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Abstract

A system of orientationally persistent, spherical active particles, without thermal or noise
effects, that wait when they collide, but can otherwise freely move through each other, is
simulated and investigated for clustering behaviour. It is explained how the event-based
simulation of this system works. Then, a simple theoretical model is built attempting to
describe the system and find conditions for clustering. The simulations show a clustering
behaviour that depends on how the waiting time of the particles is determined.
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1 Background

Systems of many interacting, moving particles can show very interesting behaviour, even if the
particles follow very simple rules. Often, the particles are passive and obey the classical laws of
motion. However, systems of so-called active particles, that are self-propelled (motility) and follow
arbitrary rules, can also be considered. Such non-equilibrium systems do not have to conserve
energy or momentum. Real world examples, that can be modeled as systems of active particles,
are swimming bacteria, birds forming flocks or crowds of humans.

A phenomenon, that active particles can exhibit, is phase separation, where clearly separated
regions of high and low particle density (dense and dilute phases) form [1]. Motility induced phase
separation (MIPS) can even happen for particles that have purely repulsive interactions where
passive particles would rather spread evenly, forming a homogeneous phase [1].

1.1 Microscopic active particle models

Often, one considers Brownian particles, that have Brownian motion and are overdamped, i.e. they
have no inertia and the velocity is proportional to the force. This models small particles, suspended
in a fluid, with a mass so small and hydrodynamic forces so large that inertia can be neglected.
The Brownian motion comes from random impacts of the fluid’s particles having thermal kinetic
energy. These impacts are modeled by a white, thermal noise FT in the force. Active particles
have a force Fa that represents their active motion, like a bacterium actively swimming. So for
the velocity of a particle i we have the overdamped Langevin equation

vi =
1

γ
(Fa,i + Fint,i + FT,i) (1)

with the force Fint,i of interactions with other particles. The thermal noise is such, that

⟨FT,i(t)FT,j(t
′)⟩ = γ

√
2DT δijδ(t− t′)

holds, where DT is the diffusion constant for the diffusion that such particles would undergo
without interaction or active force [2].

In the model of active Brownian particles (ABP), the orientation v̂0 of a particle, i.e. the
direction of the active force Fa = γv0v̂0, also diffuses with a rotational diffusion constant Dr [2].
This leads to a persistence time τ of the orientation with 1

τ ∝ Dr [2]. The Péclet number Pe = 3v0
Drσ

is a measure for the persistence length relative to the particle diameter σ [2].
The model of run-and-tumble particles (RTP) consists of particles that move in a straight line

with some speed, and suddenly change their direction to a random new, independent one at random
times [3]. Some bacteria behave in a similar way [3].

Without interactions, the dynamics of both, ABP and RTP, represent a diffusive random walk
on a larger scale [3].

More interesting behaviour can be seen in systems where the particles interact. This can, for
instance, be in the form of interaction forces or aligning the orientation with nearby particles.
Another possibility is changing the speed v0 of the active motion in the vicinity to other particles,
i.e. depending on the local density of particles [2]. This behaviour is an example of quorum sensing,
seen in some bacteria [2].

1.2 Motility induced phase separation

Consider a system of active particles, with an effective speed that depends on the local particle
density. This may be due to quorum sensing or other interactions between particles. For example,
they could be slowing down by being in each others way with repulsive interaction.

If there are places where the particles move slower than elsewhere, they spend more time there,
as it takes them longer to leave such regions [2]. Thereby, the density of particles is higher there[2].
With the particles’ speed v depending on the local density ρ, this can create a feedback loop by
the following argument, slightly modified from [3]. With no translational diffusion FT = 0, for the
steady-state density ρs = c

v being inversely proportional to the speed and v depending on ρ, we
get

dρs
dρ

=
∂ρs
∂v

dv

dρ
= − c

v2
dv

dρ
= −ρs

v

dv

dρ

for how the steady-state density is affected by variations of the density. If this is larger than one,
i.e.

1

v

dv

dρ
< − 1

ρs
,
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a perturbation in the density is amplified by the steady state, forming a positive feedback loop.
This instability results in a phase separation by spinodal decomposition, where particles accumulate
to a dense phase, leaving a dilute phase behind [2].

With some assumptions and approximations, such systems can be described using free energy,
like for equilibrium systems [3].

1.3 Simulation approaches

Motility induced phase separation was investigated by numerical simulations for a variety of dif-
ferent systems, for example spherical particles with repulsive interactions with [4] and without [1]
translational thermal noise and for infinite orientational persistence length [5].

In these systems, interactions between particles (overlapping with a repulsive force or sliding
along each other’s surface) last for non-zero time. They can’t be described as singular events
at certain points in time, as a particle can have multiple interactions with others at the same
time, affecting each other. The interaction process can thus be arbitrarily complicated. Therefore,
this kind of molecular dynamics simulations requires numerically integrating equation (1) for all
particles in small time steps.

Dynamics, that consist of singular events at single points in time, with easily predictable
behaviour (like particles moving in straight lines at constant speed) in the meantime, can be
simulated using an event based approach. The simulation is then done by processing one event
after the other, each time determining the next one.

