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Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer
Gutachter Prof. Dr. Ana-Sunčana Smith
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Summary

In this thesis we use the bead-spring microswimmer design as a model system to
study mechanical microswimming. The basic form of such a swimmer was in-
troduced as the ‘three-sphere swimmer’ in Najafi and Golestanian [2004] and has
found wide use in theoretical, numerical and experimental research. In our work,
we have modified and extended the model in various ways, which, as explained
in this thesis, allow us to gain insight into many general principles of microswim-
ming, for instance the interplay between fluid drag force and swimmer elasticity
in determining the efficiency of motion. The work presented here consists of both
analytical solution of the equations of motion in the different investigated cases
and corresponding numerical study.

We begin this thesis with an introduction (chapter 0) to the world of low
Reynolds number locomotion, and in particular to that of microswimming, ex-
plaining the current state of knowledge in the field regarding biological microswim-
mers and models thereof, both theoretical and experimental. We then explain
in chapter 1 the details of, and the differences between, the Golestanian three-
sphere swimmer and our bead-spring model. The Golestanian model consists of
three spheres aligned along one line with the distances between two neighbour-
ing spheres in each pair being changed in a controlled manner (which determines
the swimming stroke), leading to propagation of the assembly. In the bead-spring
model, we replace the specification of the stroke by that of the forces driving the
motion, allow non-spherical and shape-varying beads in the design, and, in the last
part of the thesis, investigate swimmer motion beyond the low Reynolds number
(Stokes) regime. These changes result in a more comprehensive description of the
motion with the influences of different factors such as the fluid viscosity, the en-
ergy input, the elasticity of the swimmer and its instantaneous and mean shapes all
becoming important, unlike in the Golestanian swimmer where these influences
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are all subsumed in the specification of the swimming stroke. We use our model
to calculate the velocity of our swimmer both with rigid and deformable spheres,
and to different orders in the relative magnitude of bead size and bead separation.

In chapter 2, we explain the two simulation methods used by us, thewaLBerla
system and the LB3D code. Both of these are based on the lattice Boltzmann
method (LBM), and their main difference lies in their being coupled respectively
to a rigid body physics engine, which allows us to simulate any combinations
of rigid objects in fluids, and an immersed boundary method (IBM) solver with
which we can simulate deformable membranes.

In chapter 3, we compare the swimmer velocities as obtained from theory and
the two simulation systems for swimmers with rigid beads. We find good agree-
ment which expectedly becomes better as the simulation systems become more
idealised, such as by an increased simulation domain size and smaller Reynolds
numbers of motion. We also explain how and why some microswimmers swim
faster in more viscous fluids. We show that this puzzling phenomenon, observed
experimentally for many species of bacteria, can occur in fully Newtonian fluids–a
result which runs counter to the prevailing wisdom in the field–and arises from the
dichotomous effects that the drag force has on motion at low Reynolds number. In
particular, the so-called ‘aberrant’ regime of motion, wherein the swimmer gets
quicker as the fluid viscosity increases, is expected to show up for all mechani-
cal microswimmers swimming due to the influence of sufficiently weak driving
forces. The simulations fully support the theoretical prediction for the onset of
the aberrant regime.

In chapter 4, we use the LB3D code to simulate swimmers with deformable
beads, to answer the question of whether passive shape changes–which are the
changes in shape of a deformable swimmer in response to the fluid, not as a driv-
ing mechanism for motion–can be beneficial for swimming. This relates to the as
yet unexplained phenomenon of metaboly, wherein spirochetes, which otherwse
swim by flagellar propulsion, regularly change their shapes during their motion,
without its being clear whether these shape changes are beneficial for locomo-
tion, for food capture, or some other purpose. Restricting our attention to our
model, we show that passive shape changes can result in both faster and slower
swimming, and that this response depends on the swimmer’s elasticity. The the-
ory accurately predicts both the regimes, where the shape changes respectively
promote and hinder the motion, that are visible in the simulations.

In chapter 5 we look at active effects of shape, by studying the different swim-
ming speeds of swimmers with rigid beads of different shapes. For this we allow
the beads to be ellipsoids of revolution, and calculate the optimal aspect ratios of
the ellipsoids (given a fixed volume or surface area) that maximize the swimming
velocity for equal driving forces. We find that depending on the stiffness coeffi-
cient of the springs, the same shape (for instance, the ellipsoid of the lowest drag



15

coefficient) may result in the fastest or the slowest swimmer, owing to the differ-
ent energy costs of deforming springs of low and high stiffness. We show that
this happens due to the swimming in the two cases being dominated either by a
reduction in the drag force opposing the beads or by the hydrodynamic interaction
amongst them.

In chapter 6 we expand the scope of our study to incorporate the onset of non-
Stokesian effects in microswimming. Using the waLBerla simulation system, we
systematically increase the forces driving the beads, thereby raising the Reynolds
number of motion and ultimately pushing the swimmer beyond the Stokes regime.
We show that the limit of this regime may be determined by matching the coast-
ing exhibited by the swimmer to that of an underdamped harmonic oscillator, with
the damping constant arising from the Stokes drag law. The effective radius of the
swimmer thus found agrees excellently with that obtained from theory, and indi-
cates that inertial effects in microswimming set in at increased driving forces (or,
equivalently, larger swimming strokes) or at increased swimmer masses. Build-
ing on this heuristic investigation, we modify our theoretical model by adding a
mass acceleration term in the governing equations of motion of the three beads,
and show that solution of the resultant system predicts swimmer velocities which
are in good agreement with those observed in simulations (and which differ sig-
nificantly from the Stokes-regime calculation results). These calculations confirm
the identification of the Stokes, non-Stokes and intermediate regimes seen in the
simulations.

We conclude in chapter 7 by a discussion of the main results presented in our
work, and future possibilities for its extension.
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Zusammenfassung

In dieser Dissertation nutzen wir das Teilchen-Feder Design eines Mikroschwim-
mers als ein Modellsystem, um mechanisches Mikroschwimmen zu untersuchen.
Die Grundform eines solchen Schwimmers wurde als der ‘Drei-Kugel-Schwimmer’
in Najafi and Golestanian [2004] eingeführt und wurde im Folgenden in theoretis-
chen, numerischen und experimentallen Untersuchungen ausgiebig genutzt. In
unserer Arbeit haben wir das Grundmodell auf verschiedene Arten modifiziert
und erweitert. Wie in dieser Dissertation beschrieben erlaubt uns dies Einblicke
in viele grundlegende Prinzipien des Mikroschwimmens wie zum Beispiel das
Zusammenspiel zwischen Widerstandskräften des Fluids und der Elastizität des
Schwimmers um die Effizienz der Bewegung zu ermitteln. Die hier präsentierte
Arbeit ist eine Untersuchung, die sowohl aus dem analytischen Lösen der Bewe-
gungsgleichungen für die verschiedenen Fälle, als auch aus den entsprechenden
numerischen Studien besteht.

Wir beginnen diese Dissertation mit einer allgemeinen Einleitung (Kapitel 0)
in die Welt der Bewegungen bei kleinen Reynoldszahlen, insbesondere in die
des Mikroschwimmens. Dann klären wir den aktuellen Wissensstand über bi-
ologische Mikroschiwmmer um dann das Kapitel mit theoretischen und exper-
imentellen Modellen dazu zu beschließen. Danach erklären wir in Kapitel 1
die Details des Golestanian’schen Drei-Kugel-Schwimmers und die Unterschiede
zu unserem Teilchen-Feder Modell. Im Golestanian’schen Modell sind die drei
Kugeln entlang einer Linie ausgerichtet und die Abstände zwischen zwei be-
nachbarten Kugeln werden für jedes Paar in einer kontrollierten Art und Weise
verändert, was den Schwimmschlag bestimmt und zu einer Bewegung des Schwi-
mmers führt. Wir ersetzen in dem Teilchen-Feder Modell die Vorgaben an den
Schwimmschlag mit denen der treibenden Kräfte für die Bewegung, lassen auch
nicht-sphärische und formverändernde Teilchen in unserem Design zu und un-
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tersuchen im letzten Teil der Dissertation die Bewegungen des Schwimmers jen-
seits des Stokes-Regimes. Diese Änderungen resultieren in einer allgemeineren
Beschreibung der Bewegung unter dem Einfluss der verschiedenen Akteure wie
der Fluidviskosität, dem Energieeintrag, der Elastizität des Schwimmers und seiner
instantanen und mittleren Form, wobei jeder einen wichtigen Beitrag zum Schwimm-
verhalten leistet. Im Gegensatz dazu werden diese Einflüsse im Golestanian’schen
Schwimmer in den Vorgaben an den Schwimmschlag zusammengefasst. In un-
serem Modell berechnen wir die Geschwindigkeit des Schwimmers sowohl mit
festen, als auch mit verformbaren Teilchen und verändern darüber hinaus das
Verhältnis aus Teilchengrößen zu den Abständen zwischen den Teilchen.

In Kapitel 2 erklären wir die beiden von uns genutzten Simulationsmetho-
den waLBerla und LB3D. Beide Simulationsmethoden basieren auf der Lattice-
Boltzmann-Methode (LBM) und unterscheiden sich hauptsächlich darin, wie sie
an Simulationsmethoden für die Bewegung der Teilchen gekoppelt sind. BeiwaL-
Berla handelt es sich um eine Physik-Engine für starre Körper, die jede beliebige
Kombination von starren Körpern in einem Fluid simulieren kann. Im Gegensatz
dazu handelt es sich bei LB3D um die ‘Immersed Boundary Methode’ (IBM), mit
der schließlich auch deformierbare Membranen simuliert werden können.

In Kapitel 3 vergleichen wir die Theorie mit den beiden Simulationsmetho-
den anhand der Geschwindigkeiten für Schwimmer mit starren Teilchen. Wir
erhalten eine gute Übereinstimmung, die wie erwartet noch besser wird, wenn das
simulierte System weiter idealisiert wird, z.B. durch eine größere Simulations-
umgebung oder kleinere Reynoldszahlen. Wir erklären zudem ob und wie einige
Mikroschwimmer schneller in viskoseren Fluiden schwimmen können. Wir zeigen,
dass dieses faszinierende und für viele Bakterienarten experimentell beobachtete
Phänomen in einem vollkommenen Newton’schen Fluid auftreten kann – ein Ergeb-
nis, das der vorherrschenden Lehrmeinung des Feldes widerspricht. Dieses Phäno-
men lässt sich durch einen zweigeteilten Effekt von Widerstandskräften des Flu-
ids auf die Bewegung bei kleinen Reynoldszahlen erklären. Insbesondere das so
genannten aberrante Regime, in dem der Schwimmer schneller wird als die Fluid-
viskosität erhöht wird, wird für alle mechanische Mikroschwimmer, die unter dem
Einfluss von ausreichend kleinen Antriebskräften schwimmen, erwartet. Auch
unsere Simulationen unterstützen die theoretischen Vorhersagen für das aberrante
Regime.

In Kapitel 4 nutzen wir den LB3D Simulationscode für Schwimmer mit de-
formierbaren Teilchen, um Fragen bezüglich passive Formänderungen, d.h. Form-
änderungen von deformierbaren Teilchen aufgrund des Einflusses des Fluids und
nicht als Mechanismus für eine Fortbewegung, beantworten zu können. Diese
Fragestellung ist mit dem bislang unerklärten Phänomen ‘Metaboly’ verbunden,
wo Spirochetes, die sonst durch einen Antrieb durch ihr Flagellum schwimmen,
ihre Form während der Bewegung verändern. Dabei ist noch unklar, ob diese
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Formänderungen für die Fortbewegung, zur Jagd von Nahrung oder für andere
Gründe nützlich sind. Bezogen auf unser Modell zeigen wir, dass passive Formän-
derungen sowohl schnelleres als auch langsameres Schwimmen verursachen können
und dass das konkrete Ergebnis von der Elastizität des Schwimmers abhängt. Die
Theorie sagt die beiden, in der Simulation gefundenen Regime präzise voraus.

In Kapitel 5 untersuchen wir den Einfluss der Teilchenform auf die Schwimm-
geschwindigkeit. Dafür betrachten wir die Teilchenkörper als Ellipsoide und
berechnen ihr optimales Aspektverhältnis unter einem gegebenen Volumen oder
einer gegebenen Oberfläche, das die Schwimmgeschwindigkeit für gleiche An-
triebskräfte maximiert. Als Funktion der Federstärke beobachten wir, dass die
gleiche Form, wie zum Beispiel der Ellipsoid für den geringsten Widerstandsko-
effizienten, zum schnellsten oder zum langsamsten Schwimmer führen kann. Der
Grund dafür liegt in den verschiedenen energetischen Kosten für die Verformung
von Federn mit verschiedenen Federstärken. Des Weiteren zeigen wir, dass dieser
Effekt entsteht, weil die Schwimmbewegungen in den beiden Fällen entweder
durch eine Reduktion der Widerstandskräfte entgegen der Teilchen oder durch
die hydrodynamische Wechselwirkung zwischen den Teilchen bestimmt wird.

In Kapitel 6 erweitern wir die Reichweite unserer Untersuchung durch die Be-
trachtung von Effekten auf das Mikroschwimmen jenseits des Stokes-Regimes.
Mit Hilfe der waLBerla-Simulationsmethode können wir systematisch die bes-
timmenden Kräfte auf die Teilchen und damit die Reynoldszahlen erhöhen, so
dass schließlich der Schwimmer das Stokes-Regime verlässt. Wir zeigen, dass
die Grenzen dieses Regimes durch eine Abbildung des Schwimmers auf einen
schwach gedämpften harmonischen Oszillator beschrieben werden kann. Die
Abklingkonstante der Dämpfung ist dabei durch das Stokes’sche Gesetz gegeben.
Der dafür gefundene effektive Radius des Schwimmers ist in außerordentlich
guter Übereinstimmung mit dem Radius aus der Theorie. Dies zeigt, dass Trägheits-
kräfte für das Mikroschwimmen relevant werden, sobald die Antriebskräfte (oder
entsprechend die Schwimmschläge) größer oder die Schwimmer massiver wer-
den. Aufbauend auf dieser heuristischen Untersuchung modifizieren wir unser
theoretisches Modell durch Hinzufügen eines Beschleunigungsterms für die Massen
zu den bestimmenden Gleichungen für die drei Teilchen. Die Lösungen dieses
modifizierten Systems sagen Schwimmergeschwindigkeiten voraus, die in guter
Übereinstimmung mit den in unseren Simulationen beobachteten Geschwindig-
keiten stehen, und dabei signifikant von den Lösungen im Stokes-Regime ab-
weichen. Diese Rechnungen bestätigen das Stokes-, das Nicht-Stokes- und das
dazwischen liegende Regime, die alle in Simulationen beobachtet wurden.

Wir beenden diese Arbeit mit einer Diskussion der wichtigsten Ergebnisse und
zukünftigen Weiterentwicklungen in Kapitel 7.

In dieser Dissertation nutzen wir das Teilchen-Feder Design eines Mikroschwim-
mers als ein Modellsystem, um mechanisches Mikroschwimmen zu untersuchen.
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Die Grundform eines solchen Schwimmers wurde als der ’Drei-Kugel-Schwimmer’
in Najafi Golestanian, Phys. Rev. E (2004) eingefhrt und wurde im Folgenden in
theoretischen, numerischen und experimentallen Untersuchungen ausgiebig genutzt.
In unserer Arbeit haben wir das Grundmodell auf verschiedene Arten modifiziert
und erweitert. Wie in dieser Dissertation beschrieben erlaubt uns dies Einblicke
in viele grundlegende Prinzipien des Mikroschwimmens wie zum Beispiel das
Zusammenspiel zwischen Widerstandskrften des Fluids und der Elastizitt des Schwim-
mers um die Effizienz der Bewegung zu ermitteln. Die hier prsentierte Arbeit ist
eine Untersuchung, die sowohl aus dem analytischen Lsen der Bewegungsgle-
ichungen fr die verschiedenen Flle, als auch aus den entsprechenden numerischen
Studien besteht.

Wir beginnen diese Dissertation mit einer allgemeinen Einleitung (Kapitel 0)
in die Welt der Bewegungen bei kleinen Reynoldszahlen, insbesondere in die
des Mikroschwimmens. Dann klren wir den aktuellen Wissensstand ber biol-
ogische Mikroschiwmmer um dann das Kapitel mit theoretischen und experi-
mentellen Modellen dazu zu beschlieen. Danach erklren wir in Kapitel 1 die De-
tails des Golestanian’schen Drei-Kugel-Schwimmers und die Unterschiede zu un-
serem Teilchen-Feder Modell. Im Golestanian’schen Modell sind die drei Kugeln
entlang einer Linie ausgerichtet und die Abstnde zwischen zwei benachbarten
Kugeln werden fr jedes Paar in einer kontrollierten Art und Weise verndert, was
den Schwimmschlag bestimmt und zu einer Bewegung des Schwimmers fhrt. Wir
ersetzen in dem Teilchen-Feder Modell die Vorgaben an den Schwimmschlag mit
denen der treibenden Krfte fr die Bewegung, lassen auch nicht-sphrische und
formverndernde Teilchen in unserem Design zu und untersuchen im letzten Teil
der Dissertation die Bewegungen des Schwimmers jenseits des Stokes-Regimes.
Diese nderungen resultieren in einer allgemeineren Beschreibung der Bewegung
unter dem Einfluss der verschiedenen Akteure wie der Fluidviskositt, dem En-
ergieeintrag, der Elastizitt des Schwimmers und seiner instantanen und mittleren
Form, wobei jeder einen wichtigen Beitrag zum Schwimm-verhalten leistet. Im
Gegensatz dazu werden diese Einflsse im Golestanian’schen Schwimmer in den
Vorgaben an den Schwimmschlag zusammengefasst. In unserem Modell berech-
nen wir die Geschwindigkeit des Schwimmers sowohl mit festen, als auch mit
verformbaren Teilchen und verndern darber hinaus das Verhltnis aus Teilchengren
zu den Abstnden zwischen den Teilchen.

