3: Table of all important transformations for inversion of hyperplanes
(t1 = 1, t2 = 0)

66



5.3 Successive Translations

So far we have defined the hyperplanes and interunion in terms of the initial
centre and a translated one. These were defined in (5.23). However, a more
generalized case also exists where in one can have hyperplanes between any
two arbitrary centres. In particular, as a case of importance is the case when
the two points are successively translated. Physically this corresponds to the
case when the acceleration is 0 and the momentum generates the translations
such that the set of centres lies on the lines generated by this momentum.

We now therefore shortly introduce the case of successive translations.

Definition 5.15. Successive Translation

The case of similar successive translations allows for a generation of trans-
lations from the initial choice of the translation vector. For a vector t, multiple
actions of the vector will generate successive translations in the same direction.
The translation matrix for an arbitrary translation generated by such a vector is
then represented as:

Tγ =
(
I γt
0 1

)
,where γ = 0,1.... (5.52)

Owing to these one has then the corresponding interunion (due to (γ + 1)th

translation and (γ)th translation):

I
γ
U =

(
0d×d −Gmint

−(Gmint)T (2γ + 1)tm

)
(5.53)

For points in the affine-plane, one has the hyperplane of intersection, and for
the successive translation cases, one finds a family of such hyperplanes, given by:

H γ =
(
−2Gmint

(2γ + 1)tm

)
(5.54)

For γ = 0 we get back the results which we have discussed.

Theorem 5.6. For any arbitrary γ , the transformations Gγ keeping the hyper-
plane of intersection or the interunion invariant are given by,

Gγ = T−Tγ GT−1
γ (5.55)

where G are the initial transformations which keep H 0 invariant, as we have
discussed before in section 5.2.
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Affine points of intersection of quadrics

Instead of the family of hyperplanes of intersection given by the points
of intersection, one can talk also about two more hyperplanes which exist for
successive translations. These are the hyperplanes on which two successive
intersection points shall lie. In other words, this is the trajectory of the actual
affine intersection points given by equation (5.13). Let us now see what this
hyper-plane looks like.

First, we find the affine points of intersection given by (5.54) for i = 0.
These are two points, written as: pj = {pj1,p

j
2,1}T , j ∈ {1,2}, where the two

p1,p2 are given by:

p1 =
2t2p2 − tm

2t1
, (p2)2 = (p1)2 − 1 (5.56)

These affine points can be generalized for any successive intersections by:

p1 =
2t2p2 − (2i + 1)tm

2t1
, (p2)2 = (p1)2 − 1 + i(i + 1)tm (5.57)

It is trivial then that the successive points of intersection are actually just
the translation of initial points of intersection. This means that one can write
these points as:

pj(i) = pj(0) + it (5.58)

Therefore one now has a trajectory of these neighbourhood points of the
centre, at least in the affine plane (a more general discussion willl follow).
One can find this trajectory by the cross-product of any two points of intersec-
tion. This is similar to finding two hyperplanes dual to the initial points of
intersection, where these hyperplanes describe the trajectory of these points.

The hyperplanes are then given as T j representing the trajectory of in-
tersection points. We use equation (2.13) for the cross-product and equation
(5.58) with i = 1 to get

T j = det


pj(0)
pj(0) + t

ê


such that we have

T j =


−t2
t1

(2pj2 − t2) tm2t1

 , j = {1,2} (5.59)
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Figure 14: The two trajectories for the two affine points of intersection given
by equation (5.59). Plotted here are the two points and the centre in green,
and the two trajectories on which the points lie seperately. The affine parallel
nature is clear from the graph.

Figure 14 shows the two trajectories in the affine plane.
The transformations G(T ) which keep both of the trajectories simultane-

ously invariant are then given by a subset of the affine transformations such
that we have

G(T )−TT j = T j

and we can parametrize it as

G(T ) =


g1

t1(g2−1)
t2

0
t2(g1−1)

t1
g2 0

0 0 1

 , g1, g2 ∈ Fp (5.60)

5.4 Arbitrary Dimensions

The above 2-dimensional calculation can be extended to arbitrary dimen-
sions. The translated quadric is given by (5.1). For points P = {pd×1,pd+1}T in
a d-dimensional projective space, one can solve for both the translated and
the original quadric to get the following equation:

−2pT (Gmint)pd+1 + tmp
2
d+1 = 0 (5.61)
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This equation is the generalisation of the interunion, given by:

(
0d×d −Gmint

−(Gmint)T tm

)
(5.62)

where both the Gmin and t are the d-dimensional generalisations, as given
in the introduction. The group of transformations keeping the interunion
invariant (excluding the co-set of exchange transformations) are then a d2−1
parameter group given by the representation:

G =
(
G1 G2
0 1

)
(5.63)

and G1 and G2 are given by:

GT1 (−Gmint) = (−Gmint) (5.64)

−GT2 (Gmint) = (Gmint)
TG2 (5.65)

The minus sign in (5.64) represents that G1 keeps the hyper-plane in the
affine plane invariant.

As an example, for the 3-dimensional group one has:

G1 =


g1 g2

t1(g1−1)−t2g2
t3

t2(g3−1)+t3g4
t1

g3 g4

g5
t3(1−g6)+t1g5

t2
g6

 , G2 =


g7t2+g8t3

t1
g7
g8

 (5.66)

The hyperplane of intersection in 3-dimensions can be written as:

H =


2t1
−2t2
−2t3
tm

 , tm = t23 + t22 − t
2
1 (5.67)

with the reduced representation as: (
Ha
1

)
(5.68)
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For type-1 transformations29 of the form,

G1 =
(
Λ α
β 1

)
(5.69)

we have the parameterisation with the equations

ΛTHa + βT =Ha (5.70)

αTHa = 0 (5.71)

The two main subgroups as given by the action on the centre and the plane
at infinity, such that:

G1(C) =
(

Λ 0
(Λ− I)H T

a 1

)
(5.72)

G1(H∞) =
(
Λ α
0 1

)
(5.73)

with α solving equation (5.71), the set of points which lie on the hyperplane,
and Λ keeping the reduced Ha invariant.

29Type-2 transformations follow a similar parameterization and are therefore omitted here.
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6 Symmetries for Generalized Translations

Time is an illusion. Lunchtime doubly
so.