2 System dynamics

Here, a three dimensional system of active particles is investigated, that can freely overlap without
interaction forces, but have to wait for a certain time when colliding with another one. All particles
are spherical, have the same diameter σ and move with the same speed v, each in an individual
direction, or don’t move, when they are waiting. There is no translational or orientational noise,
corresponding to zero temperature and infinite persistence length. The distribution of orientations
over all particles is isotropic, i.e. there is no globally preferred direction.

The waiting on collisions in this system somewhat resembles the mutual obstruction of particles
that happens in the systems mentioned in section 1.3, but can be simulated with an event based
approach.

Conditions for phase separation in this system are sought. When referring to particles, their
center points are usually meant in the following.

The time T a particle has to wait after a collision, before being released and continuing its
motion, is determined when the collision happens. It is the sum of a constant T0, equal for all
particles, and an additional time that depends on the local number density of particles ρ at the
time of the collision. Specifically, the additional time is proportional to the number N5σ3 − 2
of particles within a spherical volume of 5σ3 around the particle, excluding the particle and its
collision partner themselves. The volume is slightly larger than necessary to include particles from
previous collisions that are just touching the particle, being at a distance of σ.

T = T0 + Tdρ(N5σ3 − 2) (2)

When two particles collide, they stop and wait for at least the time T determined for each
particle as just described. If a particle collides with a waiting, still one, T is newly determined for
the already waiting particle. If it is larger than the previously remaining waiting time, the wait is
extended such that T is the new remaining waiting time, otherwise the old release time remains.

A collision is defined here as the event where the distance of two particles, that are getting
closer, reaches one particle diameter. Particles that already overlap do not collide. A particle can
only collide with another particle it has collided with before, if at least one of them has moved in
the meantime. Otherwise the particles just pass through each other.

For example, consider T = T0 for simplicity and two moving particles A and B that collide at
time tAB . They stop moving immediately at tAB . If no other particle is near, A and B will both
start moving again at tAB + T and pass through each other. If, instead, a third particle C collides
with A at tAC with tAB < tAC ≤ tAB + T , C stops too. At tAB + T only B is released and starts
moving (through A). If B does not collide with C, A and C both start moving at tAC + T .

The system was simulated as described in section 4, with results presented in section 5, and
modelled for theoretical considerations in section 3.
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σ Diameter of the particles.

T
Minimum time a particle waits after a collision. Can differ between particles
and collisions, see equation (2).

T0 Constant part of T , see equation (2).

Tdρ Additional waiting time per nearby particle, see equation (2).

T ′ Actual waiting time from stopping (first collision) to release of a particle.

a ”Activity”. Local fraction of particles that move.

v The speed of a free particle.

ρ Local number density of particles.

ρa Local number density of moving particles, ρa = aρ.

j
Flux of particles passing from one region to another region, separated by a
boundary area.

k
Proportionality constant relating the number of stopping collisions to the den-
sity, see equation (4).

Tdelay
Time delay, compared to free motion, a particle gets due to collisions when
travelling a certain distance d, see equation (5).

ρ′
Constant density scale used in the assumptions for ⟨T ′⟩ in sections 3.2.1
and 3.2.2.

q Constant exponent used in the assumptions for ⟨T ′⟩ in sections 3.2.1 and 3.2.2.

λ Rate of collisions a waiting particle experiences, see equation (9).

g
Proportionality constant relating λ to the density of moving particles aρ, see
equation (9).

D
Function D(a, ρ) for the time delay per travelled distance Tdelay/d, see equa-
tion (11).

Table 1: Overview over some of the symbols used in section 3 with their meaning

3 Theoretic modelling

First, we try to model the system described in section 2 to get an understanding of when particles
can or cannot be expected to form clusters. Table 1 gives an overview over some of the symbols
that were or will be introduced.

3.1 Assumption about flux

Consider a spherical, homogeneous cluster of particles (dense region) of radius rc in which particles
have an effective speed vc = av, where the activity a is the fraction of particles that are moving
and not waiting. A particle hitting the cluster has, on average, to travel a distance of

4
3πr

3
c

πr2c
=

4

3
rc ,

which takes it a time of tc = 4
3
rc
vc
, which is the average time a particle is part of the cluster. In

steady state, the rate of particles leaving the cluster is N
tc
, where N is the number of particles in

the cluster. With the cluster’s density ρ and surface area Ac, the mean flux of particles leaving
the cluster

j =
N

tcAc
=

4
3πr

3
cρ

4
3
rc
vc

· 4πr2c
=

1

4
ρvc =

1

4
ρav ,

is proportional to ρa and v.
We assume in general, for the flux j of particles passing through an area, from a side with

density ρ, activity a and effective speed vc to the other side, that

j ∝ vcρ = vaρ = vρa . (3)
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This is regardless of what is on the other side or of particles passing through the area in the
opposite direction. It means that in a steady state, the density of moving particles aρ must be
uniform.

The assumption ignores that the distribution of orientations of the moving particles within a
region might not be isotropic, as it is globally.