In Kapitel 2 erklren wir die beiden von uns genutzten Simulationsmetho-
den Walberla und LB3D. Beide Simulationsmethoden basieren auf der Lattice-
Boltzmann-Methode (LBM) und unterscheiden sich hauptschlich darin, wie sie
an Simulationsmethoden fr die Bewegung der Teilchen gekoppelt sind. Bei Wal-
berla handelt es sich um eine Physik-Engine fr starre Krper, die jede beliebige
Kombination von starren Krpern in einem Fluid simulieren kann. Im Gegensatz
dazu handelt es sich bei LB3D um die ’Immersed Boundary Methode’ (IBM), mit
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der schlielich auch deformierbare Membranen simuliert werden knnen.
In Kapitel 3 vergleichen wir die Theorie mit den beiden Simulationsmetho-den

anhand der Geschwindigkeiten fr Schwimmer mit starren Teilchen. Wir erhalten
eine gute bereinstimmung, die wie erwartet noch besser wird, wenn das simulierte
System weiter idealisiert wird, z.B. durch eine grere Simulations-umgebung oder
kleinere Reynoldszahlen. Wir erklren zudem ob und wie einige Mikroschwim-
mer schneller in viskoseren Fluiden schwimmen knnen. Wir zeigen, dass dieses
faszinierende und fr viele Bakterienarten experimentell beobachtete Phnomen in
einem vollkommenen Newton’schen Fluid auftreten kann – ein Ergebnis, das der
vorherrschenden Lehrmeinung des Feldes widerspricht. Dieses Phnomen lsst sich
durch einen zweigeteilten Effekt von Widerstandskrften des Fluids auf die Bewe-
gung bei kleinen Reynoldszahlen erklren. Insbesondere das so genannten ”aber-
rante” Regime, in dem der Schwimmer schneller wird als die Fluidviskositt erhht
wird, wird fr alle mechanische Mikroschwimmer, die unter dem Einfluss von aus-
reichend kleinen Antriebskrften schwimmen, erwartet. Auch unsere Simulationen
untersttzen die theoretischen Vorhersagen fr das aberrante Regime.

In Kapitel 4 nutzen wir den LB3D Simulationscode fr Schwimmer mit de-
formierbaren Teilchen, um Fragen bezglich passive Formnderungen, d.h. Form-
nderungen von deformierbaren Teilchen aufgrund des Einflusses des Fluids und
nicht als Mechanismus fr eine Fortbewegung, beantworten zu knnen. Diese Fragestel-
lung ist mit dem bislang unerklrten Phnomen ’Metaboly’ verbunden, wo Spiro-
chetes, die sonst durch einen Antrieb durch ihr Flagellum schwimmen, ihre Form
whrend der Bewegung verndern. Dabei ist noch unklar, ob diese Formnderun-
gen fr die Fortbewegung, zur Jagd von Nahrung oder fr andere Grnde ntzlich
sind. Bezogen auf unser Modell zeigen wir, dass passive Formnderungen sowohl
schnelleres als auch langsameres Schwimmen verursachen knnen und dass das
konkrete Ergebnis von der Elastizitt des Schwimmers abhngt. Die Theorie sagt
die beiden, in der Simulation gefundenen Regime przise voraus.

In Kapitel 5 untersuchen wir den Einfluss der Teilchenform auf die Schwim-
mgeschwindigkeit. Dafr betrachten wir die Teilchenkrper als Ellipsoide und berech-
nen ihr optimales Aspektverhltnis unter einem gegebenen Volumen oder einer
gegebenen Oberflche, das die Schwimmgeschwindigkeit fr gleiche Antriebskrfte
maximiert. Als Funktion der Federstrke beobachten wir, dass die gleiche Form,
wie zum Beispiel der Ellipsoid fr den geringsten Widerstandskoeffizienten, zum
schnellsten oder zum langsamsten Schwimmer fhren kann. Der Grund dafr liegt
in den verschiedenen energetischen Kosten fr die Verformung von Federn mit ver-
schiedenen Federstrken. Des Weiteren zeigen wir, dass dieser Effekt entsteht, weil
die Schwimmbewegungen in den beiden Fllen entweder durch eine Reduktion der
Widerstandskrfte entgegen der Teilchen oder durch die hydrodynamische Wech-
selwirkung zwischen den Teilchen bestimmt wird.

In Kapitel 6 erweitern wir die Reichweite unserer Untersuchung durch die Be-
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trachtung von Effekten auf das Mikroschwimmen jenseits des Stokes-Regimes.
Mit Hilfe der Walberla-Simulationsmethode knnen wir systematisch die bestim-
menden Krfte auf die Teilchen und damit die Reynoldszahlen erhhen, so dass
schlielich der Schwimmer das Stokes-Regime verlsst. Wir zeigen, dass die Gren-
zen dieses Regimes durch eine Abbildung des Schwimmers auf einen schwach
gedmpften harmonischen Oszillator beschrieben werden kann. Die Abklingkon-
stante der Dmpfung ist dabei durch das Stokes’sche Gesetz gegeben. Der dafr
gefundene effektive Radius des Schwimmers ist in außerordentlich guter berein-
stimmung mit dem Radius aus der Theorie. Dies zeigt, dass Trgheitskrfte fr das
Mikroschwimmen relevant werden, sobald die Antriebskrfte (oder entsprechend
die Schwimmschlge) grer oder die Schwimmer massiver werden. Aufbauend auf
dieser heuristischen Untersuchung modifizieren wir unser theoretisches Modell
durch Hinzufgen eines Beschleunigungsterms fr die Massen zu den bestimmenden
Gleichungen fr die drei Teilchen. Die Lsungen dieses modifizierten Systems
sagen Schwimmergeschwindigkeiten voraus, die in guter bereinstimmung mit den
in unseren Simulationen beobachteten Geschwindigkeiten stehen, und dabei sig-
nifikant von den Lsungen im Stokes-Regime abweichen. Diese Rechnungen best-
tigen das Stokes-, das Nicht-Stokes- und das dazwischen liegende Regime, die
alle in Simulationen beobachtet wurden.

Wir beenden diese Arbeit mit einer Diskussion der wichtigsten Ergebnisse und
zuknftigen Weiterentwicklungen in Kapitel 7.
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0
Introduction

In this thesis we study mechanically-driven microswimmers (hereafter also of-
ten called simply ‘swimmers’, since it is clear that we are always concerned with
mechanical swimming at the micro-scales, unless explicitly stated otherwise). As
the name suggests, these are entities typically of microscopic sizes which can
utilise mechanical forces to swim, or propel themselves autonomously under their
own agency, in fluids. Their dimensions are usually of the order of microns, al-
though there is no precise size limitation. Biologically most micro-organisms
such as bacteria, archaea, algae, protozoa, etc., can be classified as microswim-
mers, and indeed a great part–a majority, according to some studies–of the earth’s
biomass can be included in this category [Whitman et al., 1998, Biddle et al.,
2006, Lipp et al., 2008, Kallmeyer et al., 2012]. In addition to these natural or-
ganisms, there are many existing and planned artificial contraptions which are of
microscopic dimensions and swim in fluid environments, and are thus also exam-
ples of microswimmers. Such contraptions include drug delivery systems[Tierno
et al., 2008a, Scogna et al., 2011, Patra et al., 2013], lab-on-a-chip devices [Craig-
head, 2006, El-Ali et al., 2006, Yeo et al., 2011, Sackmann et al., 2014], medical
probes [Yager et al., 2006, Nelson et al., 2010, Gervais et al., 2011, JianFeng and
Cho, 2014], etc.

Our interest will be centred on the motion of mechanical microswimmers.
Given their dominance in terms of the numbers of individuals as well as the total
biomass, it should come as no surprise that the way biological microswimmers
interact with each other and with their environments has vital consequences for
all life on earth. Both harmful and salubrious effects of micro-organisms (also
called microbes) on the health of other organisms are well-studied [Costerton
et al., 1999, Hudault et al., 2001, Wanke, 2001, Collignon, 2009, Merchant et al.,
2012]. Similarly, for artificial microswimmers it is a crucially important task to
fully understand and predict the characteristics of their motion, if the purposes for
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which they are fabricated are to be carried out efficiently and safely.

In this thesis therefore we study the physical features of the motion of mi-
croswimmers. Our analysis will be focussed on one particular model of a mi-
croswimmer, the bead-spring swimmer (treated in detail in chapter 1), but our
guiding principle and purpose throughout will be to extract wisdom about the gen-
eral features of microswimming using this model. We shall focus exclusively on
the physical questions involved, deriving from the fluid dynamics of the prob-
lem, and show that in most cases, the features of swimming at micro-scales run
directly counter to those at the macro-scale. Note that there are many microswim-
mers in experiment and theory which are not mechanically driven, such as those
swimming due to chemical reactions [Fournier-Bidoz et al., 2005, Golestanian
et al., 2005, Howse et al., 2007, Rückner and Kapral, 2007, Tao and Kapral, 2008,
Popescu et al., 2010, Baraban et al., 2012] or thermal expansion of parts of the
swimmer [Jiang et al., 2010, Buttinoni et al., 2012, de Buyl and Kapral, 2013,
Braun and Cichos, 2013]. Such swimmers lie outside the purview of this thesis.

This introductory chapter is structured as follows. We start with a descrip-
tion of the main concepts involved in treating mathematical problems of motion
at low Reynolds numbers (see section 0.1), and then provide a brief overview of
microswimmers in general and artificial microswimmers in particular, with a spe-
cial focus on the different mathematical models of microswimmers that exist and
numerical and experimental realisations of the same. We finish with a description
of the various chapters in this thesis.

0.1 Fundamental concepts of low Reynolds number
motion

The world of microswimming is typically a world where a lot of effort has to
be expended for motion, as seen in the typically low efficiencies of motion of
microswimmers [Purcell, 1997, Avron et al., 2004, Chattopadhyay et al., 2006,
Alouges et al., 2009, Osterman and Vilfan, 2011]. The main reason for this is
the immense frictional resistance to motion that microswimmers habitually face
in fluids, due to their microscopic sizes and negligible masses. The mathematical
reflection of this statement is in the very small Reynolds numbers Re [Rott, 1990]
of motion of microswimmers, and in the next section we explain the main features
of flows with small Re. Note however that the condition of negligibly small Re
does not always obtain, and in some cases, for instance the one treated by us in
chapter 6, the low Re description becomes invalid.
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0.1.1 The Navier-Stokes and the Stokes equations

The flow of a general fluid treated as a continuum is described by the famous
Navier-Stokes (N-S) equation, which was formulated by the physicists Claude-
Louis Navier and George Gabriel Stokes in the 19th century. For an incompress-
ible Newtonian fluid of a constant density, which is the only case we will consider
in this thesis, the Navier-Stokes equation reads

ρ

(
∂u(r, t)
∂t

+ (u(r, t) · ∇) u(r, t)
)
= −∇p(r, t) + η∇2u(r, t) + f(r, t), (0.1)

where ρ and η are the density and the dynamic viscosity of the fluid, respectively,
u(r, t) and p(r, t) are its velocity and pressure, respectively, at the point r at the
time instant t, and f(r, t) is the force density on the fluid at the same point and the
same instant of time. An incompressible fluid additionally satisfies the equation

∇ · u(r, t) = 0, (0.2)

which is simply a statement of the conservation of mass (the equation of continu-
ity) in this case.

The Navier-Stokes equation, while a great success in describing continuum
flow in all known scenarios, is unfortunately very difficult–and, as yet, seemingly
impossible–to solve in the general case, so much so that it has been named as one
of the famous seven Millenium Problems in mathematics, each carrying a prize
money of USD 1 million for solution [Carlson et al., 2006]. Particular instances of
the equation therefore necessitate appropriate simplifications which may facilitate
solution while still describing the phenomena in question reasonably accurately.
Fortunately, one such simplification is easily done in the world of microswim-
ming. For this, consider a microswimmer with a typical length dimension L, a
typical velocity U, a mass M and a friction coefficient γ. By non-dimensionalising
the different terms in Eq. (0.1) with appropriate combinations of these variable,
we get the equation [Dhont, 1996](

ρL2γ

Mη

)
∂u′

∂t′
+

(
ρLU
η

)
(u′ · ∇) u′ = −∇′p′ + ∇′2u′ + f′, (0.3)

where the primes denote non-dimensional counterparts of the respective unprimed
variables. Here time has been non-dimensionalised as t′ = t/(M/γ), which
means that over the diffusive time scale τD � M/γ (which is usually the time
scale of interest for microswimmers), the time derivative of the velocity ∂u′/∂t′,
both due to friction and due to changes in the external force f′, is zero [Dhont,
1996]. For microswimmers and colloidal particles in general, it turns out that the
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Reynolds number Re of the flow, defined as

Re =
ρLU
η

(0.4)

is usually much smaller than 1. In that case the second term in Eq. (0.1) can also
be neglected, and we finally have the following equation for the original unprimed
variables,

η∇2u (r, t) −∇p (r, t) + f (r, t) = 0, (0.5)

which is the famous Stokes equation. If the flow in a fluid in a given scenario
can be described well by Eq. (0.5), we will say that the fluid (or the flow, or the
motion) is in the Stokes regime (or Stokes flow). When this does not happen,
then we shall say that the fluid (or motion, etc.) is in the non-Stokes regime
(or non-Stokes flow). The immense theoretical simplification contained within
the Stokes equation in comparison to the Navier Stokes equation is the absence
of the non-linear term in velocity, (u · ∇) u, and of the time-derivative ∂u/∂t.
Both of these features impart very interesting properties to the motion described
by the Stokes equation, as we briefly explain in the following sections. Note
that the Reynolds number of motion is never strictly zero, so the Stokes equation
never exactly describes the fluid flow. In most cases relevant to microswimming,
however, it turns out to be conveniently accurate.

0.1.2 Green’s function of the Stokes equation: the Oseen ten-
sor

Due to the linearity of the Stokes equation (0.5), the velocity at each point in a
fluid in the Stokes regime is proportional to a force acting on it at any point. The
proportionality is specified by the Oseen tensor T(r), such that

u(r) = T(r − r0) · f0, (0.6)

where f0 is a force applied at the point r0 in the fluid. The Oseen tensor is given
by [Oseen, 1927]

T(r) =
1

8πηr

(
I +

rr
r2

)
. (0.7)

Mathematically the Oseen tensor is the Green’s function for the fluid velocity of
the Stokes equation which admits such a function since it is linear. Due to its
fundamental importance in describing the velocity fields in Stokes flow, it is also
called the stokeslet.

In a similar manner, the Green’s function of the Stokes equation for the pres-
sure p(r) can also be found, since the equation (0.5) is also linear for the pressure.
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The resulting tensor is called the pressure tensor g(r), and is given by

g(r) =
r

4πr3 . (0.8)

The equation analogous to Eq. (0.6) describing the pressure field everywhere in
the fluid is

p(r) = g(r − r0) · f0, (0.9)

where again f0 is a point force applied at r0. Lastly, due again to the linearity of
the Stokes equation, equations (0.6) and (0.9) can be generalised to distributions
of applied forces, by integrating over the individual point contributions in the
fluid [Dhont, 1996].

An important consequence of the form of the velocity-force relation in Eq. (0.6)
is the anisotropy with regard to the direction. It is easy to see that the flow veloc-
ity u‖(r) in the direction of the applied force f0 equals f0/(4πη|r|), while the flow
velocity u⊥(r) perpendicular to f0 equals f0/(8πη|r|). This anisotropy means that
by changing their shapes suitably, microswimmers can succeed in eliciting differ-
ent drag forces from the fluid at different points during their motion, and this can
be a vital part of their swimming strategy [Childress, 1981].

0.1.3 Kinematic reversibility

In the Stokes equation (0.5), there is no explicit time-dependence, since the time
derivative of the velocity field ∂u/∂t in Eq. (0.1) has been disposed of in arriving
at Eq. (0.5). This results in the curious effect of making the fluid everywhere,
till infinity if the domain is not bounded, respond perfectly instantaneously to any
forces applied anywhere within the domain. This also means that if over time
the applied forces within the fluid are reversed, the flow will reverse perfectly
too. This property is sometimes called kinematic reversibility (where the qual-
ifier ‘kinematic’ distinguishes this property from the concept of reversibility in
thermodynamics; viscous flows constantly dissipate energy and are in that respect
clearly thermodynamically irreversible). A very striking demonstration of this
was presented by Taylor in a famous video in which a mixture of two coloured
liquids (of sufficiently high viscosities so as to impart Stokesian characteristics to
the flows) was made to demix almost perfectly, simply by reversing the stirring
mechanism which caused the two liquids to mix in the first place [Taylor, 1967].