Douglas Adams, The Hitchhiker’s guide to
the galaxy

Now that we have some results with respect to both Lorentz and gauge
transformations, we can analyse how the gauge group acts on the geometrical
objects we are concerned with, in the generalized translations. To this end,
first let us re-count all the main objects of study we have so far.
The main objects are the initial Minkowski quadric, the transformed quadric,
the interunion, the intersection points and their respective hyperplanes, and
the translation of the intersection points (which is parallel to the translation
vector). We are then concerned with the subgroups of the larger groups we
found before, namely the group which keeps the interunion invariant, and
the group which keeps the hyperplane of intersection invariant. In the end
we will also look at general projectivities and how they act on multiple ob-
jects.

The quadrics are given by:

Qmin =
(
−1 0
0T I2×2

)
,Qtrans =

(
Gmin −Gmint

−(Gmint)T 1 + tm

)
(6.1)

The interunion, the hyperplane of affine points of intersection, and the two
quadric points at infinity are given by :

IU =
(

02×2 −Gmint
−(Gmint)T tm

)
, H =


2t1
−2t2
tm

 , Pinf
Q = {1,±1,0}T (6.2)

The direction of movement is defined by and the hyperplanes of the transla-
tion are given by:

T =
(
I2×2 t

0 1

)
, t = {t1, t2}T , T j =


−t2
t1

(2pj2 − t2) tm2t1

 (6.3)

One can then use the two centres to get the hyperplane on which these
and the successively translated centres shall lie. This hyperplane and the
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first two centers are given as:

Cmin = {0,0,1}T , Ctrans = {t1, t2,1}T , HC = {−t2, t1,0} (4.4)

As can be seen HC and T are parallel to each other in the affine plane. They
have a point of intersection only at infinity whch is given by the cross-product
HC ×T .

6.1 Parametrization of the 2-dimensional generalized translations

These representations follow the same naming as the case of reduced trans-
formations, and therefore we shall now use the naming convention from be-
fore to refer to the bigger groups. The representations below include t as a
parameter, such that the group of transformations is much bigger than the
groups we have talked about so far. Therefore, the groups we have now rep-
resent transformations for all possible hyperplanes between the entire affine
plane as a choice for the second centre.

6.1.1 Hyperplane of intersection

Type-1 representations

The first transformations are those we call type 1 transformations which
involve the last element of the matrix to be set to 1. We represent these with
a ’1’ in the subscript. We have,

G1 =
(

G tp
(Ha)T (I−G) 1

)
; I,G ∈M(2× 2,p) (6.4)

Here we have redefined H by a reduced representation H → {Ha,1}T , such
that, (

Ha
1

)
=

(−Gmint
tm
1

)
(6.5)

The further parameterization allows us to break down this group into a
subgroup, which we call Tp, given as:

Tp =


1 0 t2g5
0 1 t1g5
0 0 1
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Therefore, we have Tp ∈ T. These are precisely the translations along the
hyperplane of intersection in the affine plane, thereby keeping it invariant.
One can see in the vector-space, that the dot product of the translation vector
with the hyperplane is 0. These are |Tp| = p translations (for particular t1, t2),
with additional (p2 − 1) = (p − 1)(p + 1) degrees of freedom coming from the
translations. These translations are generated by the element g5 = 1, such
that we have now the generator:

(Tp) =


1 0 t2
0 1 t1
0 0 1

 (6.6)

Also using Lagrange’s theoreom for finite groups, these translations then
parition the general group into co-sets.

A bigger, special subgroup of G1 is the group of in-plane projectivities,
where the tilt is 0 which is defined by the action of the representative matrix
G by,

GTHa =Ha (6.7)

such that we have:

G1(H∞) =


1 + g1t2 t2g2 t2g5
t1g1 1 + t1g2 t1g5

0 0 1

 (6.8)

such that Tp ∈G1(H∞), and the subgroup A ∈G1(H∞), where

A =


1 + g1t2 t2g2 0
t1g1 1 + t1g2 0

0 0 1

 (6.9)

The division into Tp and A, can be shown to make the entire group, such
that:

∀T ∈ Tp,∀A ∈A; G1,G2 ∈ G1(H∞)

=⇒ T ∗A = G1, (6.10)

A ∗ T = G2 (6.11)

In general G1 , G2. Furthermore, since both A and Tp are sub-groups,
their orders must divide the order of the bigger group. In this case, we have
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that |G1(H∞)| = p2(p − 1) elements, where p of these elements are in Tp and
p(p − 1) in A.

Therefore, we have the property that the subgroups A and Tp are the
corresponding co-sets of each other, with:

|G1(H∞)| = |Tp||A| (6.12)

Like before in table 1, A is divided further into the subgroup GA and the
set of transformations SA such that for the representation one has det(SA) = 1
with:

GA =


λ t2(λ−1)

t1
0

t1(λ−1)
t2

λ 0
0 0 1

 , SA =


λ − t2(λ+1)

t1
0

t1(λ−1)
t2

−λ 0
0 0 1

 (6.13)

and the order,

|A| = |GA||SA| (6.14)

|GA| = p − 1, |SA| = p (6.15)

Remark. Even though SA has p elements, the mappingφ : SA→Z (mod p) is not
a group homomorphism since kerφ doesn’t contain the identity matrix I. Only in
the case of either of t1, t2 being 0 is the mapping a group homomorphism. However
we have ignored that case here due to the difference in matrix representation.

The sub-groups becomes clearer when one considers the action on the
centre. In that case there are no translations allowed, and the group shrinks
down to the 4 parameter group G1(C), such that we now have the represen-
tation G, and its action on the reduced hyperplane Ha.

G1(C) has a special sub-group as well, which keeps the direction of trans-
lation invariant. This is the two-parameter group, and we parametrize is by
first writing the hyperplane as:

Hc =
(
H
0

)
(6.16)

Therefore we have for G1(HC) the representative equation:

GTH =H (6.17)

and we can parametrize it as
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G1(HC) =


1 + t1g1 t1g2 0
t2g1 1 + t2g2 0
2g1 2g2 1

 (6.18)

Remark. |G1(HC)| = p(p − 1) = |A| and therefore there exists an isomorphism
Φ : G1(HC)→ A.

The isomorphism allows the division again into special and general parts
with det = 1 or otherwise.