3.2 Effects of the waiting time

When travelling a distance d, the front surface of a particle passes through a volume proportional
to d (or rather the volume where other particles can be, such that the particle collides with them, is
proportional to d). Therefore, it is expected to collide with a number nstops of particles proportional
to ρd while moving along its way.

nstops = kρd (4)

with a proportionality constant k. On each of these collisions, the particle stops for at least a time
T . During the waiting time, however, additional collisions can occur with surrounding moving
particles. Each additional collision could extend the waiting time. If the average time the particle
waits after stopping is ⟨T ′⟩, the total time delay due to waiting on on its way is

Tdelay = nstops ⟨T ′⟩ = kρd ⟨T ′⟩ . (5)

The activity a is also the time that a particle moves when passing the distance d, divided by
the total time it takes. The total time is the time the particle moves plus the time Tdelay that it
waits.

a =
d
v

d
v + Tdelay

=
1

1 + vkρ ⟨T ′⟩
(6)

Consider a boundary area separating two regions of different densities ρ1 and ρ2 and activities
a1 and a2 and the fluxes j1 and j2 of particles passing from region 1 to region 2 and vice versa.
If the flux of particles going from the region of higher density to that of lower density is larger
than the opposite flux, this means that particles spread out, reducing the difference of densities. If
this continues, a stable homogeneous phase forms. If, on the other hand, the net particle flux goes
from the region of lower density to that of higher, this increases the difference in densities even
further. Starting from a homogeneous phase, this is an instability leading to the formation of two
coexisting phases. If this continues, particles accumulate to small clusters of high density.

Let’s now see what happens for different assumptions about the waiting time ⟨T ′⟩. In sec-
tions 3.2.1 and 3.2.2 we make arbitrary assumptions about ⟨T ′⟩ to explore the system’s dependence
on it, before we attempt to estimate the real waiting time in section 3.2.3.

3.2.1 Waiting time as power law of density

If ⟨T ′⟩ = T0

(
ρ
ρ′

)q

for some constants ρ′ and q, equation 3 for the flux from region n becomes

jn ∝ v
ρn

1 + vkρnT0

(
ρn

ρ′

)q .

We choose ρ1 > ρ2. Then, j1 < j2 means that more particles go from the region of lower density
to the region of higher density than in the other direction, so we are in the regime of coexisting
phases. Let’s find the condition for that:

j1 < j2

⇔ Av
ρ1

1 + vkρ1T0

(
ρ1

ρ′

)q < Av
ρ2

1 + vkρ2T0

(
ρ2

ρ′

)q

⇔ ρ1

(
1 + vkρ2T0

(
ρ2
ρ′

)q)
< ρ2

(
1 + vkρ1T0

(
ρ1
ρ′

)q)
⇔ ρ1

(
ρ′q + vkT0ρ

q+1
2

)
< ρ2

(
ρ′q + vkT0ρ

q+1
1

)
⇔ ρ′q (ρ1 − ρ2) < vkT0

(
ρ2ρ

q+1
1 − ρ1ρ

q+1
2

)
⇔ ρ′q

vkT0
<

ρq1 − ρq2
ρ1 − ρ2

ρ1ρ2 (7)
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If the average waiting time ⟨T ′⟩ is independent of ρ, i.e. q = 0, the right-hand side is zero, so
we are always in the spreading regime and expect a single homogeneous phase. For our system,
this would correspond to the case that the waiting time does not depend on the density and could
not be extended by further collisions during waiting.

If ⟨T ′⟩ is proportional to the density, i.e. q = 1, the right-hand side becomes ρ1ρ2. Then, the

coexistence regime is where the product ρ1ρ2 is above the threshold of ρ′q

vkT0
. The spreading regime

is where the product is below that threshold.

3.2.2 Waiting time as power law of density of moving particles

Assuming ⟨T ′⟩ = T0

(
aρ
ρ′

)q

for some constants ρ′ and q, equation (6) becomes

a =
1

1 + vkρT0

(
aρ
ρ′

)q

⇔ a+
vkT0

ρ′q
(aρ)

q+1
= 1

⇔ a = 1− vkT0

ρ′q
(aρ)

q+1
. (8)

For q > −1 the right-hand side of equation (8) is strictly decreasing in aρ. A higher aρ then
corresponds to a smaller a and thereby a higher ρ. For adjacent regions with densities ρ1 and ρ2
and ρ1 > ρ2, this means that also a1ρ1 > a2ρ2, so, by equation 3, more particles will go from
region 1 to region 2 than in the other direction. We would therefore expect such a system to have
a single, homogeneous phase.

3.2.3 Deductive model

We now assume that the collisions that happen to a waiting particle, extending its waiting time,
occur stochastically and uniformly (as a Poisson process) with a rate λ proportional to the density
of moving particles.

λ =
g

v
ρav = gaρ (9)

with g
v as proportionality constant.

In contrast to the arbitrary previous assumptions for ⟨T ′⟩, this is consistent with equation 3
when considering λ as the rate of particles that would pass through the surface of the particle (or
rather its interaction range).