This fact has biological consequences for the motion of organisms in the
Stokes regime. For instance, consider a swimmer like a scallop with only one
degree of freedom of movement, such as the ability to open and close its mouth.
In flow that is perfectly Stokesian, any distance that the scallop traverses in the
length of time in which it closes its mouth is negated exactly by the negative dis-
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Figure 0.1: The net zero motion at Stokes flow of a scallop which can only open
and close its mouth. The distance covered in the first half-cycle is cancelled by
the negative distance covered in the second half-cycle.

tance covered in the time period during which it opens its mouth (Fig. 0.1). The
net effect is of the scallop not swimming at all over the course of the entire swim-
ming motion. A related feature is that in the Stokes regime the rate of applying
the force in the fluid is immaterial, so that for a swimmer, the net distance covered
in two cycles in which the same shape transformations are carried out is the same,
irrespective of whether the two cycles are of equal duration or not. The impossi-
bility of motion by a scallop in Stokes flow, and in general by any swimmer with
a single degree of freedom and executing reversible strokes, was highlighted by
Purcell in a famous lecture in 1977 [Purcell, 1977], and has come to be known as
Purcell’s scallop theorem. A motion where the strokes executed are reversible
in time is also termed as ‘reciprocal’. Recently Bet et al. have reformulated the
scallop theorem in a general way, showing explicitly that a stroke is reciprocal
and leads to no net movement if the area enclosed by it in the internal coordinate
space is zero [Bet et al., 2016].

In Stokes flow, therefore, a minimum of two degrees of freedom are required
in order for persistent motion to occur (an exception to this being motion with
a helical screw, where reciprocal motion is not required in order to return the
screw to its initial configuration). A scallop with just one degree of freedom does
swim in the ocean, of course, and the reason is that it inhabits a conveniently non-
Stokesian world, where the rate of change of shapes does become important due
to inertia and the scallop can exploit this fact by opening and closing its mouth at
different speeds to gain a net displacement per cycle.
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0.1.4 Nature of swimming: pushers, pullers and neutral swim-
mers

It is easy to see from Eqs. (0.6) and (0.7) that in the far field limit of |r| → 0, the
velocity field due to a stokeslet, which is a non-zero force applied at a single point
in the fluid, drops off as |r|−1. Microswimmers, however, have a net zero force
and torque acting on them (assuming they are swimming autonomously), and to
the leading order are therefore force dipoles, unlike the stokeslet which is a force
monopole. A multipole expansion of the velocity fields produced by their motion,
in terms of powers of |r|−1, therefore results in the leading order being at least two,
i.e. the leading order term is |r|−2 (unless even the second order is absent, as can
happen when, for instance, particular symmetries in the swimmer design cancel
off the |r|−2 terms in the flow fields).

If we denote the strength of the force dipole by p, then two kinds of swimmers
can be distinguished, depending on the sign of p. If p is positive, then the swim-
mer is called a pusher, and if p is negative, then the swimmer is a puller. There
are a few basic differences between these kinds of swimmers. Pushers generally
swim by pushing the fluid behind them away from themselves (with ‘in front’ and
‘behind’ defined with respect to the swimming direction). This is usually done
through the use of flagella or similar swimming apparatus. A typical example of a
pusher is the bacterium Escherichia coli (Fig. 0.3 (a)). Pullers in contrast swim by
pulling the fluid in front of them towards themselves, again with the help of flag-
ella or similar appendages. A typical puller example is the alga Chlamydomonas
reinhardtii (Fig. 0.3 (b)).

From our point of view, the most significant difference between pushers and
pullers is the different flow fields that they generate in a fluid during their motion.
Pushers push out fluid in both directions along the axis of motion, and pull in
fluids from both directions perpendicular to this axis. For this reason they are
also called ‘extensile’ swimmers. Pullers exhibit exactly the opposite behaviour
of pulling in fluid along the swimming axis and pushing it out perpendicular to
this axis, and are also termed ‘contractile’ swimmers. These flow fields result
in two pushers swimming side-by-side attracting each other, as is the case with
two pullers swimming one behind the other. Similarly, two pushers swimming
one behind the other repel each other, as do two pullers swimming side-by-side.
The average directions of the fluid flow around both of these kinds of swimmers,
in reference frames moving with the swimmers, are displayed in Fig. 0.2, parts
(a) and (c). Note that not all microswimmers can be characterised as pushers or
pullers; part (b) of Fig. 0.2 shows such a swimmer along with the the directions
of the average local flow fields generated by it.
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(a) (b) (c)

Figure 0.2: The local directions of average flow fields around (a) pushers, (b)
neutral swimmers, and (c) pullers, in the frames of reference of the swimmers.
The swimmer in each case is denoted by the red figure in the centre, and the
swimming is in the horizontal direction, i.e. the swimming axis coincides with the
long axis of the swimmer.

0.2 Different kinds of microswimmers
As seen in section 0.1.3, microswimmers require in general at least two degrees
of freedom in configurational space to overcome the limitation imposed on their
motion by the scallop theorem. There are many different ways to incorporate
these degrees of freedom, and this is evidenced by the dazzling variety of mecha-
nisms that Nature has equipped her tiny inhabitants with to enable them to move.
Human ingenuity is a bit more limited, and the designs for artificial microswim-
mers that have been proposed–whether as theoretical aids intended to deepen our
understanding of the world of micro-locomotion or as blueprints for fabrication–
typically involve only a bare few degrees of freedom. Here we review some of the
most ubiquitous of both biological and human-designed microswimmers.

0.2.1 Biological microswimmers
The swimmers in nature come in a great variety of shapes and forms. A majority
can nevertheless be classified as swimming due to some appendages to the main
swimmer body or due to the deformation of the main swimmer body itself.

The swimming appendages possessed by members of the former class are usu-
ally either flagella or cilia. Flagella (Fig. 0.3 (a)-(c)) are relatively long filaments
attached to the cell body which are most commonly either rotated as a helix or
paddled like oars to move the fluid surrounding the swimmer [Lauga and Powers,
2009]. (Here we make mention of a ‘cell’ body since the common biological mi-
croswimmers like bacteria, Paramecia, etc. are typically unicellular organisms.)
A swimmer may possess one, two or many flagella, and these may be attached
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(b)

(d)

(e) (f)

(a)

(c)

Figure 0.3: Some examples of biological microswimmers. Part (a) shows the
bacterium Escherichia coli with a flagellar bundle at its back which it uses to
push the fluid away from it. Adapted from [DiLuzio et al., 2005]. Part (b) shows
the algal cell Chlamydomonas reinhardtii, which uses its two flagella to pull the
fluid from its front towards its hind side. Adapted from [Ueki et al., 2016]. Part (c)
shows a representation of a Peromyscus sperm cell, with a single flagellum driving
its motion. Adapted from [Fisher et al., 2014]. Part (d) shows a Paramecium
chlorelligerum cell, with beautiful metachronal waves running across the cilia on
its surface. Adapted from [Kreutz et al., 2012]. Part (e) shows the amoeboid
organism Chaos carolinense. Adapted from [Chapman-Andresen, 1976]. Part (f)
shows a schematic representation of the metaboly process in a euglenid. Adapted
from [Arroyo et al., 2012].
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either at the end(s) of the cell body or all over the surface. The ‘run-and-tumble’
motion of some common bacteria like Escherichia coli and Salmonella results
from the bundling and unbundling of many flagella on the body [Calladine, 1975,
Armitage and Macnab, 1987, Turner et al., 2000, Darnton and Berg, 2007, Vogel
and Stark, 2010]. In the ‘run’ stage of the motion, all the flagella are bundled
together and the bundle rotates as a helix counterclockwise, driving the swimmer.
In the ‘tumble’ stage, one flagellum dissociates from the bundle and starts rotating
in a clockwise direction, causing the bacterium to realign in a random direction,
at which point the run stage commences anew [Macnab, 1977, Berg, 2004, Darn-
ton et al., 2007, Hyon et al., 2012, Vogel and Stark, 2013, Calladine et al., 2013].
For bacteria with a single flagellum, the tumbling motion is accomplished through
the use of a buckling instability in the flagellum [Son et al., 2013]. Sperm cells
(Fig. 0.3 (c)) in contrast may execute a whip-like beating motion of their flagella,
in addition to a helical or planar wave-like motion, to drive the cell [Hatsumi and
Wakahama, 1986, Quicke et al., 1992, Bray, 2000, Cosson et al., 2003, Woolley,
2003, Eisenbach and Giojalas, 2006, Friedrich and Jülicher, 2007, Werner and
Simmons, 2008, Kaupp et al., 2008, Friedrich et al., 2010, Alvarez et al., 2014].
Swimmers may utilise other kinds of flagellar mechanisms, such as internal flag-
ella [Berg, 1976, Charon et al., 1984, Goldstein and Charon, 1990], flagella with
a stop-start mechanism of the motor driving the flagellum [Armitage and Schmitt,
1997], flagella alternately pushing and pulling the cell [Koyasu and Shirakihara,
1984], etc.

Cilia (Fig. 0.3 (d)) are typically arrangements of many filaments which cover
the swimmer body and beat together in coordinated ways [Blake and Sleigh, 1974,
Brennen and Winet, 1977, Sleigh et al., 1988, Salathe, 2007, Smith et al., 2008].
They differ from flagella mainly in their smaller lengths but larger thicknesses [El-
geti et al., 2015, Purcell, 1977], and in the asymmetry of their beating. While flag-
ellar beats are close to uniform, ciliary beats have a ‘power stroke’, in which the
cilia are extended, and a ‘recovery stroke’, in which they are folded leading to less
hydrodynamic drag [Bray, 2000]. An interesting instance of coordination between
cilia is an effect termed as ‘metachronal waves’, wherein cilia tightly packed to-
gether over a surface have waves propagating over the entire arrangement of the
cilia, like a ‘Mexican wave’ in a football stadium, due to a constant phase differ-
ence between neighbouring cilia [Tamm and Horridge, 1970, Machemer, 1972,
Sleigh et al., 1988, Okamoto and Nakaoka, 1994, Elgeti and Gompper, 2013].

Many micro-organisms use changes of shape of their body itself to help them
to propagate. Two common processes for the shape change are amoeboid move-
ment and euglenoid movement or metaboly. Amoeboid movement is exhibited by
many organisms which alter their shape by extending bulges of cytoplasm, called
pseudopods, from within their plasma membrane and then retracting them at other
points on the cell body (Fig. 0.3 (e)). Well-known examples of such organisms are
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the multicellular Dictyostelium discoideum and Entamoeba histolytica, which can
reside in the human intestine and cause amoebic dysentery. Metaboly or euglenoid
movement is exhibited by some species of euglenids, such as Eutreptiella gymnas-
tica Throndsen [1969], and comprises of periodic deformation of the entire cell
body with a large amplitude (Fig. 0.3 (f)). Neither the underlying mechanism nor
even the purpose of metaboly is well-understood, since the primary mechanism
by which euglenids move is through flagellar beating. There is however evidence
to suggest that metaboly can be an efficient mode of motility in simple fluids and
could become important in granular or complex media [Arroyo et al., 2012].

The above is just a brief description of some common motility strategies of
micro-organisms in nature. As may be expected, many other mechanisms exist,
such as a differential rotation of the outer body membrane and the inner cyto-
plasmic membrane of a cell [Berg, 1976, Murphy et al., 2008], using the actin
cytoskeleton of a host cell to generate an actin comet which propels the swim-
mer [Kawska et al., 2012], and swimming by changes in the helicity of the body
which cause kinks to propagate down it [Shaevitz et al., 2005].

0.2.2 Microswimmer models
In addition to the above-described biological swimmers, there are many artificial
models of microswimmers, which either serve as simplistic pictures describing the
essential features of locomotion of particular biological swimmers, or as designs
for the fabrication of artificial machines either now or in the future, or even as
explicatory devices whose main purpose is to shed light on some chosen asppects
of microswimming. Here we recount a few of the most important such models.

The first mathematical model of a body which could propel itself in a vis-
cous fluid at negligibly small Reynolds numbers was that of Taylor’s swimming
sheet, proposed in Taylor [1951] (Fig. 0.4 (a)). In this pioneering study, the two-
dimensional sheet was taken to be infinite in extent and to have small amplitude
transverse waves on its surface. This is a simplistic model of the beating of sperm
flagella. Given the form of the surface oscillations, Taylor showed that the velocity
of the sheet could be calculated to desired orders in (amplitude × wavenumber).
Interestingly, for a given surface oscillation, the swimming velocity of the sheet
does not depend on the viscosity of the fluid. The reason for this becomes clear
when one considers the fact that the viscosity affects the load on the sheet and the
work done by it in deforming, but this load (or work) is subsumed in the waveform
and therefore does not show up in the final result [Lauga and Powers, 2009]. This
is in fact a generic feature of locomotion in Newtonian fluids in the Stokes regime:
to observe the true dependence of the swimming velocities on the fluid viscosity, it
is necessary to give a meaningful energy/force input and let the swimming defor-
mation emerge as a response to this input. This observation will be important for
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our own results concerning the effect of viscosity on microswimming presented
in section 3.3.

A swimmer model next only in primacy to Taylor’s swimming sheet is the one
proposed by Purcell in his lecture already alluded to [Purcell, 1977]. It consists of
a body with three rigid parts connected together by two hinges (Fig. 0.4 (b)). The
individual parts can rotate around these hinges forming angles θ1 and θ2 as shown
in the figure, and these two angles provide the two requisite independent degrees
of freedom that the scallop theorem mandates. When these angles are changed
appropriately, such as in the cycle marked by the instantaneous shapes S 1 to S 5
in Fig. 0.4 (b), the swimmer can propel itself in a fluid, although the direction of
motion is not trivial to guess [Becker et al., 2003].

Another swimmer which has come to be very important in the field is the three-
sphere swimmer introduced in Najafi and Golestanian [2004]. It consist of three
spheres connected together in a line, with the two independent degrees of free-
dom being the relative distances between two neighbouring spheres, also called
the arm lengths (Fig. 0.4 (c)). This swimmer can be seen as following the same
design philosophy as Purcell’s swimmer in having three body parts changing their
relative positions, but it offers the great advantage that the relative displacements
of these body parts, as well as the motion of the swimmer, are all along one axis,
thus making the analysis of the motion much simpler. For this reason this swim-
mer has found wide use in analytical [Pooley et al., 2007, Alouges et al., 2008,
Golestanian, 2008, Alexander et al., 2008, Zargar et al., 2009, Alouges et al.,
2009, Najafi and Golestanian, 2010], numerical [Earl et al., 2007, Pooley and
Yeomans, 2008] and experimental [Leoni et al., 2009] research. In our work we
employ a bead-spring model which is based on the three-sphere swimmer but in-
corporates some essential differences which are necessary for our investigations.
We explain both the three sphere swimmer and our bead-spring model in detail in
chapter 1.

A swimmer which dispenses with one of the spheres in the three sphere model
is the pushmepullyou [Avron et al., 2005]. It has just two spheres connected by
an arm of variable length, and the second degree of freedom is attained by mak-
ing the volumes of the spheres vary in time subject to a total volume preservation
constraint (Fig. 0.4 (d)). This swimmer can in fact be seen as being equivalent to
the three sphere model, with the near and far configurations of two neighbouring
spheres being replaced by the small and large configurations of a single sphere, re-
spectively. The equivalence of the two situations lies in the fact that both of these
deformations have the effect of changing the hydrodynamic radius of an actual
sphere or an effective sphere composed of two neighbouring spheres. For compa-
rable dimensions and driving, the pushmepullyou swimmer has been found to be
more efficient than the three sphere model if large amplitudes of the swimming
strokes are allowed, and its efficiency is higher than that of biological flagellar
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(b)

(c)

(d)

(e)

(a)

S1 S2 S3 S4 S5

S1 S2 S3

S4 S5

S1 S2 S3 S4 S5

Figure 0.4: Some examples of microswimmer models. Part (a) shows Taylor’s
swimming sheet, modelling the beating motion of a sperm flagellum. Taken from
[Taylor, 1951]. Part (b) shows Purcell’s swimmer, with a double switchblade-
like structure (top), and the shapes comprising one swimming cycle (bottom).
Adapted from [Purcell, 1977]. Part (c) shows the different configurations of the
three-sphere swimmer comprising one swimming cycle. Adapted from [Najafi
and Golestanian, 2004]. Part (d) shows the pushmepullyou swimmer, with the
different configurations it adopts in one swimming cycle. Adapted from [Avron
et al., 2005]. Part (e) shows the schematic representation of a squirmer. Taken
from [Ishimoto and Gaffney, 2013].
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swimmers [Avron et al., 2005].
Another popular swimmer model is that of a squirmer, which consists of a

sphere with an effective slip velocity prescribed for the average fluid flow close to
the sphere surface (Fig. 0.4 (e)). It was introduced by Lighthill [Lighthill, 1952],
and later extended by Blake [Blake, 1971], in order to describe the swimming
speeds of and the flows surrounding micro-organisms like Volvox and Parame-
cium, whose surfaces are covered with thousands of beating cilia which impart a
net non-zero flow to the fluid in the vicinity of the organisms. The squirmer is
thus a representative of a common approach in the field, wherein instead of re-
solving fully the components and the forces of a swimmer an effective force field,
which controls the main features of the motion, is assumed to act on the swim-
mer [Drescher et al., 2010, Friedrich and Jülicher, 2012]. For a squirmer, with a
particular form of the velocity field on its surface squirmer assumed, it is found
that the swimming velocity is independent of the fluid viscosity [Lighthill, 1952],
which harks back to our earlier discussion of the effects of the viscosity being
invisible when the stroke is prescribed.

There are many other swimmer models which have been proposed, such as
a surface treadmiller [Leshansky et al., 2007], a bilayer vesicle jellyfish [Evans
et al., 2010], rotating two-sphere swimmers [Ogrin et al., 2008], and many-scallop
swimmers [Lauga and Bartolo, 2008], among others.