Remark. The group G1(HC) may also be understood by writing the two subgroups
with p−1 elements each, which are defined by their action on arbitrary points, such
that we have for the two columns χt and χs:

P (p1,p2,p3)→ P +χtp1, (6.19)

P (p1,p2,p3)→ P +χsp2 (6.20)

where χt and χs are the columns for g1 = 0 and g2 = 0 respectively.

Finally, we have also the quadric symmetry elements, G1 ⊂ G1(H∞) with
the two elements, the identity and the Lorentz element:

L =


− tetm

2t1t2
tm

0

−2t1t2
tm

te
tm

0
0 0 1

 , te = t21 + t22 (6.21)

Remark. The transformation L can be explicitly shown to be a Lorentz transfor-
mation in two dimensions by writing te

tm
as λ+1/λ

2 , giving λ = t2+t1
t2−t1 ,

t2−t1
t2+t1

.

Type-2 representations

These are transformations of the form G2 with the first matrix element as

1, so G2 =
(

1 α
βT λ

)
.

The first important subgroups are the 4 and the 3 parameter groups keep-
ing the point at infinity (G2(P∞)) and the affine center invariant.

Two other important subgroup of these transformations are the transfor-
mations which keep either the hyperplane of centres or the line at infinity
invariant, of the form:

G2(HC) =


1 λ1t1 λ2t1
0 1 + t2λ1 λ2t2
0 2λ1 1 + 2λ2

 ,G2(H∞) =


1 λ1t2 λ2t2
0 1 +λ1t1 λ2t1
0 0 1

 (6.22)
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We see now that G2(H∞) ∈G1(H∞), and the subgroup can be seen as those
transformations which aditionally keep the point P∞ = {1,0,0}T invariant.
The symmetry between this point and the center with respect to the action of
the two types of groups can be seen here, such that now the point at infinity
defines a bigger subgroup, and is necessarily kept invariant along with the
line at infinity. On the other hand G2(HC) is not a subgroup of G2(C) such
that one can define the action of this subgroup in terms of the new centre by
G2(HC)C→ Cnew, where:

Cnew =


t1
t2

1+2λ2
λ2

 =


εt1
εt2
1

 ; ε =
1 + 2λ2

λ2
∈ Fp (6.23)

Another important subgroup is the group with the first column and first
row set as (1,0,0). These transformations keep invariant the line {1,0,0}which
has points in the affine plane of the form {0, a,1}T for some a ∈ Fp. This is also
clearly the case when t1 = 0, and we move in the space direction.

Two special case of these transformations are then the one-parameter
group and the co-set, given as:

Gsym =


1 0 0
0 λ tm(λ−1)

2t2
0 2t2(λ−1)

tm
λ

 , GImp =


1 0 0
0 λ − tm(λ+1)

2t2
0 2t2(λ−1)

tm
−λ

 (6.24)

These transformations have p − 1 and p elements, with the latter having
det GImp = −1 (Imp is improper here, notation taken from [Pes19]).

Moving on a light cone

A special case which has so far been omitted is the case of the light cone.
This is represented by the translation vector where |t1| = |t2| = t. There are
no points of intersection in the affine case, even for really large values of
translation. The translated quadric ”intersects” the initial quadric only at
one point which is at infinity. This point is either of two points at infinity
defined before, depending on in which direction one (since t2 = ±t1) moves.

6.1.2 Union of Intersection Planes

First we now show the solutions which can exist for the invariance of the
interunion.
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Theorem 6.1. The invariance of the interunion has two solutions, the case where
the hyperplanes are kept simultaneously invariant, and the case when we exchange
them.

Proof. We show here for type 1 transformations.

GTIUG =IU

We write G and IU as:

G =
(
λ2×2 α2×1
β1×2 1

)
, IU =

(
0 −Gmint

−(Gmint)T tm

)
This gives us:

−λTGmintβ − βT (Gmint)
Tλ+ tmβ

T β = 0 (6.25)

−λTGmint− βT (Gmint)
Tα + tmβ

T = −Gmint (6.26)

and further,

αGmint = −(Gmint)
Tα (6.27)

The solution for α comes straight from (6.27). We use that in (6.26) to further
get:

β = (Gmint)
T (λ− I)/tm (6.28)

Using this in (6.25), we get:

λT (Gmint)(Gmint)
Tλ = (Gmint)(Gmint)

T (6.29)

The solution for the final equation has two possible parameterizations, and
these correspond to the two sets of solutions (simultaneous invariance and inver-
sion) that we have talked about above.

The first transformations are those which keep both the hyperplane and
the line at infinity invariant simultaneously. These are the transformations
G1(H∞), given by equation (6.8) with the special subgroup G2(H∞) which
also keeps the P∞ invariant.

The second transformation can be found by exchanging the affine points
with the points at infinity. These belong to a general class of transformations
exchanging two lines.
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Definition 6.1. Exchange Transformations

For any general line l and the line at infinity l∞, and a general projectivity P,
we have:

P −T l = l∞, P −T l∞ = l (6.30)

For a non-singular transformation this implies that P T P T l∞ = l∞. This means
that exhanging the lines twices gives us back the same lines.

Now for a moment, let’s forget about the general line, and just focus on the
transformations which give us the line at infinity back on simultaneous applica-
tion. This representation can be parameterised as (see Appendix):

Pexch =


g1 − (g2+1)g5

g4
g3

− g4(g1+1)
g5

g2 − g3g4
g5

g4 g5 1

 ;gi ∈ Fp (6.31)

In particular any Ge < Pexch. Then Ge can be found by using the condition:
P T l∞ = l, and for l = {l1, l2,1}T , one has:

g4 = l1, g5 = l2

Then Ge1
belongs to those transformations which exchange the elements of

two lines. such that we have,

Ge1
=

(
G tp
H T
a 1

)
(6.32)

where G transforms the subspace:

GTHa = −Ha (6.33)

There are again transformations of the form with a trivial solution for equa-
tion (6.33) such that we have the subgroup(

I tp
H T
a 1

)
The second subgroup is the non-trivial solution but which keeps the centre
invariant such that we have the form(

G 0
H T
a 1

)
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The final transformations are then type-2 transformations with the first
element as 1, which exchanges again the affine and infinity points, and are
given as:

Ge2
=


1 g1t2 g2t2

t1(tm+1)
t2

g1t1 − tm g2t1 + t2m−1
2t2

2t1 −2t2 tm

 (6.34)

The effect of using a general element of Ge1
is shown in figure 15. The

point at z = 0 are mapped back to their counterparts on the line at infin-
ity (since we are using homogeneous coordinates), and therefore the line at
infinity must not be confused for a plane.
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Figure 15: The exchange transformation for an element defined by equation
(6.32). Points in green represent the original affine points in the hyperplane
of intersection. Blue points are the points after the action of an element of
exchange transformation. Shown here are results for p=31, t = {2,1}T .