Algorithm 1 Algorithm for sampling the distribution of T ′ and ⟨T ′⟩
1: Considering a particle that has just stopped due to a collision, set T ′ to zero as no waiting

time has passed yet.
2: Draw a random number t from the exponential probability distribution λe−λt, representing the

time until the next collision of the waiting particle.
3: if t ≤ T , i.e. the next collision happens before the particle stops waiting, then
4: Add t to T ′, as the next collision extends the particle’s waiting time by that amount.
5: Repeat from line 2 with drawing the next number.
6: else if t > T , i.e. no further collision occurs within the waiting time, then
7: Add the remaining waiting time T to T ′.
8: Remember T ′ and repeat from the start until enough samples for T ′ are found.
9: end if

10: When enough samples for T ′ are found, calculate their mean ⟨T ′⟩.
11: Repeat everything for different T and/or λ to find how ⟨T ′⟩ depends on it.

The probability distribution of the waiting time T ′ and its average ⟨T ′⟩ resulting from this
assumption was numerically sampled equivalently to algorithm 1. Figure 1 shows the sampled
distribution for T ′ with λT = 1.5. In the sampled range from λT = 0 to λT = 8, the values found
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Figure 1: Histogram of the values for T ′, sampled according to algorithm 1 with λ = 1, T = 1.5
(i.e. there are on average 1.5 collisions per T ) and 100000 samples. The bins are of width 0.1 and
the histogram is cut off at T ′ = 15. The peak at T ′ = 1.5 corresponds to a Dirac delta in the
probability distribution of ⟨T ′⟩ that represents the finite probability that no collision occurs.

for ⟨T ′⟩ match ⟨T ′⟩ = 1
λ

(
eλT − 1

)
very well. Plugging this into equation (6) gives

a =
1

1 + kv
ga (egaρT − 1)

⇔ a+
kv

g

(
eaρgT − 1

)
= 1

⇔ a = 1− kv

g

(
eaρgT − 1

)
. (10)

For T = T0 not depending on density, the right-hand side of equation (10) is strictly decreasing
in aρ. Therefore, using the same argument as for equation (8) with q > −1, there is not instability
and the particles form a homogeneous phase in this case.

3.3 Instability condition

Knowing what to expect for T = T0 from equation (10) or for the waiting times ⟨T ′⟩ assumed
in sections 3.2.1 and 3.2.2, we now derive more general instability conditions. We start with the
condition for the delay of particles per distance travelled

Tdelay

d from equation (6) (because it more
general than ⟨T ′⟩) and consider it a function D(a, ρ) of a and ρ.

a =
d
v

d
v + Tdelay

=
1

1 + v
Tdelay

d

=
1

1 + vD(a, ρ)
(11)

⇔ a = 1− avD(a, ρ) (12)

A homogeneous phase is unstable, if small differences in density cause a flux of particles amplifying
the differences. Because, by equation 3, the flux of particles leaving a region is proportional to aρ,
an amplifying flux arises if aρ is smaller in the region of higher density ρ. In the limit of a small
difference in density, this means

d

dρ
aρ < 0

⇔ a+ ρ
da

dρ
< 0

⇔ da

dρ
< −a

ρ
. (13)
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Considering a as a function, given in equation (12),

da

dρ
=

∂a

∂ρ
+

∂a

∂a

da

dρ

⇔ da

dρ
=

1

1− ∂a
∂a

∂a

∂ρ
=

−av

1 + vD + av ∂D
∂a

∂D

∂ρ
.

So equation (13) becomes

−av

1 + vD + av ∂D
∂a

∂D

∂ρ
< −a

ρ

⇔ ρ
1
v +D + a∂D

∂a

∂D

∂ρ
> 1 .

With D = kρ ⟨T ′⟩ as before, this becomes

ρ
1
v + kρ ⟨T ′⟩+ kaρ∂⟨T ′⟩

∂a

k

(
⟨T ′⟩+ ρ

∂ ⟨T ′⟩
∂ρ

)
> 1 . (14)

If the denominator is negative,
∂⟨T ′⟩
∂ρ also needs to be negative to fulfill this. If that is not the

case, we get

ρk

(
⟨T ′⟩+ ρ

∂ ⟨T ′⟩
∂ρ

)
>

1

v
+ kρ ⟨T ′⟩+ kaρ

∂ ⟨T ′⟩
∂a

⇔ ρ

(
ρ
∂ ⟨T ′⟩
∂ρ

− a
∂ ⟨T ′⟩
∂a

)
>

1

vk
.

Note, that the left-hand side vanishes if ⟨T ′⟩ (a, ρ) is a function of aρ, so the system can’t be
unstable then. This is the case in section 3.2.2 and in section 3.2.3 for constant T .

In section 3.2.1 we had ⟨T ′⟩ = T0

(
ρ
ρ′

)q

, then the condition becomes,

qρq+1 >
ρ′q

vkT0
.