0.2.3 Microswimmers in experiments
There are a number of experimental models which seek to recreate or build upon
biological or theoretical swimming mechanisms such as the ones described above.
An important example of such a model swimmer, the first of its kind at the micro-
scale, was constructed by Dreyfus et al. in 2005, and consisted of a chain of
paramagnetic filaments attached to a main body which was made of a red blood
cell [Dreyfus et al., 2005]. Actuation by an external alternating magnetic field
caused the chain to wiggle, in a fashion somewhat reminiscent of a sperm cell,
and the whole assembly to swim in the direction of the chain (unlike a sperm cell).
Another swimmer which copies the wiggling motion of sperm was presented in
Williams et al. [2014]. It is made up of a polydimethylsiloxane filament which
has a small head and a long tail with heart muscle cells grown on it. Contraction
of the heart muscle cells causes the filament to deform leading to motion of the
assembly. More examples of biology-inspired swimmers are those with artificial
cilia [Vilfan et al., 2010, Branscomb and Alexeev, 2010, Masoud and Alexeev,
2011] such as those using microtubule bundles [Sanchez et al., 2011], magnetic
bead chains [Kim and Netz, 2006] and micro-pillars mounted on piston-like ac-
tuators [Keissner and Brücker, 2012], or rotating discs and spheres [Grzybowsk
et al., 2000, Bleil et al., 2006, Tierno et al., 2008b], which mimic the rotating
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motion of the green alga Volvox.

0.3 Structure of the thesis
This thesis is structured as follows. Following this chapter, we introduce in chap-
ter 1 the swimmer model that we shall use throughout this work, the bead-spring
swimmer, and present the calculation of the velocity of this swimmer under var-
ious conditions, such as with rigid beads, with deformable beads, and to different
orders in certain important parameters. This chapter contains the bulk of our cal-
culations presented in this thesis–with the notable exception of the calculation of
the velocity of a swimmer with inertia which we discuss in chapter 6–and we shall
make use of the results found here throughout the rest of the work to discuss var-
ious features of microswimming. In chapter 2 we explain the lattice Boltzmann
method (LBM) of simulations in brief, and give details of the two LBM simula-
tion systems used by us, the waLBerla-pe system and LB3D. In chapter 3 we first
verify the basic calculations presented in chapter 1 by comparing their predictions
to results from simulations, and then show that our theory can help explain a puz-
zling phenomenon in microswimming, which is that some microswimmers have
been observed to swim faster when the viscosity of the ambient fluid is increased,
in apparent contradiction of theoretical models based on simple Newtonian fluids.
In chapter 4 we study the question of whether the swimming velocity can be en-
hanced if the body of the swimmer, not counting the swimming appendages like
flagella, etc., is able to deform in response to the fluid flow around it. In chapter
5 we determine the optimal shapes for the beads in our swimmer when they are
restricted to be prolate or oblate ellipsoids of a fixed volume or surface area. In
doing this we identify two regimes of motion wherein the swimming is dominated
either by a reduction of the resistive drag faced by the swimmer, or by an increase
in the hydrodynamic interaction amongst various motile parts of the swimmer. In
chapter 6 we extend our study to include inertial effects in the swimmer’s motion,
which are absent in purely Stokesian flow. For this we first identify the limits of
the Stokes regime for our swimmer by likening its relaxation in a fluid to that of an
underdamped harmonic oscillator, and then calculate the velocity of the swimmer
in the inertial case explicitly by modifying the equations of motion appropriately.
We show that our calculation provides results which compare favourably to simu-
lations when the driving forces (and thereby the swimming strokes, the swimming
velocities and the Reynolds numbers of motion) are too large for the Stokes ap-
proximation to be valid. We finish in chapter 7 by summing up our work, and
describing a few worthwhile directions in which it may be extended.
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1
The bead-spring model of a microswimmer

The basic microswimmer model that will be employed by us throughout this thesis
will be one composed of three bodies connected in series through springs and
driven by known forces (Fig. 1.1). The three bodies will have the possibility of
being spherical or non-spherical in shape, and of rigid or deformable material.

Figure 1.1: Basic bead-spring swimmer model composed of bodies, which may
be non-spherical and of non-constant shape, connected by springs in a line. In the
model the forces driving the motion are specified. Figure taken from publication
P3 [Pande et al., 2016a].

We shall refer to our model as the bead-spring model. The design of our
model is inspired from that of the three-sphere swimmer introduced in Najafi
and Golestanian [2004]. While our swimmer resembles the Najafi-Golestanian
one (henceforth in the thesis, and popularly in the literature, referred to as the
‘Golestanian model’) in geometry to the extent that both are composed of three
objects connected in a series arrangement which imparts to them the freedom to
travel along a line, our design is different in a few essential ways. The most impor-
tant difference is that in our model we resolve the forces upon the swimmer fully
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and let the swimming stroke emerge as a response to the forces, whereas in the
Golestanian model the swimming stroke is assumed. Other differences include the
inclusion of springs, the use of non-spherical beads, the use of deformable beads,
and the consideration of the effects arising from the swimmer’s inertia. We shall
show how each feature of our model is crucial in obtaining some result about mi-
croswimming that we present in our thesis. To allow a full appreciation of these
points, we first present a short overview of the Golestanian model.

1.1 The Golestanian three-sphere swimmer model
The Golestanian swimmer has been a popular one in the microswimming com-
munity owing to its simplicity, and has been employed in a number of analytical
and simulation-based studies concerning microswimming [Pooley et al., 2007,
Alouges et al., 2008, Golestanian, 2008, Alexander et al., 2008, Zargar et al.,
2009, Alouges et al., 2009, Najafi and Golestanian, 2010, Earl et al., 2007, Poo-
ley and Yeomans, 2008]. Experimental realisations of the model are rarer but
exist [Leoni et al., 2009].

The Golestanian model is made up of three spheres in a series arrangement
(Fig. 1.2). The two required degrees of freedom in the swimmer are the lengths
of the two arms–where an arm is defined as one of the two line segments whose
end-points are the centres of two neighbouring spheres–which can change inde-
pendently of each other. The motion is held to occur in purely Stokesian flow. An
important feature of the model is that the swimming stroke, i.e. the dependence of
the length of the arms on time, is assumed to be known a priori.

The main idea underlying the model is that if the swimming stroke breaks time
and space symmetries, the swimmer executes persistent motion along the line on
which the spheres lie. The breaking of time and space symmetries is important
to ensure non-reciprocality in the stroke and thereby satisfy the demands of the
scallop theorem (see section 0.1.3 in the Introduction). Fig. 1.2 shows one full
cycle of the three-sphere swimmer composed of four steps, at the end of which
the swimmer has travelled a distance ∆ along its axis. Note that if the steps (b)
and (c) of the cycle were interchanged, then the swimmer would not move, in
accordance with the scallop theorem.

The advantage in specifying the stroke is that the equations of motion adopt
an algebraic form which can be easily solved. As a particular example, assume
that the swimming stroke is sinusoidal so that the two armlengths L1(t) and L2(t)
are given by

L1(t) = l + d1 cos(ωt + δ1),
L2(t) = l + d2 cos(ωt + δ2), (1.1)
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Figure 1.2: The Golestanian three-sphere microswimmer model, showing the
swimming cycle composed of four steps (a), (b), (c) and (d). The total distance
covered in a cycle is ∆. Figure taken from [Golestanian and Ajdari, 2008].

where l denotes the mean length of both the arms, ω denotes the strokes frequency,
and di and δi denote respectively the stroke amplitude and phase shift of the ith

arm. To allow the model to be solved, the far-field approximation must be made,
in which the distances between the spheres dominate the other length scales, i.e.
ri � l j and di � l j, where ri are the radii of the spheres. Under these conditions,
the velocity of the swimmer comes out to be [Golestanian and Ajdari, 2008]

vstroke = Gd1d2ω sin (δ1 − δ2) ẑ, (1.2)

where the swimmer is taken to be aligned along the z-axis. Here vstroke is the
swimming velocity (with the subscript referring to the stroke-dependence of its
calculation), and G is a geometrical constant which for equal sphere radii r and
equal mean arm-lengths l is given by G = 7r/(24l2).

1.2 Our microswimmer model: the bead-spring swim-
mer

Like the Golestanian swimmer, our swimmer is composed of three objects (which
we call ‘beads’) arranged in series (Fig. 1.1). It however differs from the Golesta-
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nian model in the following important respects:

1. We specify the forces driving the motion instead of the swimming stroke,
which in our description emerges in response to the forces.

2. The three beads in the swimmer can be non-spherical.

3. The shapes of the three beads can vary in time during a cycle.

4. The motion is not always strictly restricted to the Stokesian realm. In the
last part of this thesis we shall consider the effects of inertia on swimming,
which are completely absent in Stokesian motion.

The main effect of introducing the above changes in the model vis-á-vis the
Golestanian swimmer is that it allows us much greater freedom in exploring the
various influences of different kinds of forces on the swimming motion. The study
of these force influences is worthwhile as it imparts insight into many interesting
and important aspects of microswimming, as we shall show in this thesis. Our
force-based approach is also more basic in the sense that a swimming stroke in
practice results from the responsive realignment of the parts of a swimmer’s body
to the different forces acting on them. The price that this primacy of approach
extracts is a complication in the analysis, with the equations of motion no longer
solvable algebraically.

In this chapter, we explain our methods of solving our model for the velocity of
the swimmer with all of the above modifications to the Golestanian model, except
for the calculation of the motion in a non-Stokesian realm, which is deferred to
Chapter 6.

1.2.1 Velocity calculation for a swimmer with rigid beads ∗

We first assume that the three beads are rigid and possibly non-spherical, and that
the fluid flow is completely Stokesian. In subsequent sections, we shall consider
the cases of deformable beads and non-Stokesian flow. In our swimmer the beads
are connected by harmonic springs (Fig. 1.1), and the forces driving the motion
are sinusoidal, of the form

Fd
1(t) = A sin (ωt) ẑ,

Fd
2(t) = −Fd

1(t) − Fd
3(t), and

Fd
3(t) = B sin (ωt + α) ẑ, with α ∈ [−π, π]. (1.3)

∗This section has been adapted from publication P2 [Pande et al., 2016b], with changes for
consistency.
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Here A and B are non-negative amplitudes of the time-dependent driving forces
Fd

1(t) and Fd
3(t) applied along the ẑ-direction to the outer beads at the frequency

ω and with the phase difference α. The force Fd
2(t) on the middle bead is set by

the condition for autonomous propulsion, which requires the net driving force on
the device to vanish at all times. For simplicity, we assume the two springs to be
identical to each other and the three beads to be identical in shape too. The theory
can be very easily extended to dissimilar springs and beads, but the end result
obtained in the case of identical springs and identical beads is the most concise
and convenient to express (here Eq. (1.11)). Indeed, later when we evaluate the
swimming velocity of a swimmer with deformable beads (section 1.2.3), we will
necessarily have to preserve the dissimilarity of shape in the three beads, since the
shape deformation of the three beads over a swimming cycle will in general be
different, even if the initial shapes of the three beads are identical.

The springs are identical, then, with a stiffness constant k and a rest length l
which is much larger than the bead dimensions as well as the oscillation ampli-
tudes of the arm lengths (this being again the far-field approximation which was
adopted in the Golestanian model). We find it convenient to define a ‘reduced
friction coefficient’ λ of the beads as

λ = γ/(6πη), (1.4)

where γ is the Stokes drag coefficient of each bead and η is the dynamic viscosity
of the fluid. For a sphere, the reduced parameter λ is nothing but its radius. Due to
the far-field aproximation made, by which λ � l, the precise shape of each bead is
not directly visible to the other two beads which see its influence only through the
far flow fields generated by its motion. In this scenario, the shape of a bead enters
the picture only through its modulation of the drag force faced by the bead itself–
which affects the motion of the fluid around it and thereby that of the other two
beads. This means that for non-spherical beads, the reduced friction coefficient λ
plays the same role as the radius of a spherial bead in the model [Pande and Smith,
2015].

The fluid is taken to be Newtonian and its flow is governed by the Stokes and
incompressibility equations,

η∇2u (r, t) −∇p (r, t) + f (r, t) = 0 and (1.5)
∇ · u = 0. (1.6)

Here η is the dynamic viscosity of the fluid, related to the kinematic viscosity ν as
η = νρ, where ρ is the fluid density. The fluid moves with a velocity u (r, t) under
a pressure p (r, t) at the point r at time t. The force density f (r, t) acting on the
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fluid is given by

f (r, t) =
3∑

i=1

(
Fd

i (t) + Fs
i (t)

)
δ (r −Ri(t)) , (1.7)

where the index i = 1, 2, 3 denotes the i-th bead placed at the position Ri(t)
subject to a driving force Fd

i (t) and a net spring force Fs
i (t). The latter can be

written as

Fs
i (t) =

3∑
j,i

G (Ri(t) −R j(t)) , with

G (Ri(t) −R j(t)) = −k
(

Ri(t) −R j(t)
|Ri(t) −R j(t)|

)
(|Ri(t) −R j(t)| − l) (1.8)

if i and j denote neighboring beads, and G (Ri(t) −R j(t)) = 0 otherwise. As-
suming no slip at the fluid-bead interfaces, the instantaneous velocity vi(t) of each
bead [Doi and Edwards, 1988] is given by

vi(t) = Ṙi(t) =
(
Fd

i (t) + Fs
i (t)

)
/ (6πηλ)

+
3∑

j,i

T (Ri(t) −R j(t)) ·
(
Fd

j(t) + Fs
j(t)

)
, (1.9)

where T (r) is the Oseen tensor [Happel and Brenner, 1965, Oseen, 1927]. Here in
Ṙi(t) and throughout the thesis, a (double) dot over a variable denotes its (double)
derivative with respect to time.

As borne out by simulations, the bead positions in the steady state take the
form

Ri(t) = Si0 + ξi(t) + vforce t, (1.10)

where ξi(t) denotes small sinusoidal oscillations, which will be taken as pertur-
bation variables around the equilibrium configuration Si0 of the swimmer. The
swimmer moves with a cycle-averaged velocity vforce, where the subscript refers
to the fact that the treatment is force-centric as opposed to being stroke-centric
like vstroke in section 1.1. Under this assumption, we can write the mean swim-
ming velocity vforce as the average velocity of the centre of reaction C(t) of the
swimmer [Happel and Brenner, 1965] over one swimming cycle τ, given by

vforce =
1
τ

τ∫
0

dtĊ(t) =
1
τ

τ∫
0

dt
3∑

i=1

λiṘi(t)/
3∑

i=1

λi. (1.11)
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Following the method in Felderhof [2006], we expand the functions of the
relative positions (Ri(t) −R j(t)) in Eq. (1.9) in terms of series of the variables(
ξi(t) − ξ j(t)

)
centred around the equilibrium configuration, which can be taken

to be the configuration at time t = 0. The different variables expanded to the first
order in

(
ξi(t) − ξ j(t)

)
are

G (Ri(t) −R j(t)) =

G (Ri(0) −R j(0)) +
∂G (Ri(t) −R j(t))

∂Ri(t)

∣∣∣∣∣∣
t=0
·
(
ξi(t) − ξ j(t)

)
= Hi j ·

(
ξi(t) − ξ j(t)

)
, with Hi j =

∂G (Ri(t) −R j(t))
∂Ri(t)

∣∣∣∣∣∣
t=0

, (1.12)

and

T (Ri(t) −R j(t)) =

T (Ri(0) −R j(0)) +
∂T (Ri(t) −R j(t))

∂Ri(t)

∣∣∣∣∣∣
t=0
·
(
ξi(t) − ξ j(t)

)
= Ti j + Vi j ·

(
ξi(t) − ξ j(t)

)
,

with Ti j = T (Ri(0) −R j(0)) and Vi j =
∂G (Ri(t) −R j(t))

∂Ri(t)

∣∣∣∣∣∣
t=0

. (1.13)

Combining Eqs. (1.12)-(1.13) and using the fact that Fd
i (t) and Fs

i (t), the driv-
ing and the spring forces, sum to zero over the three bodies at each instant, we
expand all terms in Eq. (1.11) to the lowest surviving order in ξi(t). Since the
displacements ξi(t) directly arise from the driving forces Fd

j(t), this also means
the lowest surviving order in Fd

j(t) [Felderhof, 2006]. Moreover, since both the
displacements and the driving forces are sinusoidal, it turns out that all terms in
Eq. (1.11) of the zeroth or first order in ξi(t) or Fd

j(t) average to zero over a cycle.
We calculate to the second order in ξi/l, therefore, and the final velocity for the
swimmer to the lowest surviving order in λ/l comes out to be

vforce =
7λω

[
AB

(
k2 + 12π2η2ω2λ2

)
sinα+ 2

(
A2 − B2

)
πηωkλ

]
24l2 (k2 + 4π2η2ω2λ2) (k2 + 36π2η2ω2λ2)

ẑ. (1.14)

We have thus found the velocity of our swimmer in the rigid-bead case.
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Comparison with the stroke-based formulation †

With the method described above, it is possible to find the swimming stroke that
is assumed by the swimmer and then to use Eq. (1.2) to find the swimming ve-
locity as a function of this stroke. In this way the two approaches of finding
the swimming velocity–i.e. assuming known driving forces and assuming known
strokes–may be reconciled. The stroke parameters are found to be

d1 =

√√
A2k2 + 4π2η2ω2λ2

(
4A2 + B2 + 4AB cosα

)
− 4ABπηωkλ sinα

k4 + 40π2η2ω2k2λ2 + 144π4η4ω4λ4 , (1.15)

d2 =

√√
B2k2 + 4π2η2ω2λ2

(
A2 + 4B2 + 4AB cosα

)
+ 4ABπηωkλ sinα

k4 + 40π2η2ω2k2λ2 + 144π4η4ω4λ4 .