This concludes our work on all symmetries of the hyperplane of intersec-
tion, and we present our final results in table 4.

6.2 Enumeration of symmetry groups of projective spaces

One of the most useful aspects of working in finite spaces is that everything
can be enumerated.30 This allows us to define isomorphisms and mappings

30This holds true in principle. However computation problems might arise for higher order
calculations.
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Group/Set Subgroup Order Invariant structures Notes

G1 Itself p4(p − 1) H

G1(C) p3(p − 1) +C

G1(H∞) p2(p − 1) + H∞=⇒(IU )

A p(p − 1) <G1(H∞),<G1(C)

G1(HC) p(p − 1) +HC

Tp p Isomorphic to ZP ,

Translations along H

GA p − 1 Isomorphic to Z
∗
P ,

Subgroup of A

SA p Isomorphic to ZP ,

Determinant 1

G2 Itself H

G2(P∞) p3(p − 1) +P∞

G2(C) p2(p − 1) +C

G2(HC) p(p − 1) +HC

G2(H∞) p(p − 1) +H∞ + P∞ <G1(H∞), ∈UT (2,Fp)

Gsym p − 1 Isomorphic to Z
∗
P

GImp p Isomorphic to ZP ,

∈ In, | I2
n = 1,∀In ∈ In

Ge1
Itself IU Exchange symmetry

Ge2
Itself Same as above In general can’t be

reduced from Ge1

Table 4: Table of all important transformations and symmetries for the hy-
perplane defined in equation (5.29). Of particular interest are invariances
with the centre, the line at infinity, and the point at infinity. The exchange
symmetry is also noted as a co-set of transformations. Subgroups and impor-
tant properties are noted along with the relevant groups. For the particular
parametrization refer to our results in tables 1,2,3.

which preserve structure. In this section a more general outlook on the enu-
meration of the groups shall be presented. For comparison we shall also
compare the groups defined in (pg. 419-421 of [Hir79]). The groups are de-
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fined over the vector spaces and with their projective equivalents, such that
either the vector space or the projective space is kept invariant. In this sec-
tion, using the formulas for a few particular groups, I have tried to calculate
the exact number of elements. The motivation for such an enumeration is to
check for groups which might be isomorphic to the groups we have discussed
above.

We first enumerate the groups of semi-linear transformations in the vec-
tor space V (n,p) for 2 dimensions and the projective groups (given by the
label P before the form) which are defined over PG(n− 1,p). The labels have
the following meanings (taken from pg.419 of [Hir79]).

• I: All transformations over the vector space

• S: Transformations with determinant 1.

• G: Transformations in I up to a scalar factor.

The groups themselves are defined by the structures which are kept in-
variant in the projective space. We have:

• L: Semi linear Transformations keeping the entire space PG(n − 1,p)
invariant. These are the projectivities.

• O: Orthogonal transformations which keep the quadratic form x2
1 +

x2x3 + . . .+ xn−1xn invariant.

• U: Unitary transformations defined over the the field extension q = ph,

where h is a square. These keep invariant the form x
√
q+1

1 . . .x
√
q+1

n .

• Sp: Symplectic transformations which keep the null polarity invariant.

The forms corresponding to the above in the projective space have the label
P attached to them.

An interesting transformation is the set of unitary transformations U,
which is defined over a field extension of p. Here we look at only those trans-
formations which are defined for the field extension p2.

In the case of dimension 3, we have the transformations over the vector
space V (3,p) and over the projective space PG(2,p), which we have so far
worked with. In 3 dimensions however, there is no symplectic group, but the
orthogonal group exists (since now we have the subspaces where the Euclid-
ian quadric might be defined).

For the sake of completion the enumeration of groups in 4 dimensions are
also given below.
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Form L U Sp

I p(p − 1)(p2 − 1) p(p+ 1)(p2 − 1) p(p2 − 1)

S p(p2 − 1) p(p2 − 1) p(p2 − 1)

G p(p − 1)(p2 − 1) p(p2 − 1)2 p(p2 − 1)(p − 1)

P p(p2 − 1) p(p2 − 1) p(p2 − 1)/2

PS p(p2 − 1)/2 p(p2 − 1)/2 p(p2 − 1)/2

PG p(p2 − 1) p(p2 − 1) p(p2 − 1)

Table 5: Order of groups in 2 dimensions. Orders were calculated using the
table on pages 420-421 in [Hir79].

Form L U O

I p3(p − 1)(p2 − 1)(p3 − 1) p3(p+ 1)(p2 − 1)(p3 + 1) 2p(p2 − 1)

S p3(p2 − 1)(p3 − 1) p3(p2 − 1)(p3 + 1) p(p2 − 1)

G p3(p − 1)(p2 − 1)(p3 − 1) p3(p2 − 1)2(p3 + 1) p(p2 − 1)(p − 1)

P p3(p2 − 1)(p3 − 1) p3(p2 − 1)(p3 + 1) p(p2 − 1)

PS p3(p2 − 1)(p3 − 1)/2 p3(p2 − 1)(p3 + 1)/2 p(p2 − 1)

PG p3(p2 − 1)(p3 − 1) p3(p2 − 1)(p3 + 1) p(p2 − 1)

Table 6: Order of groups in 3 dimensions. Calculated using the table on
pages 420-421 in [Hir79].