This is equation (7) in the limit of ρ2 → ρ1 = ρ.
Taking the deductive model from section 3.2.3 with ⟨T ′⟩ = 1

gaρ

(
egaρT − 1

)
and letting T be a

function T (a, ρ) of a and ρ, we have

∂ ⟨T ′⟩
∂a

= −⟨T ′⟩
a

+
1

a

(
T + a

∂T

∂a

)
egaρT

and similarly
∂⟨T ′⟩
∂ρ , so the condition becomes

ρ

(
−⟨T ′⟩+

(
T + ρ

∂T

∂ρ

)
egaρT + ⟨T ′⟩ −

(
T + a

∂T

∂a

)
egaρT

)
>

1

vk

⇔ ρegaρT
(
ρ
∂T

∂ρ
− a

∂T

∂a

)
>

1

vk
.

So for constant T the system cannot be unstable. If, however, T increases with the density ρ or
decreases with the activity a (as long as the denominator in equation (14) stays positive), the
system can become unstable for sufficiently large ρ and a.

With T being determined by equation (2), we get

ρ2egaρT
Tdρ

5σ3
>

1

vk

so we expect an instability for sufficiently large ρ and Tdρ.
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4 Implementation of the simulation

A simulation of the system described in section 2 in a cubic box with periodic boundary conditions
was implemented in C++ with an event based approach. The idea is, that events, like collisions,
are scheduled for a certain time. In a loop, the earliest event is selected and the system’s state
changed accordingly. If the handled event causes new events, they are scheduled.

To find the next collision of a particle, it must be checked for collisions with every other particle.
As this must be done regularly for each particle, the effort for that scales with the square of the
number of particles. To reduce it, the simulation box is split into cubic zones with a side length
slightly larger than the particle’s diameter. With that, as long as no particle switches zones,
particles can only collide with particles in the same zone as the particle itself or in neighboring
zones, greatly reducing the number of required checks. When a particle does switch zones, this is
considered an event that triggers the calculation of possible collisions of that particle for the new
zone. The zones are also large enough to find all particles, that need to be counted to determine
the waiting time according to equation (2), in the same or neighboring zones.

Particles and events are represented by objects. There are three types of events: collisions,
releases (when a particle stops waiting) and zone-switches. A special, fourth type of event is used
too, as mentioned later. Each event object stores the time of the event and holds references to
the involved particle(s). Scheduled events are kept in a queue, that allows access to the earliest of
the events it contains. The next event is handled by removing it from the queue and calling the
corresponding handler-method of the involved particle(s).

Not all scheduled events actually happen. An event can be invalidated if it is affected by a
previous event. For example, consider two particles on colliding trajectories and an event scheduled
for their collision. A nearby third particle could be released from waiting in the meantime and take
a trajectory that makes it collide with one of the particles before. The originally scheduled collision
event will then become outdated. If a particle reaches a collision event that was outdated due to
the other particle, it will just find and schedule the next event. Outdated release or zone-switch
events and collision events reached by none of the particles do nothing when they are handled.

4.1 Event finding, scheduling and handling

Particles, that have collided and have not moved since then, should not immediately collide again,
when being released. But their distance is just one particle diameter, so it would be up to numerical
imprecision, whether the particles would collide again or be considered overlapping and not collide.
Therefore, each particle keeps track of the particles it collided with, since it last moved. Each
waiting particle also holds a reference to a release event and each moving particle one to the next
collision or zone-switch event. To find the next event for a particle, possible collisions with the
other particles in the same or neighboring zones are calculated based on the current trajectories.
Collisions between particles, that both have each other in their sets of particles they collided with,
are not taken into account. Neither are those, that happen after one of the particles’ referenced
events. If the particle is moving, the time at which it would leave the zone is calculated too. The
earliest of the events found this way is scheduled. To schedule an event, a corresponding object
with the time of the event and the involved particle(s) is inserted into the event queue.

If a particle is moving at the end of handling an (release, zone-switch or outdated) event, it
finds and schedules the next event and saves a reference to the it. If the next event is a collision
and the collision partner is moving too, that particle also saves a reference and marks its previously
referenced event as outdated.

A particle handling a non-outdated collision event adds the collision partner to the set of
particles it saves to avoid colliding with particles, that it should pass through, on release. It also
calculates the time at which it will be released if no further collisions occur, using equation (2)
and such, that the release time never decreases. If the particle was previously moving or had an
earlier release event, a release event for the new release time is scheduled and referenced. The
possible previously referenced, earlier release event is marked outdated. The particle then looks
for collisions before the new release time. If it finds one, it schedules the earliest and the collisions
partner references it and marks its previously referenced event outdated.

A waiting particle handling an outdated collision event looks for the next collision before its
release, if the outdated event was previously scheduled by itself. Outdated collisions scheduled by
other particles do not affect the event scheduled by this particle, so nothing needs to be done.

After a particle is released, its set of particles it collided with since last moving must be cleared,
so it can later collide with them again. If two particles collide and then get released at the same
time, one of the release events must be handled first. If the first particle’s handler would then clear
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the set, the other particle would consider the first particle as one it can collide with again, possibly
detecting and scheduling an immediate collision erroneously. Instead, the handler schedules another
type of event for the same time as the release, which gets handled only after all other events at
the same time are handled. This event then clears the set (and does nothing else). Clearing it
on the next collision or zone-switch, instead, does not work, because particles that collided with
each other can collide again, directly after their release, if they are released at different times. If
only one particle having the other one in its set would suffice to prevent a collision, the second
collision of a particle with another one, that didn’t move in the meantime, would be missed. This
can happen due to the periodic boundary conditions.