(1.16)

Defining β as the stroke phase shift β = δ1 − δ2, its sinusoidal function is
given by

sin β =
N
D

, where (1.17)

N = 2
(
A2 − B2

)
πηωkλ+ AB

(
k2 + 12π2η2ω2λ2

)
sinα, and (1.18)

D =

A2B2k4 + 4πηωλ

πηωk2λ
(
A4 + 6A2B2 + B4

)
+ 4π3η3ω3λ3

(
4A4 + 25A2B2 + 4B4

)
+ 4ABπηωλ cosα

(
A2 + B2

) (
k2 + 20π2η2ω2λ2

)
+ 2A2B2πηωλ

(
k2 + 16π2η2ω2λ2

)
cos (2α)

+ ABk sinα
(
A2 − B2

) (
k2 + 12π2η2ω2λ2

) 


1/2

. (1.19)

We may now recast the stroke-based velocity form of Eq. (1.2) into the force-
based one of Eq. (1.14). A comparison between the two, deferred to Fig. 1.3,
shows that the two velocities agree in the limit λ � l.

†This section has been adapted from publication P5 [Pickl et al., 2016], with changes for
consistency.
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1.2.2 Calculation of swimming velocity to higher orders in λ/l
‡

It is possible to find the velocity of the swimmer to higher orders in λ/l. While
this leads to nominally greater accuracy in the result, it should be remembered that
the λ � l condition is nevertheless important if we are to include non-spherical
beads in the model by using their λ as their effective radius. It also turns out, as
we shall show by comparing the velocity result for different orders in λ/l, that the
increase in the accuracy on including higher order terms is insignificant, about 5%
or smaller if λ/l < 1/5.

To do the calculation in section 1.2.1 to higher orders in λ/l, we replace the
Oseen tensor by the Rotne-Prager one [Rotne and Prager, 1969], which gives the
hydrodynamic interaction terms to one order higher than the Oseen approxima-
tion. This involves the use of the method of reflections [Aguirre and Murphy,
1973]. Section 5.10 in Dhont [1996] provides the Rotne-Prager matrix for a sus-
pension of spheres of equal radii. Following a similar procedure, we here present
for the interested reader the derivation of the matrix for beads with possibly un-
equal reduced friction coefficients λi.

We start with the flow field induced in an initially motionless fluid by a bead of
radius λ j and velocity v j positioned instantaneously at the origin of the coordinate
system. This flow field u(r) at the point r in the fluid is given by

u(r) =

3
4
λ j

|r|

(
�+

rr
|r|2

)
+

1
4

(
λ j

|r|

)3 (
� − 3

rr
|r|2

) · vj. (1.20)

For our assembly of beads, the flow field induced by each bead then affects the
motion of the other beads. The change in the other beads’ velocities is given
by Faxén’s theorem for translational motion [Faxén, 1922], which states that the
velocity vi acquired by a sphere of radius ai immersed at the position ri in a fluid
with a flow velocity field u(r) is given by

vi =
−1

6πηai
Fh

i + u(ri) +
1
6

a2
i ∇

2
i u(ri), (1.21)

where Fh
i is the hydrodynamic drag force on the sphere in question.

In our case, clearly, the velocity vi of the ith bead is affected by the fluid flow
u(r) induced by the jth bead swimming with the velocity v j at the instantaneous
position r j in the fluid. Since the velocity of the jth bead in the absence of any

‡This section has been adapted from publication P5 [Pickl et al., 2016], with changes for
consistency.
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other bead is given by the Stokes drag law

v j =
−1

6πηλ j
Fh

j , (1.22)

therefore, combining Eqs. (1.20)-(1.22), we find the velocity of the ith bead in
terms of the drag forces on the ith and the jth beads as

vi =
−1

6πηλi
Fh

i

+

(
−1

6πηλ j

) (
1 +

1
6
λ2

i ∇
2
i

) 
3
4

(
λ j

ri j

)
(�+ r̂i jr̂i j) +

1
4

(
λ j

ri j

)3

(� − 3r̂i jr̂i j)

 · Fh
j

 ,

(1.23)

where r̂i j ≡
(ri − r j) (ri − r j)

|ri − r j|2
and ri j ≡ |ri − r j|.

We will find the Laplacian in eq. (1.23) explicitly, by making use of spherical
polar coordinates, in which

∇2 ≡
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
. (1.24)

Therefore, we have immediately ∇2
(

1
r3

)
= 6r−5 and ∇2

(
1
r

)
= 0, for r , 0.

To find vi, we will first show that ∇2
i

{
1
ri j

[�+ r̂i jr̂i j]

}
= 2

(
1
ri j

)3

[� − 3r̂i jr̂i j]

and∇2
i


(

1
ri j

)3

[� − 3r̂i jr̂i j]

 = 0. For this, assume that r j = 0, i.e., we are shifting

the coordinate system in order to let r j coincide with the origin. Then, we need to

find ∇2
{

1
r
[�+ r̂r̂]

}
and ∇2


(
1
r

)3

[� − 3r̂r̂]

. Explicitly, we have

�+ r̂r̂
r

=
1
r

1 + sin2 θ cos2 φ sin2 θ cos φ sin φ sin θ cos θ cos φ
sin2 θ cos φ sin φ 1 + sin2 θ sin2 φ sin θ cos θ sin φ
sin θ cos θ cos φ sin θ cos θ sin φ 1 + cos2 θ


= M (say). (1.25)
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Whereas,

2
r3 (� − 3r̂r̂) =

2
r3

 1 − 3 sin2 θ cos2 φ −3 sin2 θ cos φ sin φ −3 sin θ cos θ cos φ
−3 sin2 θ cos φ sin φ 1 − 3 sin2 θ sin2 φ −3 sin θ cos θ sin φ
−3 sin θ cos θ cos φ −3 sin θ cos θ sin φ 1 − 3 cos2 θ


= N (say). (1.26)

∴ ∇2M11 =
(
1 + sin2 θ cos2 φ

)
∇2 (1/r) +

cos2 φ

r3 sin θ
∂

∂θ

sin θ
∂
(
sin2 θ

)
∂θ


+

sin2 θ

r3 sin2 θ

∂2
(
cos2 φ

)
∂φ2

=
2
r3

(
1 − 3 sin2 θ cos2 φ

)
=N11.

Calculating the other components similarly, we find that indeed ∇2M = N,
and ∇2N = 0.

Therefore, using the above relations and Eq. (1.23), we can find the second-
order velocities as

vi =
−1

6πηλi
Fh

i +
∑
j,i

(
−1

6πηλ j

) 3
4

(
λ j

ri j

)
(�+ r̂i jr̂i j) +

1
4

(
λ j

ri j

)3

(� − 3r̂i jr̂i j)

 · Fh
j

−
∑
j,i

1
36πηλ j

λ2
i

3
4
λ j

2 (
1
r3

)2

(� − 3r̂i jr̂i j)

+ 1
4

(
λ j

ri j

)3

(0)

 · Fh
j

⇒ vi =
−1

6πηλi
Fh

i −
∑
j,i

 1
8πηri j

(�+ r̂i jr̂i j) +
1

24πη

λ2
j + λ2

i

r3
i j

(� − 3r̂i jr̂i j)

 · Fh
j

(1.27)

=
−1

6πηλi
Fh

i −
∑
j,i

[T (ri j) + T1 (ri j)] · Fh
j , (1.28)

where T (ri j) and T1 (ri j) denote respectively the first and the second terms in
the summation in Eq. (1.27) (T (r) being the Oseen tensor). The matrix in the
square bracket on the right hand side of Eq. (1.27) is the Rotne-Prager matrix for
an assembly of beads of reduced friction coefficients λi.

Using Eq. (1.28) we can write out in full the velocities of the three beads in
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our swimmer as

v1 =
1

6πη


0
0

Fd+s
1

λ1
+

 3
2L1
−
λ2

1 + λ2
2

2L3
1

 Fd+s
2 +

 3
2 (L1 + L2)

−
λ2

1 + λ2
3

2 (L1 + L2)
3

 Fd+s
3

 ,

(1.29)

v2 =
1

6πη


0
0 3

2L1
−
λ2

1 + λ2
2

2L3
1

 Fd+s
1 +

Fd+s
2

λ2
+

 3
2L2
−
λ2

2 + λ2
3

2L3
2

 Fd+s
3

 , and

(1.30)

v3 =
1

6πη


0
0 3

2 (L1 + L2)
−

λ2
1 + λ2

3

2 (L1 + L2)
3

 Fd+s
1 +

 3
2L2
−
λ2

2 + λ2
3

2L3
2

 Fd+s
2 +

Fd+s
3

λ3

 .

(1.31)

Here Fd+s
i is the magnitude of the sum of the spring and driving forces on the

ith bead, which can replace the (negative of the) drag force on the bead since
the spring, the driving and the drag forces on each bead always sum to zero. It
should also be noted that the arm lengths Li, the forces Fd+s

i and the velocities
vi in Eqs. (1.29)-(1.31) all vary with time and their time-dependence has been
suppressed for brevity of expression.

Eqs. (1.29)-(1.31) replace Eq. (1.9) as the equations of motion for the present
calculation. We now follow the procedure outlined in section 1.2.1, with appro-
priate changes such as introducing

Wi j =
∂T1 (ri j)

∂r j

∣∣∣∣∣∣
S 0

(1.32)

along with

Vi j =
∂T (ri j)

∂r j

∣∣∣∣∣∣
S 0

(1.33)

as before, to find the velocity of the swimmer to one order higher in λ/l than
before. The final expression obtained for the velocity is rather long; to simplify
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its expression here we state it fully for the case of equal driving force amplitudes
A = B, in which case it reads

vforce-RP =
A2ωλ(28l − 45λ)

[
(2l − 5λ)k2 + 24π2η2ω2λ2l

]
)

192l3 [(l − 5λ)k4 + 4π2η2ω2λ2(8l − 33λ)k2 + 144π4η4ω4λ4l]
ẑ,

(1.34)

where the subscript ‘force-RP’ denotes the use of the Rotne-Prager matrix in find-
ing the velocity within the force-based formulation.

We can also find the corresponding expression in the stroke-based formulation,
by extending the calculation in Golestanian and Ajdari [2008] using Eqs. (1.29)-
(1.31) in place of Eq. (1.9). In terms of the swimming stroke specified in Eq. (1.1),
the velocity comes out to be

vstroke-RP =
(28l − 99λ)λd1d2ω sin(φ1 − φ2)

24l2(4l − 17λ)
ẑ, (1.35)

again for equal reduced friction coefficients λi = λ of the beads and equal mean
lengths li = l of the two arms of the swimmer, and where the subscript ‘stroke-RP’
marks the stroke-based nature of the formulation and the use of the Rotne-Prager
matrix instead of the Oseen tensor.

We observe that the velocity expressions in Eqs. (1.34) and (1.35) reduce to
those in Eqs. (1.14) and (1.2), respectively, when only the lowest order terms
in λ/l are kept in the numerator and the denominator, as they should. We also
note that the difference between the two velocity expressions in the stroke-based
formulation is only of a geometric factor at the beginning of the expression, which
is not the case for the velocity expressions obtained from the two force-based
formulations.

Comparison of different theoretical velocity formulae

We can compare the four theoretical velocity formulae obtained for our swimmer,
namely by using the force-centric and the stroke-centric approaches to two differ-
ent orders in λ/l. Fig. 1.3 shows such a comparison for a swimmer composed of
beads with λi = λ = 4 lattice units and with varying mean arm lengths. This sim-
ple comparison sheds light on a few interesting features. Firstly, and as expected,
the four velocity expressions converge to the same curve as the λ/l ratio becomes
smaller. Importantly, the two curves (in blue and black) corresponding to the low-
est order expressions in λ/l envelope the curves (in red and green) which result
on using the higher order theory. This suggests that the true velocity expression
lies in between the red and the green curves, and, if that is so, that shows that
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Figure 1.3: Comparison of theoretically calculated velocities of a swimmer as a
function of its arm length, from both force- and stroke-based approaches.

the force-based curve in blue approximates it better than the stroke-based one in
black. We also see that the difference between the lowest order force-based curve
(in blue) and the higher order one (in green) is quite small, . 5%, for λ/l ratios of
1/5 or smaller. We shall therefore in all our subsequent investigations use the low-
est order expression in the velocity, vforce, as the higher order expression provides
only a small correction, the significance of which is negligible when compared
with lattice Boltzmann simulations of the swimmer as presented subsequently in
the thesis.

1.2.3 Velocity calculation for a swimmer with deformable beads
§

We now extend the method described in section 1.2.1 to enable the inclusion of
deformable beads in the model. The deformability of the beads is taken into ac-
count in the model by allowing the reduced friction coefficient λi to be weakly
variable in time. For a cyclic variation in λi(t), as will be obtained in the steady

§This section has been adapted from publication P3 [Pande et al., 2016a], with changes for
consistency.
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state motion of the swimmer, it can be expressed in a Fourier series in ωt as

λi(t) = ai +
∞∑

n=1

bn
i sin (nωt + φn

i ) , i = 1, 2, 3. (1.36)

Here ai is the reduced friction coefficient of the mean shape of the ith bead, and
bn

i and φn
i are the amplitude and the phase shift of the contribution from the nth

frequency mode. The condition of weak deformability is satisfied by requiring
bn

i /a j � 1 and bn
i /|ξ j(t)| � 1 to hold for all i, j, and n and time t. In the

calculation, we shall assume that λi(t) and thus all the coefficients in Eq. (1.36)
are known, as will be the case when, for instance, the analysis is done after the
corresponding simulation or experiment is performed. This is therefore a partly
geometry-based approach, even though it is not stroke-based, because the swim-
ming stroke itself is not known at the beginning of the calculation.

Due to a varying λi(t), the time derivative Ċ(t) of the centre of reaction of the
swimmer too is redefined as

Ċ(t) =
3∑

i=1

λi(t)Ṙi(t)/
3∑

i=1

λi(t) (1.37)

=

∑
i=0

(
ai +

∞∑
n=1

bn
i sin

(
nωt + φn

i

)
Ṙi(t)

)
 3∑

j=1
a j

 (1 + 3∑
k=1

∞∑
m=1

b̄m
k sin(mωt + φm

k )

) , (1.38)

where b̄m
k = bm

k /
3∑

l=1
al. Here Ṙi(t) can be written, using Eqs. (1.8), (1.9) and

(1.36), as

Ṙi(t) =

Fd
i (t) +

3∑
j,i

G (Ri(t) −R j(t))

6πη
(
ai +

∞∑
n=1

bn
i sin

(
nωt + φn

i

))
+

3∑
j,i

T (Ri(t) −R j(t)) ·

Fd
j(t) +

3∑
k, j

G (Ri(t) −R j(t))

 . (1.39)

Combining this with Eqs. (1.12)-(1.13) and the fact that, as in the rigid bead case,
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the spring and driving forces always sum to zero, we get

Ċ(t) =

1 − 3∑
p=1

∞∑
m=1

b̄m
p sin(mωt + φm

p )


3∑

j=1
a j

×

3∑
i=1

3∑
j,i


ai +

∞∑
n=1

bn
j sin(nωt + φn

j)

 · (Ti j +
(
ξi(t) − ξ j(t)

)
·Vi j

)
·

Fd
j(t) +

3∑
k, j

(
ξ j(t) − ξk(t)

)
·H jk


 . (1.40)

Making use of the condition bn
i /|ξ j(t)| � 1, we expand all terms in Eq. (1.11)

to the lowest surviving order in ξi(t). As in the rigid bead case, the zeroth and
first order terms in ξi(t) or Fd

j(t) average to zero over a cycle. Checking now for
the second order terms, it can be easily shown that only the n = 1 terms for the

surface fluctuation
∞∑

n=1
bn

j sin(nωt + φn
j) contribute, since all the other modes also

evaluate to zero due to the orthogonality of the sinusoidal functions.

Therefore, given sufficiently weak periodic surface deformations of any func-
tional form, only the driving frequency modes contribute to the swimming motion.
The terms that survive in Eq. (1.40) are all sinusoidal functions, and the equation
then becomes straightforward to solve, finally yielding an expression for vdef of
the form

vdef = vforce +
3∑

i=1

mib1
i , (1.41)

where vdef denotes the velocity of the swimmer in the deformable bead case and
vforce is as found in Eq. (1.11). The coefficients mi are independent of the shape
deformation amplitudes b1

j . Due to their bulky expressions, these coeffficients are
not presented here.

In conclusion, Eqs. (1.11) and (1.41) provide the expressions for the velocity
of a three bead swimmer with rigid and weakly deformable beads, respectively,
and in the next few chapters we shall explore various properties of microswim-
ming with the help of these these analytical expressions and the simulation meth-
ods described in the next chapter.
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1.2.4 Calculation of swimmer effective radius reff
¶

In the rest of the thesis, particularly in chapter 6, we will occasionally make use
of the effective radius reff of our swimmer. Here we present its calculation.

For negligibly small oscillation amplitudes, i.e. to the zeroth order in di/l j
(from Eq. (1.1)), the reff for the swimmer over a cycle is the same as that of the
equilibrium configuration moving rigidly with a constant velocity. To obtain such
a configuration, we let the three beads have effective friction coefficients λ1, λ2
and λ3, and let constant forces λ1F, λ2F and λ3F respectively act on the three
beads, with F = Fẑ. We will first show that in the steady state these forces indeed
result in a rigid equilibrium configuration, i.e. the springs are unextended.