Form L U Sp

I p6(p − 1)(p2 − 1)(p3 − 1)(p4 − 1) p6(p+ 1)(p2 − 1)(p3 + 1)(p4 − 1) p4(p2 − 1)(p4 − 1)

S p6(p2 − 1)(p3 − 1)(p4 − 1) p6(p2 − 1)(p3 + 1)(p4 − 1) p4(p2 − 1)(p4 − 1)

G p6(p − 1)(p2 − 1)(p3 − 1)(p4 − 1) p6(p2 − 1)2(p3 + 1)(p4 − 1) p4(p − 1)(p2 − 1)(p4 − 1)

P p6(p2 − 1)(p3 − 1)(p4 − 1) p6(p2 − 1)(p3 + 1)(p4 − 1) p4(p2 − 1)(p4 − 1)/2

PS p6(p2 − 1)(p3 − 1)(p4 − 1)/2 p6(p2 − 1)(p3 + 1)(p4 − 1)/2 p4(p2 − 1)(p4 − 1)/2

PG p6(p − 1)(p2 − 1)(p3 − 1)(p4 − 1) p6(p2 − 1)(p3 + 1)(p4 − 1) p4(p2 − 1)(p4 − 1)

Table 7: Order of groups in 4 dimensions. Calculated using the table on
pages 420-421 in [Hir79].
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Isomorphisms

Since the enumeration of the groups has been done, one can now ask
whether there exists an isomorphism between the groups we have probed
and the groups known to exist. Here one may note that for the case of the 2-
dimensional Unitary, the 2-dimensional symplectic, and the 3-dimensional
orthogonal groups, one has an extra factor of (p2 − 1) which is missing from
the enumerations of the groups we have dealt with so far. For such an iso-
morphism to take place the existence of this factor is a must, otherwise a
one-to-one correspondence will not be established.

This extra factor is in fact a part of our calculations, and was mentioned
before. These are in fact the (p2 − 1) translations which we need to take into
account. The groups have so far been discussed for particular translations,
however, such a choice of a particular hyperplane of intersection seems ar-
bitrary. The degree of freedom of chosing these transformations therefore
allows the (p2 − 1) factor to come into play.

We notice in particular the isomorphism between the groups SU (2d) and
PGU (2d) with the groups SA and Tp. The other isomorphism exists between
the groups A, keeping the line at infinity and the centre invariant with the
group U (2d).

The main motivation for the form of gauge transformations comes from
the isomorphism

Φ : SA→O(3d) (6.35)

where O(3d) is the orthogonal group acting on projective space of dimension
2. This leads us to finally look at these orthogonal transformations and why
they are important.

6.3 Automorphisms of the 2-dimensional quadric

As we have seen before the automorphisms of the 2-dimensional quadric has
the subgroup of elements which are the Lorentz transformation. However,
there exists another case, such as was seen in the the case of 1-dimensional
quadric in section 5. These are those transformations which don’t keep the
centre invariant, and are of the form:

O =
(

1 0
0T Λ

)
(6.36)

Due to the condition that O−TQ+O−1 = Q+, we have that the matrix repre-
sentative Λ ⊂ O(2), where we have O(2) the set of orthogonal matrices in
2-dimensions with p elements.
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It becomes clear what exactly O represents when we look slightly deeper.
We notice first that the form is the same as those for rotations in 2 spatial di-
mensions. Therefore we have that in the 3-dimensional vector space, O cor-
responds to rotations about the ’time’ axis (given by the hyperplane {0,1,0}),
such that the hyperplane which is the planeA = {1,0,0} is kept invariant since
O−TA = A. The action for the form with determinant 1, which are the proper
transformations with (p − 1)/2 elements31, given by,

Λ =
(

λ ±
√

1−λ2

∓
√

1−λ2 λ

)
(6.37)

can be seen on the centre: {0,0,1}T → {0,±
√

1−λ2,λ}T → {0,±
√

1−λ2/λ,1}T ,
such that the centre is translated along the spatial axis in the affine plane. A
more in-depth discussion about these transformations in 2 and 4 dimensions
can be found in section 3.2 of [Pes19].

That these transformations are important in the consideration of gauge
transformations shall become clear soon. First we notice in figure 16, the
existence of the local world domain with two quadric points in the affine
plane.

The fiber space which was defined back in definition 3.1, is constructed
by connecting quadric points inside the local world domain to those outside
it. This idea is chosen since all quadric points, irrespective of their locations
in the two domains are at a distance of 1 from the center. The choice of this
fiber space has two particular degrees of freedom:

1. The choice of the affine plane chosen and therefore the choice of which
quadric points to put in the local world domain. In particular, we have
set the affine plane with the last coordinate as 1. But this is arbitrary,
and any other choice would suffice as well. The local world domain
in other ’affine planes’ might have different quadric points and not the
two we have seen above.

2. The choice of the centre itself is arbitrary, and has only been chosen for
convenience of calculation. That any other point can be chosen is clear,
as is the fact that the local world domain shall also shift as the centre
does32.

The first point relates directly to the second subgroup of the automor-
phism group33, namely the orthogonal group defined in equation (6.37). These

31This is the normal subgroup of the group of orthogonal matrices.
32This is because the distance is defined with respect to the chosen centre.
33The first are of course the Lorentz transformations.
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Figure 16: Minowski quadric for prime p = 11 shown in orange. The square
shows the local world domain such that all points inside it will be mapped
back to themselves if the square root of their squared values are taken. The
edge points of the local world domain are at a distance of 0 from the centre,
and represent points on the light cone quadric. Out of a total of 10 affine
quadric points only 2 are in the local world domain.

are precisely those transformations which represent the quadric point based
symmetries of the fiber space, and the discussion in the 1-dimensional case as
given in equation (5.8) sets up this idea for higher dimensions. These trans-
formations map quadric points to other quadric points in such a way that the
local world domain can be defined freely for any chosen set of quadric points.

The second point makes it clear that one must consider other points as
centres, and therefore we consider translations of the centre. The hyper-
plane of intersection is the second consideration in the symmetry of the gauge
transformations. It represents precisely that part of the local world domain
which is the intersection of the local world domains of any two centres.

Therefore, instead of looking at transformations which keep A invariant,
one can ask for transformations keeping either the hyperplane of intersection
invariant or the hyperplane perpendicular to it. First, we call the point set Pq
as the set of points which are in the quadric Q+. Then the transformations O
map the points in this point set to each other such that the quadric and the
corresponding form is kept invariant.

We now choose a projectivity ρ, such that we have P ′q = ρPq, where P ′ is
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the set of new points, and ρ−TA = AH or ρ−TA =H . The axis AH is given by:

AH =


t2
t1
0

 (6.38)

such that in the 3-dimensional vector space, AH is perpendicular to H .
It is clear that there are only two types of transformations which have

P ′q = Pq such that the quadric is invariant. These are either Lorentz transfor-
mations or the transformations belonging to O. However, since O keeps A
invariant, one can not use these transformations.