4.2 Technical details

Each particle saves the time of its last event and the coordinates it had there. At the beginning
of handling an event, they are updated to the time of that event. Zone-switch events are not
scheduled for a time as close to the actual crossing of the zone’s boundary as possible, because,
with numerical errors, the particle could still find itself in the old zone when handling the event.
Instead, zone-switch events are scheduled for a time where the particle is guaranteed to find itself
having left the old zone when handling the event, even with numerical errors. If a particle finds
itself in a new zone when handling an event, it switches to the new zone, even if the event is not a
zone-switch event. The zones are large enough, so that no collisions can be missed due to a particle
overshooting the zone’s boundary before switching.

To avoid memory allocations during the simulation, sufficiently many event objects are con-
structed at initialization and organized in a stack structure where the they are taken from, before
being scheduled, and returned to, after being handled.

Coordinates and times are saved using 64-bit integers, because they provide equal absolute
precision over the full range. With a floating point representation, not the full range of values
could be used and their absolute precision is exponentially reduced with the absolute value of the
stored number. Vectors (velocities and differences of coordinates) are represented using doubles,
because multiplicative calculations have to be done on them.

To use the full available 64-bit range for the coordinates, the size of the particles is scaled to
fit the desired volume density η (number of particles times the volume of a particle divided by the
volume of the simulation box). The speed of the particles is chosen such, that the simulated time,
where the range of integer representation of the time ends, is sufficiently large. The zones have a
side length slightly larger than the particles’ diameter and such, that they divide the simulation
box into (almost) equal parts. Simulations can be performed for up to three dimensional space for
arbitrary numbers of particles, packing fractions and waiting times T .

The zones are realized as a doubly linked list of particles for each zone together with an array
of pointers to the first particle of each list, or null-pointers, for empty zones. From coordinates,
the array-index for the corresponding zone can be calculated.

As the queue containing the scheduled particles, the priority_queue, provided by the standard
library, is used. The set of particles a particle collided with since last moving is stored using the
standard library’s unordered_set. This may, however, not be a good choice for the typically very
small number of particles in there.

During the simulation, the sizes and numbers of clusters, and the number of particles in each
zone are be written to a file regularly. The coordinates, velocities, cluster association, and mov-
ing/waiting state of each particle can be written too.

At the end of a simulation, the relevant state is saved to a file that can be used to continue
the simulation later. To get the exact same result from continuing a simulation as one would get
from running it longer without interruption, the order of events scheduled for the same time has
to be preserved. Otherwise, for example, release events of particles that happen at the same time
can be handled in different order, leading to different sequence of later events being scheduled and
possibly outdated. This can cause differences, due to limited numerical precision, that are then
amplified.

5 Simulation results

The system described in section 2 was simulated as explained in section 4. Simulation runs were per-
formed with N = 50000 particles, for different T0, Tdρ and global volume densities η = 1

6πσ
3N/L3,

with L the side length of the simulation box. Some of the symbols used in this section can be
looked up in table 2.
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σ Diameter of the particles.

T
Minimum time a particle waits after a collision. Can differ between particles
and collisions, see equation (2).

T0 Constant part of T , see equation (2).

Tdρ Additional waiting time per nearby particle, see equation (2).

v The speed of a free particle.

η
The global volume density, η = 1

6πσ
3N/L3, with N the number of particles

and L the side length of the simulation box.

Zn
Number of zones, where n particles are in the block of 3 · 3 · 3 zones around
that zone.

S
A distance measure, between the distribution of the number of particles per
block of 33 zones and the Poisson distribution one would have for randomly,
uniformly placed particles. See equation (15).

Table 2: Overview over some of the symbols used in section 5 with their meaning

At initialization, the particles were placed randomly within the simulation box, with a uniform
probability distribution. The orientations of the particles were drawn from an isotropic probability
distribution, independent of the position. In each of the sections 5.1 and 5.2, the initial distribution
of particles, relative to the simulation box, and their orientations is equal, as the same seed was
used for the simulations presented there.

In the following, clusters refer to the smallest sets of particles, such that two particles, that
touch or overlap with each other, are part of the same cluster. Dense clusters refer to clusters,
where the particles are significantly denser than in the surrounding, and whose existence makes
the system non-homogeneous. Clustering refers to the formation of dense clusters.

For a random, uniform distribution of the particles, like at initialization, the number of particles
found in a zone is expected to follow a Poisson distribution. Let Zn be the number of blocks of
3 · 3 · 3 zones (introduced in section 4) that contain exactly n particles, Z the total number of
zones (which is also the number of different blocks of 33 zones) and P (n) the Poisson-distributed
probability to find n particles in a block of 33 zones, if all particles were randomly and uniformly
distributed, like at initialization. The symmetric chi-squared distance [6] between the observed
and the Poisson distribution

S =

∞∑
n=0

(
Zn

Z − P (n)
)2

Zn

Z + P (n)
(15)

is used as a measure of how non-homogeneous the system is. S can’t reach values larger than
two. It turns out to be suitable to distinguish states with only one homogeneous phase from those,
where dense clusters exist. If the particles would spread even more uniformly than random, S
would also increase, but this doesn’t happen here.