Assume that in the steady state both the springs are extended, with the re-
spective extensions being ∆l1 and ∆l2. Then, the forces on the left, middle and
right spheres, apart from the hydrodynamic forces, are respectively (λ1F + k∆l1),
(λ2F + k∆l2 − k∆l1), and (λ3F − k∆l2), all in the +z-direction. Since we are con-
sidering the steady state, all the three spheres are assumed to be moving with the

same speed, which equals
Fd+s

i

6πηλi
. Therefore, we have

(λ1F + k∆l1)
6πηλ1

=
(λ2F + k∆l2 − k∆l1)

6πηλ2
=

(λ3F − k∆l2)
6πηλ3

. (1.42)

⇒F +
k∆l1
λ1

= F +
k∆l2
λ2
−

k∆l1
λ2

= F −
k∆l2
λ3

. (1.43)

⇒
∆l1
λ1

=
∆l2 − ∆l1

λ2
= −

∆l2
λ3

. (1.44)

If ∆l1 is positive (negative), then ∆l2 must be negative (positive), and then the
middle term is negative (positive), resulting in a contradiction. Therefore, the
only solution to the above equation is

∆l1 = ∆l2 = 0 (1.45)

which is what we wanted to show.

¶This section has been adapted from publication P4 [Pande* et al., 2016], with changes for
consistency.
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Then the velocity of the swimmer in the steady state is

vforce =
1

3T

T∫
0

3∑
i=1

vi dt

=
1

3T

T∫
0

3∑
i=1

 1
6πηλi

λiF +
3∑

j,i

T (Ri −R j) · λ jF

 dt. (1.46)

As the springs are always at their rest lengths, all the terms in the above expression
are time-independent, and therefore can be taken out of the time integral. So

vforce =
F

6πη
+

1
3

 3∑
i=1

3∑
j,i

λ jT (Ri −R j)

 · F
=

F
6πη

+
1
3
(λ1T12 + λ1T13 + λ2T21 + λ2T23 + λ3T31 + λ3T32) · F,

(1.47)

where Ti j is shorthand for T (Ri −R j).

Now,

λ1 (T12 + T13) · F =
1

8πη

(
1
l1
+

1
l1 + l2

)
(2λ1F).

λ2 (T21 + T23) · F =
1

8πη

(
1
l2
+

1
l1

)
(2λ2F).

λ3 (T31 + T32) · F =
1

8πη

(
1

l1 + l2
+

1
l2

)
(2λ3F).

Therefore,

v =
F

6πη
+

2F
3

(
1

8πη

) [
λ1

(
1
l1
+

1
l1 + l2

)
+ λ2

(
1
l1
+

1
l2

)
+λ3

(
1

l1 + l2
+

1
l2

)]
=

F
6πη

{
1 +

1
2

[
λ1

(
1
l1
+

1
l1 + l2

)
+ λ2

(
1
l1
+

1
l2

)
+λ3

(
1

l1 + l2
+

1
l2

)]}
. (1.48)
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By the definition of reff, we have

v =
Ftotal

6πηreff

=
(λ1 + λ2 + λ3)F

6πηreff

, (1.49)

from where we get

1
reff

=
1

λ1 + λ2 + λ3

{
1 +

1
2

[
λ1

(
1
l1
+

1
l1 + l2

)
+ λ2

(
1
l1
+

1
l2

)
+ λ3

(
1

l1 + l2
+

1
l2

)]}
. (1.50)

For identical and equidistant beads (for which we have λi = λ and li = l), the
above expression for the swimmer effective radius simplifies to

reff =
6λl

2l + 5λ
. (1.51)

For identical beads, the expression in Eq. (1.51), correct to the first order in λ/l
and the zeroth order in di/l, can also be obtained from the swimmer effective
radius provided in Eq. (40) in Golestanian and Ajdari [2008].
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2
Simulation methods

To run the different simulations discussed in this thesis, we use one of two simu-
lation systems, the waLBerla-pe system [Feichtinger et al., 2011] and the LB3D
code [Krüger et al., 2013, 2014]. While both these systems utilise the lattice
Boltzmann method (LBM) for the simulation of the fluid, they differ in the way the
particles within the fluid are described. In the waLBerla-pe system, the particles
are handled by pe which is a rigid body physics engine, and thus can only simu-
late objects which are composed of unions of bodies which are rigid. In LB3D, in
contrast, the particles are described using the immersed boundary method (IBM),
which treats every object as deformable in essence. In the following we first in-
troduce the lattice Boltzmann method and then give details of both the simulation
systems employed.

2.1 The lattice Boltzmann method (LBM)
The main philosophy behind the LBM is the use of simple local models–in which
each fluid element (lattice cell) requires information only about the fluid elements
in its vicinity–which incorporate the physics of microscopic processes, while re-
quiring only the averaged macroscopic properties in a fluid, like the momentum, to
satisfy the macroscopic equations [Succi, 2001]. It was introduced in McNamara
and Zanetti [1988], and utilises the Boltzmann equation (see Eq. (2.1)) to solve
for the microscopic particle velocity distribution function, from the hydrodynamic
moments of which macroscopic quantities like the mass density and the momen-
tum density can be obtained [Yu et al., 2003, Aidun and Clausen, 2010]. The
method was subsequently expanded theoretically in Higuera and Jimenez [1989],
Koelman [1991], Qian et al. [1992] and Chen et al. [1992]. It preserves the sim-
plicity and locality of operations of the lattice gas automata method [Hardy et al.,
1976, Frisch et al., 1986, 1987]–in which it finds its origins–while avoiding its

63
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shortcomings. The LBM is a relatively simple method which can resolve flow
problems without explicitly solving the Navier-Stokes equations (Eq. (0.1)), and
is highly scalable and parallelisable. Unlike direct Navier-Stokes solvers which
are limited to continuum descriptions–to be precise, those where the ratio of the
molecular mean free path to a characteristic flow length scale (a ratio termed the
Knudsen number Kn) is negligibly small–the LBM can be used for mesoscopic
flows which have a wider range of Kn. The continuum description of the Navier-
Stokes equation can still be formally derived by expanding the distribution func-
tions in the lattice Boltzmann equation (Eq. (2.2)) in terms of the scaled time
and space variables, as pioneered by Chapman and Enskog [Chapman, 1916, En-
skog, 1917]. For all these reasons, it has gained wide popularity in the last three
decades and has found use in solving a number of problems with simple, complex
and multi-phase flows (for some comprehensive reviews, see Benzi et al. [1992],
Chen and Doolen [1998], Luo [2000] and Aidun and Clausen [2010]).

From a physicist’s point of view, the main ingredient in the LBM is the lat-
tice Boltzmann equation, which is simply a discretized form of the Boltzmann
equation. To see this, begin with the Boltzmann equation(

∂

∂t
+ v · ∇

)
f (r, v, t) = Q, (2.1)

for the particle distribution function (PDF) f (r, v, t), which is the probability of
finding a particle with velocity v at position r at time t. Here Q is a complicated in-
tegral collision operator which balances the particle interactions and thus ensures
that Eq. (2.1) is a statement of particle conservation. In Boltzmann’s equation,
the precise form of Q comes from assuming Boltzmann’s famous Stosszahlansatz
hypothesis of binary collisions and molecular chaos. In the LBM, the collision
operator can be more general, and can in principle incorporate many-particle col-
lisions. Various simplifications of this operator are possible and become important
in particular executions of the LBM due to the complexity of the term (see for in-
stance the simplifications in sections 2.2.1 and 2.2.2), but here we leave it in its
most general form. Discretisation of space in terms of a set of chosen points
which move with velocities ci, and then use of a coupled finite difference method
for the space and time derivatives (with the space and time differences coupled
as ∆ri = ci∆t and ∆t = 1) lead to the general, non-linear, lattice Boltzmann
equation (LBE)

f ∗i (r
∗
i + c∗i , t∗ + 1) − f ∗i (r

∗
i , t∗) = Q∗(r∗i , t∗) (2.2)

where the primes denote dimensionless (lattice) counterparts of the respective
variables. Due to the possibility of including many-particle collisions in Q, the
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Figure 2.1: The D3Q19 velocity phase discretisation model. The direction labels
are ‘N’ for ‘north’, ‘S’ for ‘south’, ‘E’ for ‘east’, ‘W’ for ‘west’, ‘T’ for ‘top’, ‘B’
for ‘bottom’ and ‘C’ for ‘centre’. Figure taken from publication P6 [Pickl et al.,
2012].

LBE can be used for dense fluids instead of dilute gases which the Boltzmann
equation is restricted to due to its requirement of the collisions being always bi-
nary.

In both the simulation frameworks employed in this thesis we use the common
D3Q19 velocity phase discretisation model originally developed in Qian et al.
[1992], which has 19 discrete velocity directions (Q19) in three dimensions (D3)
(Fig. 2.1). The LBE in Eq. (2.2) gives the time evolution of the PDFs, and is
usually solved in two steps, known as the collision step and the streaming step.
The collision step is a local relaxation of the PDFs fi towards their equilibrium
values f eq

i , which are given by truncating the Maxwell-Boltzmann distribution as

f eq
i (ρ, v) = ωiρ

1 + ci · v
c2

s
+

(ci · v)2

2c4
s
−

v · v
2c2

s

 , (2.3)

where ρ is the fluid density, ωi are weighting constants which arise from the space
discretisation of the velocity, and cs is the speed of sound on the lattice, which



66

in the D3Q19 model equals cs = 1/
√

3. The streaming step advects all the
PDFs (except the one in the ‘C’ direction in Fig. 2.1, pointing from a cell to the
cell itself) to their neighbouring lattice sites (in the D3Q19 model) depending on
the velocity. For this reason only the information of the nearest neighbours is
needed at each time step. Due to this locality of the cell updates, the LBM can
be implemented extremely efficiently [Pohl et al., 2003, Wellein et al., 2005] and
can be easily parallelised [Körner et al., 2005].

2.2 Details of the two LB simulation systems used
The two simulation systems we use, waLBerla-pe and LB3D, both accord with
the above general description of the LBM. There are however some differences
in the implementation of the method and its coupling to the respective particle
solvers, which we briefly explain below.

2.2.1 The waLBerla-pe system
waLBerla (Widely Applicable Lattice-Boltzmann solver from ERLAngen) is a
simulation system for the fluid which utilises the LBM as described above [Fe-
ichtinger et al., 2011]. For our waLBerla simulations presented in this thesis,
we use a collision operator model, called the two-relaxation time (TRT) model,
which was introduced in Ginzburg et al. [2008]. As the name suggests, this model
uses two characteristic relaxation times in the simulations, called λ+ and λ+,
and in our implementation these relaxation times are defined as λ+ = τ−1 and
λ− = 8(2− τ−1)/(8− τ−1), with τ being a time scale. Such a definition of the re-
laxation times promotes accuracy at solid boundaries [Ginzburg et al., 2008]. The
TRT model divides the PDFs fi and their equilibrium values f eq

i into symmetric
and antisymmetric parts, denoted by ‘+’ and ‘−’ superscripts, respectively. In
terms of these quantities the collision operator Q∗ in Eq. (2.2) can be written as

Q∗ = −λ+∗
[
f+∗i (r∗i , t) − f+eq∗

i (ρ∗, v∗)
]
− λ−∗

[
f −∗i (r∗i , t) − f −eq∗

i (ρ∗, v∗)
]

.
(2.4)

The waLBerla system is coupled in our simulations with pe (Physics En-
gine), which can simulate arbitrary unions of some base collection of rigid bod-
ies [Iglberger, 2010]. In pe the individual bodies are resolved in full, which distin-
guishes our simulations from many other systems wherein the immersed bodies
are treated as point masses. This becomes important when, for instance, swim-
mers of different shapes need to be compared [Pickl et al., 2012]. LikewaLBerla,
pe supports parallelised simulations running on up to hundreds of thousands of
cores [Götz et al., 2010].
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Figure 2.2: Illustration of the two-way coupling of the waLBerla fluid solver and
the pe rigid body dynamics solver. Figure taken from publication P6 [Pickl et al.,
2012].

The waLBerla and pe systems need to be coupled together such that in waL-
Berla the rigid bodies simulated by pe appear as solid movable boundaries around
which the flow occurs whereas in pe the fluid flow simulated by waLBerla man-
ifests itself as hydrodynamic forces which affect the motion of the rigid bodies
(Fig. 2.3). This two-way coupling is achieved by the following process. At each
time step the rigid bodies in the pe are mapped onto the lattice Boltzmann grid of
waLBerla with (in our simulations) a staircase approximation. The fluid at the
surface of each rigid body is then given the velocity of the local body surface, due
to the assumed no-slip boundary condition. Then the identities of appropriate fluid
and object cells, specified by respective flags, are interchanged and the streaming
and collision steps are performed. Finally the total forces on each body are calcu-
lated and the body is moved accordingly. The body is then mapped again to the
LBM grid in the next time step, commencing a new cycle of the coupling process.
Descriptions of this method and its validation are provided in Binder et al. [2006]
and Iglberger et al. [2008].

2.2.2 The LB3D system∗

The LB3D code [Krüger et al., 2013, 2014] combines the lattice-Boltzmann method
(LBM) for the fluid, the finite element method (FEM) for the deformable bodies

∗This section has been adapted from publication P3 [Pande et al., 2016a], with changes for
consistency.
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Figure 2.3: The fixed Eulerian and moving Lagrangian meshes in the LB3D code.
Here ri(t) is a membrane node, and the grey square region around it denotes the
interpolation stencil which determines the lattice nodes which are included while
interpolating the fluid velocities onto the membrane node, and then reflecting the
membrane deformation forces onto the fluid. Figure taken from [Krüger et al.,
2013].

immersed in the fluids, and the immersed boundary method (IBM) for the cou-
pling between the fluid and the bodies. The deformable surfaces of the bodies are
represented by meshes which are generated by successively subdividing an ini-
tially coarse mesh which is in the shape of a regular icosahedron. These meshes
have n triangular faces each, with n = 720 for all the simulations performed
with the LB3D code presented in this thesis. The deformable bodies contain fluid
which has the same density and viscosity as the external fluid.

In LB3D we use a single time relaxation scheme, the popular Bhatnagar–
Gross–Krook (BGK) model introduced in Bhatnagar et al. [1954], in which the
collision operator Q∗ of Eq. (2.2) is given by

Q∗ = −
f ∗i (r

∗
i , t) − f eq∗

i (ρ∗, v∗)
τ

, (2.5)

where τ is again a time scale, here defining only one relaxation parameter in con-
trast to the TRT model.

For the fluid a fixed Eulerian grid is used, while the surface nodes of the par-
ticles immersed in the fluid are represented by a moving Lagrangian mesh, which
must be coupled to the fluid lattice. This coupling is performed in two stages.
In the first stage, the velocity of the fluid at each membrane node is interpolated
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using an appropriate stencil from its velocity at the fluid lattice points–these ve-
locities are themselves found within the LBM from the collision and streaming
steps described in section 2.1–because of an assumed no-slip boundary condition
between the membrane and the fluid. The membrane node in question is then ad-
vected using this velocity determined. In the second stage the deformations that
are induced in the membrane due to the advection of its nodes in the first step
are reflected onto the fluid, again with the interpolation stencil used in the first
stage, through a reaction force which is calculated using a constitutive model for
the membrane.

This constitutive model, for us, is based on the total energy of deformation of
the ith body, which in all the simulations reported in this thesis is a quasi-spherical
bead. The deformation energy is specified to be

Wi = WS
i + WB

i + WA
i + WV

i , (2.6)

where the superscripts S , B, A and V label the energy contributions due to strain,
bending, surface area and volume, respectively. The strain energy is as given by
the Skalak model [Skalak et al., 1973], and has two associated stiffness moduli,
the shear modulus kS

i and the area dilation modulus kαi . The bending energy WB
i

(with the associated bending modulus kB
i ) is significant in the presence of strong

local curvatures. The global volume and surface area energies WA
i and WV

i (with
corresponding area and volume moduli kA

i and kV
i , respectively) impose restric-

tions on the change of bead surface area and volume, with these energies being
the lowest if the volume and the surface area are at their equilibrium values. For
more details on the different deformation energy parameters, see [Krüger et al.,
2011].

By the nature of the two simulation systems, the waLBerla-pe pairing is well-
suited for simulating the bead-spring swimmer when the beads are rigid, while the
LB3D code is useful for swimmers with both rigid and deformable beads. In our
investigations in this thesis, we shall use these systems accordingly.
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3
Verification and analysis of theoretical velocity

calculation

The swimmer model that we have set up allows us to explore different aspects
of low Reynolds number motion in a controlled manner. As we shall show, our
theoretical results, combined with lattice-Boltzmann simulations which in each
case back up the theory, help us to shed light on some important general features
of microswimming which before our work went undiscovered or unexplained.
Before we do so, we shall check how well the basic results predicted by our model,
in terms of the swimming stroke and velocity, compare to the simulations. This
study of the relative errors between the theory and the simulations will provide
helpful pointers for more involved comparisons.

3.1 Basic comparison between theory and simula-
tions ∗

For the sake of this comparison we run simulations using the waLBerla-pe sys-
tem with the beads in the swimmer rigid and far away from any boundaries. The
simulation parameters are here provided in the lattice units. The fluid has a kine-
matic viscosity of ν = 1/3 (which in the simulations also equals its dynamic
viscosity µ, since the density of the fluid ρ is taken to be 1 in lattice Boltzmann
simulations). The relaxation time is set to τ = 1.5, and the spring stiffness to
k = 0.0347. The radius of each sphere is r = 4∆x, where ∆x denotes one lattice
cell length. The density of the fluid is ρs = 1.492, which makes the density of
the swimmer body comparable to that of the surrounding fluid as is the case with

∗This section has been adapted from publication P5 [Pickl et al., 2016], with changes for
consistency.
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Figure 3.1: Dependence of the stroke parameters on (a) the force phase shift α, (b)
the force amplitude ratio A/B, and (c) the cycle period T ; and (d) comparison of
velocity from theory and simulations for different cycle periods. The superscripts
‘sim’ and ‘theory’ refer to simulations and theory, respectively. Figure taken from
publication P5 [Pickl et al., 2016].

most micro-organisms. Each arm in the swimmer has a rest length of l = 20∆x.
The simulations are carried out in a box of size x× y× z = 1200× 800× 800 ∆x3,
and six full swimming cycles are performed in total to ensure that the steady state
is reached.