Before the Lorentz case however, a general projectivity can be used. This
leads to a new quadric form ρ−TQ+ρ−1, which represents the point set P ′q .

Theorem 6.2. Given a general projectivity ρ, we have the transformation ofO as:

O′ = ρOρ−1 (6.39)

where O’ keeps the new quadric Q′ = ρ−TQ+ρ−1 invariant.

Proof. For O’, we have:

O′−TQ′O′−1 = (ρOρ−1)−TQ′(ρOρ−1)−1 (6.40)

= ρ−TO−T ρTQ′ρO−1ρ−1

= ρ−TO−TQO−1ρ−1

= ρ−TQρ−1 =Q′

where we have used that O−TQO−1 =Q.

Remark. O′ keeps the new hyperplane H = ρ−TA invariant.

For the projectivity ρ we have the two forms given by:

ρ−T =
(
AH A′ H∞

)
(6.41)

ρ−T =
(
H A′ H∞

)
(6.42)

where A′ defines the freedom in choosing different projectivities, and is the
image of the hyperplane {0,1,0}.

The special projectivity given by:

ρ−T =
(
H AH H∞

)
(6.43)
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maps the plane {1,0,0}T to the hyperplane of intersection H and the time
axis {0,1,0} to the hyperplane AH . The exact form of the transformation O′

is quite cumbersome to write, and we first limit ourselves to the case we have
already talked about before, with the translation vector t = {1,0,0}T .

Definition 6.2. Transformations for the generator

We have for t = {1,0,0}:

H = {−2,0,1}T , AH = {0,1,0}T

such that for the projectivity defined by:

ρ−T =


−2 0 0
0 1 0
1 0 1


we have the new transformation

O′ =


1 ∓γ/2 (λ− 1)/2
0 λ ±γ
0 ∓γ λ

 , γ =
√

1−λ2, (6.44)

with the quadric represented by:

Q′ =


−4 0 2
0 1 0
2 0 0

 (6.45)

The transformation (6.44) keeps the point at infinity invariant, but not
the line at infinity or the hyperplane of centres. Therefore this is a special
subgroup of the group G2(P∞).

For the case of the generator the quadric points and the transformed
quadric points are plotted in figure 17. We note again that the orthogonal
transformation keeps the initial quadric invariant along with the hyperplane
{1,0,0}T , while the new quadric is kept invariant by the transformed ele-
ments, along with the hyperplane of intersection for the generator. Interest-
ing to notice is the inclusion of the centre in the new quadric.

Other forms of projectivities are of the form ρ−TA = AH , and we notice
first and foremost that for the translation with t = {0,1,0}, we have the same
hyperplane, and the identity as the projectivity. For the projectivity given by
the form:

ρ−T =


t2 t1 0
t1 t2 0
0 0 1

 (6.46)
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Figure 17: Blue crosses represent the original quadric points. The new
quadric points (transformed according to equation (6.45)) are given by the
orange dots, with one point belonging to both the quadrics. The points at
infinity are omitted here for the sake of clarity.

there exist certain elements namely when t21 = t22 − 1, or that tm = 1, such
that the projectivities are the Lorentz transformations. In this case the new
quadric form remains the same as the old one.
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7 Summary and Outlook

Once upon a midnight dreary, while I
pondered, weak and weary, over many
a quaint and curious volume of
forgotten lore— While I nodded,
nearly napping, suddenly there came a
tapping, as of some one gently
rapping, rapping at my chamber door.
“’Tis some visitor,” I muttered,
“tapping at my chamber door— Only
this and nothing more.”

Edgar Allan Poe, The Raven

In this thesis the symmetries of the finite projective space were inves-
tigated. Following previous work, the Lorentz group as the automorphism
group of the biquadric was represented and a visual investigation revealed
how the finite group acts. In particular the action of the boosts and rotations
were seen on the two-dimensional subspaces. The axial and point-symmetric
nature of these transformations was confirmed. The graphical representation
also seperated the Local World Domain from other points of the space when
a second order distance was introduced.

The primary idea of connecting the local domain with the points lying
outside was the introduction of a fiber space which connects quadric points
inside and outside this local domain. In this thesis this idea was further de-
veloped to look at the intersection of two biquadrics. The intersection was
found to be a hyperplane which was called the hyperplane of intersection.
The symmetry groups of this hyperplane of intersection were parametrized,
first for a canonical translation and then for a general one. Of particular note
were the symmetries along with the centre, the direction of translation, and
the line at infinity. The line of infinity when added to the hyperplane of inter-
section resulted in a bigger structure known as the interunion. The symme-
tries of this interunion were also found, where the normal subgroup kept the
hyperplane of intersection and the line at infinity simultaneously invariant,
and its co-set the exchange transformations inverted the two structures.

Higher order parametrizations were not explicitly noted, but a general-
ized approach was outlined. In the end the order of groups of the pro-
jective space, including linear, orthogonal, symplectic, and unitary groups
were found. These orders allow the existence of isomorphisms with previ-
ous transformations of the hyperplanes. Finally, the two-dimensional auto-
morphism group of the quadric was introduced, which led to the orthogonal
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transformations. The general form of this group was found, and the trans-
formed representation was calculated for when the hyperplane of intersec-
tion is also kept invariant.

This thesis has answered questions about forms of symmetry groups, their
orders, and their subgroups, especially for the 2-dimensional case. The gauge
group and it’s parameterization for 2-dimensions has been found as well.
However, many questions have also emerged, and here they are enumerated:

1. What is the exact form of gauge transformations for higher dimensions,
in particular in 3 and 4 dimensions?

2. What role does the hyperplane of intersection play for the construction
of the fiber space?

3. What is the exact structure of the fiber space?

4. Given a fiber space and it’s gauge symmetries how exactly does one
interpret them as particles? If these particles are fluctuations in a ho-
mogenous biquadric field, how may they be quantized?

5. How does the structure of the hyperplane of intersection and the gauge
transformations change when one approaches the continuum limit? Is
the existence of a continuum limit perhaps the motivation behind the
existence of higher dimensional gauge transformations?