5.1 Density dependent T

If the minimum waiting time T increases with the local density, as is the case for positive Tdρ,
section 3.3 predicts that instabilities, leading to the accumulation of particles, could occur. Simula-
tions for different Tdρ with T0 = 0 were performed. Some simulations with nonzero T0 appeared to
require longer computation and show qualitatively similar results, and are therefore not considered
further. Figure 2 shows the simulated parameters, arranged as a phase diagram.

At small Tdρ and low densities η, the system almost immediately reaches a state of a homoge-
neous phase and the distance S fluctuates near zero, i.e., the spatial distribution remains almost
random.

For larger Tdρ or η, the system is indeed unstable and shows clustering where spots of high
density appear. These often start to form immediately. However, for densities near the boundary
of the parameter region where clustering occurs, the system often keeps a homogeneous phase for
a while, but then spontaneously forms a dense cluster in a nucleation process.

Homogeneous states and states with dense clusters differ by a large difference in S. In the
phase diagram (figure 2) a clear separation of a homogeneous region and an unstable region can
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Figure 2: Phase diagram with simulation runs for T0 = 0 with different global volume densities
η, and density dependent waiting times Tdρ. Runs marked by circles ended with a homogeneous
phase with S < 1. Those marked by triangles, ended with S > 1, indicating that phase separation
happened and at least one cluster formed. For the latter, the number of clusters with a size of
at least 150 particles is marked by color. Those clusters are larger than the clusters in most
homogeneous states (except for the percolating cluster). This number is therefore approximately
the number of dense clusters formed as a result of the instability. It tends to decrease close to
homogeneous region. Note, that the simulations did not reach a steady state, as mentioned in the
main text.

be seen. The boundary appears approximately as a straight line in the double-logarithmic phase
diagram.

The spatial size of dense clusters doesn’t generally grow, even when growing in particle number,
but their density increases instead. Figure 3 shows examples where these behaviours can nicely be
seen. The contraction of clusters with increasing density is expected, as the instability leads to an
accumulation of particles at more dense places, also within a cluster.

There appears to be a tendency, that the number of dense clusters, that form, becomes smaller
when closer to the homogeneous region. This can be seen in figure 2 and also in figure 3. This
can be explained by the system being less unstable there, reducing the probability for density
fluctuations large enough to trigger the accumulation of more particles, i.e. nucleation, leading to
fewer dense clusters. Once dense clusters have formed, they can capture more and more particles,
reducing the density in the rest of the system and thereby also reducing the probability of the
formation of new dense clusters.

A steady state was not reached within the simulated time in any of the runs where clustering
occurred. The number of particles in the most dense block of 33 zones kept increasing in all cases.
When clustering occurred in a simulation, all simulations for the same Tdρ were continued to at
least a time three times as large as the time where the cluster(s) formed. Thus, a simulation ending
in a homogeneous phase has maintained that phase for a significant amount of time. Specifically,
the simulations ended at a time of 6000σ

v for Tdρ = 0.005, 12000σ
v for Tdρ = 0.01 and Tdρ = 0.02,

16000σ
v for Tdρ = 0.05, 40000σ

v for Tdρ = 0.1, 80000σ
v for Tdρ = 0.2 and 160000σ

v for Tdρ = 0.5.

5.2 Constant T

According to the model in section 3, for constant T = T0 the system should always stay as a stable,
homogeneous phase. Simulations were performed for T = T0, Tdρ = 0 with different parameters
that can be seen in figure 4.

First, we consider the simulations for T0 ≤ 2σ
v . There, the the system quickly reaches a

distribution of cluster sizes that is then maintained up to noise-like fluctuations. The distribution
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(a) A plane through the system with η = 0.2, at times 800σ
v

(left), 2400σ
v

(center) and 16000σ
v

(right), with the intersections of particles with that plane. Particles that belong to the same cluster
have the same color (the number of colors is limited, though). The system is near the homogeneous
region in the phase diagram and it shows nucleation. On the left, it is still in the homogeneous
phase and the decomposition hat not yet started. In the center, a dense cluster has formed and
already contains a large fraction of all particles (see top right of figure 3c, green curve). The density
everywhere else is reduced, preventing the formation of other dense clusters. On the right, almost
all particles are part of the cluster, but the cluster has shrunk spatially, increasing its density (see
bottom right of figure 3c).

(b) Plane of the system with η = 0.35, at times 800σ
v

(left), 2400σ
v

(center) and 16000σ
v

(right).
Being farther away from the homogeneous region, multiple dense clusters form immediately, but
not all of them survive. See also the brown curves in figure 3c.
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(c) Temporal development of S (equation (15)), the size of the largest cluster, the number of dense
clusters and the maximum number of particles in a block of 33 zones. The legend applies to all of the
plots. One can see a delayed decomposition for η = 0.2 (green), a persistent increase of the highest
density, even when the largest cluster doesn’t grow anymore, and a decreasing number of dense clusters
close to the homogeneous phase (bottom left).