Figs. 3.1 (a) and (b) show a comparison of the arm length amplitudes d1 and
d2 and the stroke phase shift sin β from the theoretical expressions of Eqs. (1.15)-
(1.17) and from simulations. In these plots the horizontal axis marks increasing
values of the force phase shift α and the force amplitude ratio A/B, respectively,
for a cycle period of 4800 time steps. The first observation we make is that for our
swimmer, the oscillation amplitude of the leading arm, d2, is larger than that of
the trailing arm, d1, for B > A. This is consistent with the formulae in Eqs. (1.15),
from where it is clear that d2 > d1 if sinα > 0 and B > A. The errors are
less than 6% in both Figs. 3.1 (a) and (b), showing that the ratio λ/l = 0.2 is
sufficiently small for the theory to give accurate results. Note that this is similar



73

to the error estimate found in section 1.2.2 with regard to Fig. 1.3. Moreover, the
errors become even smaller when the cycle period is increased (Fig. 3.1 (c)), since
the accuracy of the force resolution in the simulations increases with the cycle
period.

A similarly good agreement is found between theory and simulations when
the respective swimmer velocities are compared (Fig. 3.1 (d)). As is the case with
the stroke parameters, the relative errors go down as the cycle period increases (to
0.5% for a cycle period of 10000).

We stress the fact that the strict requirements of the theory, that of the beads
in the swimmer being very far from each other and oscillating with very small
amplitudes, are not fully satisfied in the simulations, owing to considerations of
preserving a reasonable simulation time. The simulations additionally suffer from
the unwanted influences of the boundaries which modify the flow fields such that
they are inevitably different than they would be in an infinite expanse of fluid
as the theory assumes. Lastly, the discretisation of space and time too affects the
results–as can easily be seen by increasing the time step and the lattice cell size by
a few orders of magnitude–and is another unavoidable feature of the simulations
that the theory turns a blind eye to. The results presented in this section affirm,
however, that in spite of all the potential sources of conflict between the idealised
assumptions of the theory and the practical contingencies of the simulations, the
two work well enough together, and their agreement can be systematically height-
ened by an appropriate choice of the different parameters (such as large enough
cycle periods).

3.2 Influence of driving parameters: pusher/puller
nature †

Having verified the basic success of the theory in describing the swimming mo-
tion, we now study some of the consequences of it. We first study the effects of
the driving forces of Eq. (1.3) on the motion of a swimmer with rigid beads. From
Eq. (1.11), it may be seen that the velocity magnitude |vforce| is the highest when
the driving force phase difference α is π/2 if the driving force amplitudes A and
B are related as A ≥ B, and when α is −π/2 if A < B. If one increases both the
force amplitudes by the same factor, there is a corresponding quadratic increase
in the velocity.

Our model allows for an analytical prediction of the pusher or puller nature
of the swimmer (see section 0.1.4 in the introductory chapter). We find that this

†This section has been adapted from publication P1 [Pande and Smith, 2015], with changes for
consistency.
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nature depends upon the relation(B
A
−

A
B

)−1
sinα ≷

2πηωλk
k2 + 12π2η2ω2λ2 . (3.1)

When the left hand side of relation (3.1) is larger, then the swimmer moves in
the direction of the bead with the higher force amplitude, and is consequently a
puller. On the other hand, if the right hand side is larger, then the swimmer moves
in the opposite direction, and is a pusher. This is borne out by the analysis of the
obtained flow-fields. The above relation fails to hold when the velocity becomes
very low; in this case, the nature of the swimmer is not clearly defined.

Figure 3.2: Velocity vforce, armlength ratio d2/d1 and stroke phase difference
sin β of a swimmer as a function of (a) frequency ω, and (b) force ratio B/A. Here
α = π/2. Note that vforce ∼ ω forω→ 0 and vforce ∼ 1/ω forω→ ∞, in contrast
to the linear dependence of the swimming velocity on the driving frequency ω for
all ω, when the stroke is pre-set (see Eq. 1.2). Figure taken from publication
P1 [Pande and Smith, 2015].

Relation (3.1) says that the same swimmer following essentially similar strokes
may be a pusher or a puller depending on the precise parameter values of the forces
it faces. For instance, the nature of the swimmer can be changed by simply apply-
ing the driving at a different rate (Fig. 3.2(a)). Similarly, this nature may change
on changing the magnitude of the forces. For the force amplitudes A and B, if the
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force phase difference α is positive (i.e. α ∈ [0, π]), then the swimmer is a pusher
if A > B (Fig. 3.2(b)). If B > A, the swimmer is a puller at small B, and becomes
a pusher at large B.

Fig. 3.2 also shows the dependence of the velocity magnitude on the force
parameters. For a changing ratio of B/A, due to the quadratic nature of the veloc-
ity curve, the global maximum of the velocity magnitude is always in the pusher
regime. For other parameter changes (ω, α, k, η), this does not necessarily hold
true.

We find that as the force amplitude ratio B/A varies with α fixed at π/2, the
stroke amplitude ratio d2/d1 becomes one at a point when the swimmer transitions
from a pusher to a puller (Fig. 3.2(b)). Moreover, the maximum in the d2/d1 curve
coincides with the other transition from a puller to a pusher. Similarly, as the
driving frequency ω varies with A and B held fixed, when the relative difference
between the arm oscillation amplitudes d2 and d1 is the largest then again the
swimmer has a transition point between being a puller and a pusher (Fig. 3.2(a)).

An especially significant effect that we observe on studying the dependence of
the stroke on the force parameters is the near locking of the stroke phase shift β for
large parts of the parameter space. This is highlighted when the force amplitude
ratio B/A is varied (lower panel of Fig. 3.2(b)), when sin β automatically assumes
the optimal values of +1 or −1. This suggests that the swimmer has the ability to
automatically synchronise its two beating arms for much of the phase space so as
to achieve efficient propulsion, and is reminiscent of the phase locking observed
in Chlamydomonas flagella when elastic connections are included [Leptos et al.,
2013].

3.3 Effect of changing the fluid viscosity on swim-
ming ‡

We now employ our theory in studying the ways that the fluid viscosity can af-
fect microswimming. This is a question which has been prominent in the field
ever since it was discovered a few decades ago that many micro-organisms swim
faster in more viscous fluids than in less viscous ones. The first such finding was
presented in Shoesmith [1960], which reported the increased motility of Pseu-
domonas viscosa, Bacillus brevis and Escherichia coli for a small increase in the
viscosity of the solution; larger increases led to the motility decreasing. Similarly,
in Schneider and Doetsch [1974] it was reported that many flagellated bacteria
showed an increase in the velocity when the solution viscosity rose to a charac-

‡This section has been adapted from publication P2 [Pande et al., 2016b], with changes for
consistency.
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teristic value, and a decrease thereafter. Many other studies [Kaiser and Doetsch,
1975, Klitorinos et al., 1993, Ruby and Charon, 1998, Nakamura et al., 2006] have
corroborated this phenomenon of the swimming being enhanced with an increase
in the fluid viscosity.

The difficulty in understanding the phenomenon lies not just in its running con-
trary to the intuitive expectation of a more viscous fluid providing greater resis-
tance to motion, but also to the traditional theories of microbial motion in simple
fluids all of which predict the velocity to go down with the viscosity [Chwang and
Wu, 1971, Azuma, 1992, Ramia et al., 1993]. Theoretical explanations that have
been advanced in the literature have focussed on the non-Newtonian nature of the
fluid and the structure of any polymers present therein, such as the possibility
of the latter forming networks inside the fluid which facilitate swimmer propul-
sion [Berg and Turner, 1979, Magariyama and Kudo, 2002, Nakamura et al., 2006,
Leshansky, 2009]. These mechanisms clearly are important in contributing to the
anomalous increase of swimmer velocity with fluid viscosity. However, they are
limited in being concerned only with particular combinations of microswimmer
and fluid, without attempting to explain the phenomenon in general. Another
restrictive feature of these proposed mechanisms is their dependence on the non-
Newtonian aspect of the fluid, and the implicit suggestion that it is essential for
the phenomenon to occur.

With the help of our swimmer model, we are able to present evidence which
contradicts this bit of established wisdom in the field. Specifically, our model
shows that the increase in speed of microswimmers with the fluid viscosity occurs
even in simple Newtonian fluids and is a consequence of the nature of microswim-
ming itself, not necessarily of the structure of the fluid.

We show that there exist in general two viscosity regimes for mechanical
microswimmers, in one of which the swimmer gets slower (which we call the
‘conventional’ regime) and in the other one faster (the ‘aberrant’ regime) when
the viscosity of the surrounding fluid is increased. The conventional regime is
easy to understand–for infinitely viscous fluid the motion must cease, therefore
the high viscosity limit must lie in this regime. To understand the origin of the
aberrant regime, one must consider the conflicting effects that viscous drag has
on a mechanically-driven swimmer. Larger drag retards the motion by provid-
ing greater resistance to the swimmer as it moves through the fluid. At the same
time, it also promotes the swimming by increasing the hydrodynamic interaction
amongst the different motile elements of the swimmer. For high and low fluid vis-
cosities, respectively, the motion-opposing and the motion-enhancing effects of
the drag force dominate, leading consequently to the conventional and the aber-
rant regimes.

The springs in our model turn out to be important for the aberrant regime to be
visible. This suggests that an elastic degree of freedom is essential for microswim-



77

mers to exhibit the aberrant behavior. Moreover, the stroke and hence the velocity
must be small enough for the Reynolds number to be negligible (compared to 1)
even at the small viscosities at which the aberrant regime is observed. Assuming
these conditions, an explanation of the earlier-mentioned experiments is thus: the
bacteria, driven by elastic shape changes, are in the aberrant regime for viscos-
ity values accessible to the experiments, and increasing the viscosity sufficiently
causes them to enter the conventional regime.

Note that the original Golestanian model does not see the velocity-viscosity
regimes, since the approach they employ is stroke-based where the effect of the
fluid becomes lost. The problem in that case becomes a purely geometric one,
with no reference to the viscosity as it is a force parameter whose effect is hidden
in the swimming stroke (see Eq. (9) in Golestanian and Ajdari [2008], where the
velocity depends purely on the sphere radii, the arm-lengths and their rates of
deformation). This recalls a similar non-dependence of the swimming velocity on
the viscosity for Taylor’s swimming sheet [Taylor, 1951] when the deformation
of the sheet is prescribed, as discussed in section 0.2.2.

From Eq. (1.11), it can be seen that the velocity vforce, being a non-monotonic
function of the fluid viscosity η, leads directly to the existence of the conventional
and the aberrant velocity-viscosity regimes. We study these regimes by chang-
ing only the viscosity η and keeping all the other independent parameters in the
problem fixed, including the driving forces. An alternative approach would be to
vary the driving forces such that the efficiency of the compared swimmers is held
constant. While this may be more relevant biologically, fixing the driving forces is
easier, and the results for constant efficiencies would not differ in essence since the
efficiencies of fast swimmers are generally higher than those of slow ones [Pande
and Smith, 2015, Pickl et al., 2012].

For the swimmer, when (A − B)/ sinα > 0, then the velocity vforce as a func-
tion of η has exactly one extremum (left panel in Fig. 3.3a), which divides the
conventional regime, obtained for large viscosities and shown in white, and the
aberrant regime, obtained for small viscosities and shown in green (light gray in
grayscale print). The different curves correspond to increasing values of A, with
B held constant. For each curve, the swimmer lies in the conventional regime if

η >
1

2
√

5 + 2
√

13

k
πωλ

. (3.2)

The parameters in the factor on the right can be for convenience combined into a
parameter ψ which we define as

ψ =
k

πωλ
(3.3)
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Figure 3.3: (a) Velocity vs. viscosity curves with sinα > 0 and different force
amplitude ratios (A/B > 1 in the left panel and A/B < 1 in the right panel).
The values of the different parameters have been kept physically appropriate for
microswimming. (b) Phase diagrams for different values of the forcing parameters
α, A and B. The parameter ψ is varied between the different plots while η is kept
fixed. Note that the phase diagrams do not depend on the particular value of η used
since the η values where the velocity has extrema are proportional to ψ, meaning
that the same phase diagrams are obtained if one changes the values of η and ψ by
the same factors. Figure taken from publication P2 [Pande et al., 2016b].



79

and which we call the swimmer’s ‘elastic parameter’ in order to distinguish it
from the spring constant. The point of defining it is that firstly, it has dimensions
of viscosity and thus acts as a natural scale to which the fluid viscosity can be
compared as in Eq. (3.2), and secondly, this parameter turns out to be important in
determining whether the swimmer’s motion is in the conventional or the aberrant
regime. Moreover, later in chapter 4 when we analyse closely the velocity of
swimmers with deformable beads, essentially the same parameter will decide if
the bead deformability aids or hinders the swimming.

The dark gray area marks the region where the swimmer Reynolds number
Re = |v|lρ/η becomes large enough for the assumption of Stokes flow to be vi-
olated. For strong enough forcing, the entire curve that is not within this dark
region is in the conventional regime. This is because strong forcing results in suf-
ficient agitation of the fluid for hydrodynamic interaction amongst the beads to be
significant, and increasing the viscosity mainly increases the resistance to motion.
In contrast, for weak forcing, the hydrodynamic interaction amongst the beads is
weak and increasing the viscosity promotes this interaction. Hence the aberrant
and the conventional regimes occur for low and high viscosities, respectively.

If (A − B)/ sinα < 0, then the velocity can have several local extrema (right
panel in Fig. 3.3a). If the force parameters satisfy the condition B > A(1 +

6 sin2 α+ 2 sinα
√

3 + 9 sin2 α)1/2, then a swimmer with a fixed elastic parameter
becomes aberrant for an intermediate range of viscosities (dashed parts of curves
in the right panel of Fig. 3.3a).

We find that it is the elasticity of a swimmer, quantified by the elastic param-
eter ψ, that controls the regime in which it lies. In Fig. 3.3b, we fix the viscosity
η and mark the conventional and the aberrant behaviour for different values of
the driving force parameters A, B and α, and for increasing values of ψ, which
are achieved by making the springs stiffer. At small ψ values, the conventional
regime is dominant (leftmost panel in Fig. 3.3b). For zero elasticity, in fact, the
whole phase space is conventional, as is easily seen by putting ψ = 0 in Eq. 1.14.
As the elastic parameter increases, the relative area of the aberrant regime too rises
continuously (center left panel in Fig. 3.3b) as long as the inequality (3.2) is satis-

fied. At the critical value ψc = 2
√

5 + 2
√

13η, there is a discontinuous change in
the nature of the regimes across most of the phase space, with the aberrant regime
becoming dominant (center right panel in Fig. 3.3b). As ψ increases further, the
aberrant regime again decreases in area, until, in the limit of large ψ, the whole
phase space becomes equally populated by the two regimes (rightmost panel in
Fig. 3.3b). The dependence of the two regimes on ψ reinforces the conclusion
that it is the relative extent of the interaction between the motile elements of the
swimmer which decides the regime of motion.
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Figure 3.4: Comparison of velocity vs. viscosity curves from theory (solid curves)
and simulations (red points), with sinα > 0 and (a) A/B = 20, and (b) A/B =
0.04. Figure taken from publication P2 [Pande et al., 2016b].

Comparison with simulations

To confirm the existence of the two viscosity-dependent regimes that the theory
predicts, we compare the theory to results obtained from simulations using the
LB3D code (section 2.2.2). In these simulations the beads are identical rigid
spheres of radius 5∆x, where ∆x is the resolution of the lattice-Boltzmann fluid,
and their surface is represented by 720 immersed boundary points. The equilib-
rium center-to-center distance between the spheres is l = 36∆x. The simulations
are run for 30 cycles to let the undesired transients decay, with the period of each
cycle being 5000 time steps. The elastic parameter is kept at ψ = 1.621 in lattice
units. The system size is 200×80×78 ∆x3 and periodic boundaries are employed.

We run two sets of simulations, to account for both the cases of (A−B)/ sinα ≷
0. For this we fix α = π/2, and the ratio A/B of the driving force amplitudes
in the two sets is kept at 20 and 0.04. These driving forces on each bead are
distributed evenly across all of its immersed surface points, and are always kept
small enough so that the resulting Reynolds number is smaller than 0.1 to ensure
‘low Re’ swimming [Pooley and Yeomans, 2008].

Figs. 3.4(a) and 3.4(b) show the average swimmer velocity vforce in the steady
state as a function of the tested viscosity values η, for the two force amplitude
ratios. In both the investigated cases we observe that the two predicted velocity-
viscosity regimes are reproduced well (within experimental error). The fact that
our swimmer’s motion stems from nothing more than the regular oscillation of two
elastic degrees of freedom, namely the two springs, means that the conclusions
can be extended to other swimmers whose motion depends on the regular beating
of components for which an elasticity may be defined, including both artificial
swimmers as well as the flagellar and ciliary ones for which the aberrant regime
was first observed.



4
Swimming with passive deformations

Apart from the direct influence of the fluid viscosity as investigated in the last
chapter, the drag force on a swimmer depends on the sequence of shapes which
it adopts while undergoing each swimming cycle. This sequence of shapes may
be assumed either by some appendages on the body, such as cilia and flagella (see
section 0.2.1 in the introductory chapter), or by the main swimmer body itself if
it happens to be deformable.