In section 5.4 we gave an outline about how symmetry groups might be
parameterized in the case of 3 dimensions. Here we consider a particular
orthogonal group in 3 dimensional projective space given by

O3d =
(

1 0
0T O

)
with the property that OTO = I. This group is the 3-dimensional ’exten-
sion’ of the gauge group given in equation (6.36) for 2 dimensions, where
we now represent Λ as O2d for the sake of clarity. Furthermore O3d is again
a subgroup of Aut(Q3d), which are the automorphisms of the quadric in 3-
dimensions. The representation matrix O can further be written down into
two forms represented as

OS =
(
O2d 0T

0 1

)
, OR =

(
1 0

0T O2d

)
We note here now that OS has the same form as the subgroup of spatial

rotations given in equation (4.11). Similarly OR has the same form as our
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gauge group in 2-dimensions. Therefore the intersection of the gauge group
and the Lorentz group in 3-dimensions is not merely the identity element.
This ’result’ underlies a shift between symmetry groups in 2 dimensions to
those in 3 dimensions. Understanding this distinction requires further re-
search outside of the scope of this master’s thesis. However the work done
here could be used as a starting point to support the notion of gauge trans-
formations in higher dimensions.
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[Leo18] Raphaël Leone. “On the wonderfulness of Noether’s theorems,
100 years later, and Routh reduction”. In: (Apr. 2018).

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge Uni-
versity Press, 1997.

[Mec] Klaus Mecke. Raum - Zeit - Materie: Auf der Suche nach einer ein-
heitlichen Theorie der fundamentalen Naturgesetze. url: https://
theorie1.physik.uni-erlangen.de/media/pdf/publications/

finites_weltbild-kurzfassung.pdf.

[Mec17] Mecke, Klaus. “Biquadrics configure finite projective geometry into
a quantum spacetime”. In: EPL 120.1 (2017), p. 10007. doi: 10.
1209/0295-5075/120/10007. url: https://doi.org/10.1209/
0295-5075/120/10007.

[Mec20] Klaus Mecke. Private Communication. 2020.

[M.R01] Right. Hon. Lord Kelvin G.C.V.O. D.C.L. LL.D. F.R.S. M.R.I. “I.
Nineteenth century clouds over the dynamical theory of heat and
light”. In: The London, Edinburgh, and Dublin Philosophical Mag-
azine and Journal of Science 2.7 (1901), pp. 1–40. doi: 10.1080/
14786440109462664. url: \text{https://doi.org/10.1080/
14786440109462664}.

[Pes19] Ludwig Peschik. Algebraic Properties of Quadrics over Finite Fields
and their Symmetry Groups. 2019.

[Rei16] Tobias Reinhart. Lorentz-Transformationen in endlichen Raumzeiten.
2016.

[Rot01] Richard L. Roth. “A History of Lagrange’s Theorem on Groups”.
In: Mathematics Magazine 74.2 (2001), pp. 99–108. issn: 0025570X,
19300980. url: http://www.jstor.org/stable/2690624.

95



[Sma09] Hilary Smallwood. “Projective Geometry: Perspectives from Art
and Mathematics”. In: John F. Reed Honors Program (Jan. 2009).

[Sur19] S. Surya. “The causal set approach to quantum gravity”. In: Living
Reviews in Relativity 22.5 (2019).

96



A Supplementary equations and discussions

A.1 The affine part of the Hyper-plane

The group of transformations that keep the interunion invariant is a set which
contains the group of transformations that keep the hyper-plane invariant. In
the affine plane, with p3 = 0, one gets a line in the affine plane, with the re-
duced representation which can be represented as:

Haff =


2t1
tm−2t2
tm
1

 , tm = tTGmint

The group of transformations which keep this line invariant are given by
as:

Haff = GT
affHaff

where Gaff can be solved using the affine representation above to give:

Gaff =


g1

−t2(1−g2)
t1

0
−t1(1−g1)

t2
g2 0

0 0 1

 ; g1, g2 ∈ Fp

These transformations however, keep the intersection invariant by choos-
ing from points in the space-time which lie on the same hyperplane. It is
possible that these other points might not be quadric points. The effect of
the transformation on the complete quadric does not lead to a new quadric.
However, one can find parameterized transformations which only work on
the intersection of the two quadrics, and not the complete hyperplane of in-
tersection. Such a transformation has been talked about before.

A.2 General automorphisms of the quadric

For transformations which keep the Minkowski quadric invariant but not the
centre, we have:

G =
(
Λ2×2 α2×1
β1×2 1

)
To give:

ΛT I2Λ+ βT β = I2

ΛT I2α + βT = 0
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αT I2α = 0,

where we have written the top 2× 2 part of the Minkowski metric as I2.
Now, one can ask, for what solutions of the above do we also keep the cen-

tre invariant? And of course the answer is the Lorentz transformations which
we have discussed before. A more specific question then would be to ask, if
there exists any transformation, apart from the identity, which keeps not just
the initial Minkowski quadric but also the translated quadric invariant? The
answer is yes. There is a transformation, which one gets when one also solves
the equations for the second quadric, which is the same as the transformation
defining the Quadric Symmetry Group, given as:

L =


− tetm

2t1t2
tm

0

−2t1t2
tm

te
tm

0
0 0 1

 ; te = t21 + t22

A.3 Action of the exchange symmetries of type-1 and a note on pa-
rameterization

Group Ge1
is one of the sets of transformations which keep the interunion

invariant. An explicit representation is given by:

Ge1
=


g1

t2(g2+1)
t1

g3t2
t1(g1+1)

t2
g2 g3t1

2t1
tm

−2t2
tm

1

 ; g1, g2, g3 ∈ Fp

With such a parametrization for every g1, g2, g3 we have p2−(2p−1)−2(p−
1) matrices. This is because neither of the t’s can be 0, nor can tm be 0. We
then have p3 choices for the parameters. This gives us a total of p3(p−3)(p−1)
matrices. However, for the case of only invertible matrices, one has p3 − p2

choices, since |Ge1
| = −(g1+g2+1), and so in total there are p(p+1)(p−1)2(p−3)

non-singular transformations. This is clear to check for example for the case
of p = 3 where there are indeed 0 such transformations. One can see that for
keeping the hyper-plane of centres invariant, the above group only has one

element, where g1 = −g2 = (t21+t22 )
tm

;g3 = 0. For the case when only the initial
centre is kept invariant one has g3 = 0. For the case of keeping both the
centres invariant, one employs the use of homogenous coordinates (since the
last coordinate is -1 for second centre), to get:

98



GC
e1

=


g1 − t1(g1+1)

t2
0

t1(g1+1)
t2

−(1 + t21(g1+1)
t22

) 0
2t1
tm

−2t2
tm

1

 ;g1 ∈ Fp

An order can also be found for a such a parametrization for Ge2
, counting

only non-singular matrices. These are total of p3−p = p(p−1)(p+1) elements,
equaling the order also for Ge1

.
However, for G1 a similar parametrization will have the change that nei-

ther of t1, t2 is 0, and therefore the order of G1 will be p(p − 1)3(p + 1), which
is greater than Ge1

. Since we have already seen that the two orders should
in fact be equal, one notes that such a straight crude parametrization might
lead to a lack of degrees of freedom in the general case and therefore must be
avoided.