Figure 3: Evolution of the simulated systems with T0 = 0, Tdρ = 0.05σ
v .
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Figure 4: Phase diagram with simulation runs for T = T0, Tdρ = 0 with different global volume
densities η, and minimum waiting times T0. The color denotes the value of S at which the simu-
lations ended. Not all of them reached a steady state, as mentioned in the main text.

Zn/Z of numbers of particles ending up in blocks of zones is very close to the Poisson distribution
for small T0 or η and gets wider for larger T0 and η. So the system is essentially in a homogeneous
phase where the distribution of particles gets less uniform with increasing η and T0. This can be
seen in figures 5a to 5c and 5e.

At small densities η, the particles are isolated or form small clusters. As the density increases,
larger clusters become more frequent, until the percolation threshold is reached, where a large
cluster emerges, that spreads through the entire system. Figure 6 shows that the threshold becomes
lower with larger T0. For the three dimensional Swiss cheese model, a system of randomly placed
spheres of equal size, allowed to overlap, like at the initialization of the simulations, the percolation
threshold is at about η ≈ 0.342 [7]. This is close to the threshold observed for a small T0 of 0.05σ

v .
The percolation has no effect on the spatial distribution of the particles. Figures 5a and 5c show a
system below and above the percolation threshold. This also happens for nonzero Tdρ but is easier
to see here, as no instability is in the region considered here.

For larger T0 ≥ 0.5σ
v , clustering did occur in the simulations for large enough η. An example

can be seen in figure 5d. Figure 5f shows a similar unstable behaviour of S as seen in section 5.1,
but much less pronounced and much slower. The distribution of particles in the homogeneous phase
is already less uniform and the clusters, that form, are much less dense and their density does not
keep increasing. The evolution of S for T0 = 5, η = 0.3 seen in figure 5f suggests nucleation as
also seen in section 5.1. Figure 4 shows by colors the distance S at which the simulations ended.
For simulations where S stays below 0.5 appear to be in a steady state, i.e. S and the distribution
of cluster sizes only fluctuate a trend. For most cases where S exceeds 0.5, the changing of S
and the distribution of cluster sizes stagnated before the end of the simulation but with irregular
fluctuations. Not enough simulations were run to tell the shape of the boundary of the unstable
behaviour in the phase diagram. The simulations in that region take the longest computation time
of those considered here.

6 Discussion

In the case of a positive dependence of the minimum waiting time T on the local density during
the collision, the model built in section 3 allows (and expects) an instability that leads to the
accumulation of particles and clustering, for sufficiently large densities ρ and density dependencies
Tdρ. This is indeed observed in the simulation for positive Tdρ. For constant minimum waiting
times T = T0, without a dependence on the density, i.e. Tdρ = 0, the the model is stable and allows
only a homogeneous phase. However, in the simulations, an instability leading to the formation of
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Figure 5: Examples for the behaviour of the system with Tdρ = 0 for T = T0 = 2σ
v (left) and

T = T0 = 5σ
v (right). The time evolution of S for some densities is shown in (e) and (f) (the

legend applies to both). The histograms show the distribution Zn/Z of numbers of particles n per
block of 33 zones, so basically the density distribution. The Poisson distribution, that randomly
placed particles would have, is marked for comparison. Even for the case with clustering in (d),
the distribution has only one peak, so the cluster is in the extended tail. (a)-(c) show a plane
through the system with the respective intersections of the particles. Particles that belong to the
same cluster have the same color (the number of colors is limited, though). The system in (c) is
above the percolation threshold, as compared to (a), so most of the particles belong to the same
cluster.
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spheres (Swiss cheese model) at η ≈ 0.342 is marked for comparison [7].
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clusters is found for very large T0. So, apparently, at least one of the assumptions that lead to the
exclusion of an instability must be wrong. Possibly, the orientation of the particles, which is not
taken into account in the model, plays a role. Another possibility is, that the consideration of the
system as a density field fails in equation (4) or equation (9).

7 Conclusion

The system of penetrable, orientationally persistent, spherical active particles, without thermal or
noise effects, that wait when they collide, was simulated and investigated. A simple theoretical
model for the system was built, that is compatible with instabilities found by the simulations for
positively density dependent minimum waiting times (Tdρ > 0), but fails to describe instabilities
found for large, constant minimum waiting times (T = T0). The instabilities in these two cases
were found to be different, in that the density of the formed clusters keeps increasing and the
clusters don’t grow spatially in one case, but not in the other. The percolation threshold was was
found to decrease with increasing T0. For Tdρ > 0 with T0 = 0, a clear separation of the regions
in the η-Tdρ-plane, where clustering does or does not occur, was found. This could be further
analysed and compared to models. Also, the instability for large, constant T could be investigated
by further simulations, as well as the interplay of Tdρ > 0 and T0 > 0 at the same time.
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