A.4 Elements of groups

Another interesting point is counting matrix elements for groups for p=3,
which have three matrices (two are inverse, and then one is the identity). So
for keeping the hyper-plane, the line connecting the two centres, and the two
centres (point-wise) invariant one has:

G1(HC,C) =


0 t1

t2
0

−t2
t1

2 0
−2
t1

2
t2

1

 , G2(HC,C) =


2 −t1

t2
0

t2
t1

0 0
2
t1

−2
t2

1

 , I

Similarly, there exist 9=8 + 1 transformations for keeping the hyperplane
of intersection and only the two centres point wise invariant:

0 t1
t2

0
t2
t1

0 0
2te
t1tm

−2te
t2tm

1

 ,


0 t1
t2

0
0 1 0

2t1
tm

2t21
t2tm

1

 ,


0 t1
t2

0
−t2
t1

2 0
−2
t1

2
t2

1

 ,


1 0 0
t2
t1

0 0
2t22
tmt1

−2t2
tm

1

 ,


1 0 0
−t2
t1

2 0
−2t22
tmt1

2t2
tm

1

 ,I


2 −t1
t2

0
t2
t1

0 0
2
t1

−2
t2

1

 ,


2 −t1
t2

0
0 1 0
−2t1
tm

2t21
t2tm

1

 ,


2 −t1
t2

0
−t2
t1

2 0
−2te
tmt1

2te
t2tm

1


99



And similarly, there are 9= 8 + 1 transformations for keeping the line
connecting the two centres and the hyperplane of intersection invariant.

0 −t1
t2

0
−t2
t1

0 0
−2
t1

−2
t2

1

 ,


0 0 0
−t2
t1

1 0
−2
t1

0 1

 ,


0 t1
t2

0
−t2
t1

2 0
−2
t1

2
t2

1

 ,

1 −t1

t2
0

0 0 0
0 −2

t2
1

 ,

1 t1

t2
0

0 2 0
0 2

t2
1

 ,I
2 −t1

t2
0

t2
t1

0 0
2
t1

−2
t2

1

 ,


2 0 0
t2
t1

1 0
2
t1

0 1

 ,


2 t1
t2

0
t2
t1

2 0
2
t1

2
t2

1


One can see the two transformations (1 transformation and it’s inverse)

for the case in the hyper-plane of centres, where the second centre is mapped
on to itself.

A.5 Parametrisation of Pexch

For Pexch one writes again, P T P T l∞ = l∞, and so,

Pexch =
(
λ α
β 1

)
=⇒ λT βT + βT = 02×1,α

T βT = 0

Note: For groups G1 and G2 the determinant is (g1 + g2 − 1),−(g1 + g2 + 1)
respectively.

A.6 Understanding the hyperplane of intersection

In the 2-d case the smallest structure which contains two points is a line.
Asking to keep 4 neighborhood points invariant imposes a condition which
can be fulfilled only by the identity element. In such a case therefore we look
at the lines which connect these two points. We end up with two lines, since
it makes sense to have an affine part separate from the line at infinity. This
effectively means that the group of transformations keeping the hyperplane
of affine points invariant is the permutation group of (p + 1) points, whereas
the interunion requires a permutation of (2p + 1) points. It is easy to see that
line at infinity is the hyperplane dual to the centre, meaning it is defined
by the centre and the biquadric centres on it. A translation of the centre to
another point also transforms the biquadric centred at the new centre, ac-
cording to the rules of projectivities. However, this transformation preserves
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the hyper-plane at infinity, and therefore this hyper-plane is in fact dual to
all the possible centres with respect to the translated quadrics on them. This
is also why translation doesn’t change the neighborhood at infinity.
Similarly one can ask, are there any properties of duality associated with
the hyperplane H ? One sees immediately from (5.14) that in fact this is
the hyperplane dual to the point Pd = {−2t1

tm
, −2t2
tm
,1} with respect to the initial

Minkowski quadric. This point is actually a part of the hyperplane of centers.
A similar point exists in the future, which is this point reflected through the
center {2t1tm ,

2t2
tm
,1}. The hyperplane of intersection then is also the dual hyper-

plane with respect to the new translated quadric and the translation of this
new point. One writes this as:

H =QminPd

and H =QtransTRPd

R = diag(−1,−1,1), T = Translation by t

The above discussion motivates us to consider instead a family of hyper-
planes. Given an initial centre with a biquadric centred on it, and a direction
of motion (given by hyperplane of centres), the entire family of future and
past centres (i.e. every point of the line of centres) gives rise to a family of
dual hyperplanes in the affine plane with respect to the initial quadric. This
family of hyperplanes is the set of all the possible hyperplanes of intersec-
tion. It is clear then, that any transformation which keeps the initial quadric
invariant along with the hyperplane of centres, must then also keep this fam-
ily of hyperplanes of intersection invariant.

The last result follows from the fact that a transformation which keep a
point and a quadric invariant must keep the hyperplane dual to it also invari-
ant (with respect to the quadric). This is easy to see for instance with Lorentz
transformations; since they keep the Minkowski quadric and the center in-
variant, they also keep the line at infinity invariant.

A.7 Case of purely vertical translations (t1 = 0)

For this case we still have the same points at infinity, but the points in the

affine plane are given by: P = {±
√
t22 + 1, t2/2,1}, defining a hyper-plane H =

{0,−2, t2}T . The interunion is the trivial form with tm replaced by t2 after fac-
toring out a t2. The transformations keeping the hyperplane and interunion
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invariant are then given by:

GH =


g1 g2 g3
t2g4

2 g5 0
g4

2(g5−1)
t2

1

 , GIU =


g1 g2 g3
0 g4 0
0 1−g4

t2
1

 ; g4 = ±1 (3.26)
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