In this chapter we employ our swimmer model in the service of studying the
effect of passive shape changes of the main swimmer body on the velocity of prop-
agation. While in the literature active deformations, by which we mean deforma-
tions of shape which drive the motion of the swimmer, have been investigated in
some detail [Avron et al., 2005, Ohta and Ohkuma, 2009, Hiraiwa et al., 2011,
Farutin et al., 2013, Wu et al., 2015], the use of passive deformations, which are
the changes in shape of the swimmer’s body as a response to the flow around it, is
still unclear. Examples of swimmers with active and passive deformations of the
main swimmer body are, respectively, those undergoing amoeboid and euglenoid
(or metaboly) movement. As mentioned in section 0.2.1, both the mechanism and
the purpose of metaboly are still unclear, and indeed it may not be a fully passive
process. Nevertheless, our investigation into the effect of passive shape changes
provides some insight into it. In our swimmer, these shape changes emerge when
the beads are made deformable, a case for which we have in section 1.2.3 deter-
mined the velocity of the swimmer. We now combine this theoretical calculation
with simulations of deformable bead swimmers using the LB3D code, as it is
capable of simulating deformable membranes. The main result that we shall de-
scribe is that passive deformations can both promote and oppose the swimming,
depending on the spring stiffness, the counterpart of which in a general mechani-
cal microswimmer is the main elastic mechanism driving the motion.
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4.1 Effect of body deformability∗

We use the LB3D code (described in section 2.2.2) to run simulations of swim-
mers where we successively change the stiffness moduli of the beads. In these
simulations, we elect to restrain the total volume of the beads but not their total
area, setting the volume modulus kV

i and the area modulus kA
i (from section 2.2.2)

to 1 and 0, respectively. The bending modulus kB
i turns out not to affect the simu-

lation results much, due to the initial spherical shapes of the beads and the fact that
they do not undergo very strong deformations. Specifically, we find that changing
kB

i by 5 orders of magnitude changes the swimming velocity by less than 1 per
cent. Accordingly, in all the simulations discussed in this section, we keep the
value of the bending modulus fixed at kB

i = 10−3. In the different simulation sets,
therefore, only the shear moduli kS

i and the area moduli kαi are changed, but always
under the condition that kS

i = kαi (i = 1, 2, 3), thereby ensuring that a bead mem-
brane responds equally strongly to both deformation and dilation. For different
beads in a swimmer, these two stiffness moduli may be different. In all the results
discussed in this section, we refer only to a variation in kS

i in the simulations; that
in kαi is implied.

The beads contain fluid which has the same density and viscosity as the ex-
ternal fluid. In the simulations, the kinematic viscosity ν of the fluids is kept at
0.2 in lattice units, which keeps the lattice-Boltzmann relaxation parameter τ at a
value of 1.1 since the two quantities are related by the equation ν = (2τ − 1)/6.
This value of τ is ideal since it is known in the literature that τ ' 1 is good for
both accuracy and efficiency of combined LBM-IBM simulations [Krüger et al.,
2011], and from Fig. 3.4 in section 3.3 we know that keeping ν = 0.2 (imply-
ing τ = 1.1) results in highly accurate swimmer simulations compared to theory
when the beads of the swimmer are rigid.

The simulations show that decreasing the shear modulus kS
i (i.e. increasing the

deformability) of the beads can both increase and decrease the swimming velocity,
and we identify these two velocity responses with the ‘deformability-enhanced’
and the ‘deformability-hindered’ regimes of swimming, respectively. In Fig. 4.1
we present instances of the swimming velocity in both these regimes. The plots
in the figure show the swimmer velocities as a function of kS

i for different driving
force parameters, as found from simulations (black dashed-dotted curve) and as
predicted by the two theoretical velocities, vforce for rigid beads (blue solid curve)
and vdef for deformable beads (red dashed curve). In part (a) of Fig. 4.1, the force
amplitudes A and B are related as A = 20B, and the phase difference between the
two is α = π/2. In this set, the shear moduli of all the beads in the swimmer

∗This section has been adapted from publication P3 [Pande et al., 2016a], with changes for
consistency.
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Figure 4.1: Comparison of swimmer velocity found from simulations and theoret-
ical velocity expressions assuming rigid and deformable beads, for changing shear
moduli kS

i of the beads. In (a), the kS
i values of all the beads are changed together,

and the force ratio and the force phase difference respectively are A/B = 20 and
α = π/2. In (b), kS

1 is held constant at 1 while the kS
i values for i = 2, 3 are

changed together, and the force ratio and the force phase difference are respec-
tively A/B = 1 and α = 0. Note that the forcing is symmetric in (b), meaning
that in the case of rigid beads (kS

2 = kS
3 & 0.8) there is no swimming. Figure taken

from publication P3 [Pande et al., 2016a].
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are changed together and are always equal (kS
i = kS

j ∀ i, j). It is seen that in the
simulations the swimming velocity goes down when kS

i decreases. In part (b) of
Fig. 4.1, the force amplitudes A and B are kept equal, and the phase difference
between the two is 0. This is thus a case of symmetric driving, which for rigid
beads results in no net swimming. To obtain swimming, we let one bead in the
swimmer remain rigid (kS

1 = 1.0), while the shear moduli of the other two beads
are varied together (kS

2 = kS
3 ). In this case, as expected, the swimming velocity

increases as kS
i (i = 2, 3) decreases. This is therefore a stark demonstration of the

great advantage that body deformations, even when entirely passive, can present
for swimming.

There are two important points to be made here. Firstly, the velocity expres-
sion vdef (from Eq. (1.41)) depends on a knowledge of the time-variation of the
reduced friction coefficients λi(t) (Eq. (1.36)), which is not available before the
simulations are run. To find these from the simulations, we observe that for weak
bead deformabilities, which are an assumpption in our theory, the initially spheri-
cal beads retain a convex shape throughout and can be approximated as ellipsoids.
The λi(t) values used in the above calculation can then be found by fitting the
instantaneous shape of each bead in a simulation to a bounding ellipsoid and de-
termining its three semi-axes aell, bell and cell by comparing the bead shape with an
ellipsoid of the same inertia tensor [Krüger et al., 2011]. Due to the axisymmetry
of the problem, at each moment two of the semi-axes in a bead are equal, so that
the ellipsoids are always spheroids (i.e. ellipsoids of revolution), although these
spheroids can change from prolate to oblate and back within a swimming cycle.
The effective friction coefficients of the beads at each instant are then determined
using Perrin’s formulas [Perrin, 1934, Pande and Smith, 2015]. As an example,
Fig. 4.2 shows the three semi-axes aell(t), bell(t) and cell(t) and the resulting ef-
fective friction coefficient λ1(t) (in solid blue) of one of the beads in a simulation
from the set presented in Fig. 4.1 (a).

Secondly, we have in the above theoretical curves implicitly assumed that the
hydrodynamics is not directly affected by the variation in the shapes of the bead
surfaces, since our calculations in section 1.2.3 for the deformable bead swimmer
and in section 1.2.1 for the rigid bead swimmer differed only in the time-varying
nature of the effective friction coefficients λi(t) in the former. The theory is there-
fore meaningful only if the shape variations are tiny, and a posteriori we find that
this requires the shear moduli kS

i to be larger than about 0.1. In particular, for all
the simulation sets analysed both the deformability-enhanced and deformability-
hindered trends in swimming are accurately captured by the theory for kS

i > 0.1
(and in the case of the set in Fig. 4.1 (b), for kS

2 = kS
3 > 0.01). It may be noted

however that in all our calculations, the effects due to the deformability are only a
small correction to the rigid bead swimming case, which is why the vforce and vdef
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Figure 4.2: Different semi-axes of the bounding ellipsoid of bead 1, and the resul-
tant effective friction coefficient λ1, for a simulation with kS

1 = kS
2 = kS

3 = 0.1,
A/B = 20 and α = π/2. Figure taken from publication P3 [Pande et al., 2016a].

curves are close together in both the parts of Fig. 4.1.

4.2 Phase diagram for the effect of deformability†

The above comparison with simulations speaks to the accuracy of our theory in
predicting the deformability-enhanced and the deformability-hindered regimes of
motion of the swimmer, and we can now use the theory to find these regimes for
parameters which are inaccessible to the simulations. It is simplest to identify
these two regimes for the special case of identical beads deforming identically,
i.e. with ai = a and b1

i = b, for i = 1, 2, 3. In this case, we slightly modify the
definition of the elastic parameter ψ of Eq. (3.3) to

ψ =
k

πωa
, (4.1)

where the rigid bead effective friction coefficient λ (which equals the radius for
a sphere) in Eq. (3.3) has been replaced by a, its mean value. In section 3.3
we showed that for a swimmer with rigid beads ψ dictated the response of the
swimming motion to an increase in the fluid viscosity. We find that (with the
above modification in its definition) ψ also determines the deformability-based
regime in which the swimming occurs for a swimmer with deformable beads.

†This section has been adapted from publication P3 [Pande et al., 2016a], with changes for
consistency.
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Figure 4.3: Velocity vs. effective elastic parameter for swimmers with deformable
beads. The light yellow and violet colours mark the deformability-enhanced and
deformability-hindered regions, respectively. The solid green curve is for a swim-
mer with rigid beads. Figure taken from publication P3 [Pande et al., 2016a].

In fact we find that there are up to three critical values of ψ, which we denote as
ψcritical

i (i = 1, 2, 3), that separate regions where dvdef/db > 0 and dvdef/db < 0,
inequalities which define the two deformability-based regimes. (Another way to
write these inequalities is as

∑3
i=1 mi ≷ 0, from Eq. (1.41).) Fig. 4.3 shows a

case in which all three ψcritical
i values are physically relevant, i.e. they are real and

positive. In the figure the yellow and the violet regions mark the ‘deformability-
hindered’ and the ‘deformability-enhanced’ regions, respectively. Knowledge of
ψ, therefore, is sufficient to determine how the swimmer velocity would change
with a change in the bead deformability. The explicit expressions for ψcritical

i are
not noted down here explicitly on account of their great length.

In Fig. 5.3 we present phase diagrams showing the relative population of the
deformability-enhanced and -hindered regimes for different driving force ampli-
tude ratios A/B and phase shifts α, for a few values of the swimmer elastic pa-
rameter ψ. In each diagram, all the simulation parameters apart from A/B and
α are kept constant. The diagrams show that for small values of ψ, the swimmer
becomes slower with increasing bead deformability for a majority of the phase
space. As the ψ value increases, the swimmer becomes more likely to benefit
from an increase in the bead deformabilities. This increase in the prevalence of
the deformability-enhanced regime with rising ψ can be understood when one con-
siders that in the limit of infinite ψ, which corresponds to perfectly stiff springs, a
swimmer with rigid beads cannot swim as it is just one contiguous, rigid body. In
this case deformable beads are necessary to gain the requisite degrees of mechan-
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Figure 4.4: Phase diagrams for swimmers with deformable beads, for different
values of the forcing parameters α, A and B, and with increasing values of the
elastic parameter ψ. Figure taken from publication P3 [Pande et al., 2016a].

ical freedom which may lead to motion.
In our swimmer model, the elasticity parameter ψ is just the scaled spring

constant. From a broader perspective, this parameter measures the strength of
the deformations of the entire swimmer that drive its motion, and for a general
swimmer, the role of this parameter would be assumed by any other measure of
the swimmer’s elastic degree of freedom. Our analysis above would then suggest
that the response of the body deformability on the swimming motion is controlled
by the strength of a mechanical microswimmer’s main elastic degree of freedom.
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5
Effect of swimmer shape

In the last chapter we studied the effect of body deformations which occur in the
swimmer due to the influence of the fluid and continuously cause the drag force
faced by the swimmer to be modified. In this chapter we consider more permanent
interactions between the swimmer shape and the fluid drag force, by comparing
different mean body shapes for otherwise equal swimmers. In particular we wish
to determine the optimal shapes for the three beads in our swimmer, given some
constraints, which result in the fastest/most efficient motion. As may be expected
in the world of microswimming, we find that the effect of the shape-induced drag
can be capricious, leading to results such as the same beads forming the fastest or
the slowest swimmer in a family, depending on the spring constant.

Figure 5.1: A bead-spring swimmer with identical rigid ellipsoidal beads, whose
semi-axes are a and b. Figure taken from publication P1 [Pande and Smith, 2015].
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5.1 Ellipsoidal families of swimmers ∗

We constrain the three beads in the swimmer to be rigid, identical and ellipsoidal
in shape, with the ellipsoid aspect ratio providing a simple parameter that may
be varied to obtain different shapes. These ellipsoids are taken to be spheroids,
i.e. formed by revolving an ellipse of semi-axes a and b around a, with the aspect
ratio e = a/b and their major axis either parallel or perpendicular to the springs
(Fig. 5.1). (The semi-axis labels a and b are of course different from the param-
eters ai and bn

i for deformable beads introduced in Eq. (1.36). Since we are here
only considering rigid beads, no confusion should arise.) We consider prolate
(e ≥ 1) and oblate (e ≤ 1) ellipsoids separately, and require the ellipsoids within
one family to have either a constant volume or a constant surface area. This last re-
quirement allows us to make a meaningful comparison amongst similar shapes. It
also anticipates one of the foreseen applications of bead-spring swimmers, which
is their use as payload-carrying sites in future micro-carriers, where depending on
whether the payload were placed on the surface of the beads or in their interior,
they would be required to have a given volume or surface area. We therefore ob-
tain four families of ellipsoids in the swimmers, namely prolates and oblates of a
constant volume V and a constant surface area S (Table 5.1). For convenience, we
introduce a radius r0 such that V = (4/3)πr3

0 and S = 4πr2
0.

Friction coefficients of ellipsoidal beads under constraints

General expressions for the friction coefficients of ellipsoids of revolution are
available in the literature [Oberbeck, 1876, Perrin, 1934], from which we deter-
mine the reduced friction coefficients λ for the above four families (Table 5.1).
For three of these families–namely prolates of a constant volume and a constant
surface area and oblates of a constant volume–the smallest reduced friction coef-
ficient λmin is attained for an ellipsoid oriented parallel to the direction of motion
and with an aspect ratio close to one (Fig. 5.2(a) and Table 5.2). In the thin body
limit (e→ ∞ for prolates and e→ 0 for oblates), λ diverges as some body dimen-
sion becomes infinite. In contrast, for oblates of a constant surface area, both the
smallest and the largest values of λ are attained in the thin body limits (e → 0),
depending on the ellipsoid orientation (Fig. 5.2(c) and Table 5.2). This is because
the limiting shape in this case is a finite two-sided circular disc with the area of
each side being S /2, where S = 4πr2

0 is the constant surface area. It is easy to

∗All the sections in this chapter have been adapted from publication P1 [Pande and Smith,
2015], with changes for consistency.
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Table 5.1: The reduced friction coefficients λ of prolate and oblate ellipsoids in
different orientations and under constant volume or constant surface area con-
straints, in terms of the ellipsoidal aspect ratio e. V and S denote the volume and
the surface area, respectively, of a sphere of radius r0.

Ellipsoid Pre-factor P λconstant V λconstant S

(4/3)
(
e2 − 1

)
(2e2−1)
√

e2−1
log

(
e +
√

e2 − 1
)
− e

P ×
r0

e1/3
P ×

√
2r0√

1 + e2
√

1−e2
tanh−1

(√
1 − e2

)
(8/3)

(
e2 − 1

)
(2e2−3)
√

e2−1
log

(
e +
√

e2 − 1
)
+ e

P ×
r0

e1/3
P ×

√
2r0√

1 + e2
√

1−e2
tanh−1

(√
1 − e2

)
(8/3)

(
1 − e2

)
(3−2e2)
√

1−e2
tan−1

( √
1−e2

e

)
− e

P ×
r0

e1/3
P ×

√
2r0√

1 + e2
√

e2−1
sin−1

( √
e2−1
e

)

(4/3)
(
1 − e2

)
(1−2e2)
√

1−e2
tan−1

( √
1−e2

e

)
+ e

P ×
r0

e1/3
P ×

√
2r0√

1 + e2
√

e2−1
sin−1

( √
e2−1
e

)

Table 5.2: Critical values of emin and their respective λmin, for prolate and oblate
ellipsoids subject to a constant total volume (V) or surface area (S ) constraint

Shape Constant volume Constant surface area
(V = (4/3)πr3

0) (S = 4πr2
0)

emin λmin emin λmin
1.95 0.95r0 4.04 0.89r0

0.70 0.99r0 0.00 0.80r0
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show that in this case the friction coefficients have boundary extrema given by

λmin =
16
√

2r0

9π
(for e→ 0), and

λmax =
8
√

2r0

3π
(for e→ ∞). (5.1)

5.2 Optimisation of bead shape

For the above families, to determine the effect of bead shape upon the swimming,
we analyse the equation

d |vforce|

de
= 0 =

d |vforce|

dλ
dλ
de

. (5.2)

Using the chain rule, we have broken up the relation for the velocity extrema into

dλ/de = 0, (5.3)

and
d |vforce|/dλ = 0. (5.4)

Looking at these two relations separately is instructive. Eq. (5.3) yields the as-
pect ratio emin of the ellipsoid with the smallest reduced friction coefficient λmin
as determined earlier (Table 5.1). Since this condition relates only to the geome-
try of the beads and not to the forces acting on the swimmer, the velocity curve
always has an extremum vλmin at the aspect ratio emin. This value vλmin is given by
Eq. (1.14), with λ replaced by λmin for the appropriate case (Table 5.1).

In the following analysis, it turns out to be convenient to define a ‘reduced
spring constant’ κ of the swimmer, as

κ = ψλ/η = k/(πωη), (5.5)

where ψ is the elastic parameter of the swimmer defined in Eq. (3.3). The advan-
tage of defining κ stems from the requirement in this analysis to preserve the effect
of the shape, whose signature is carried by λ, explicitly in the velocity formulae.
(This is the same reason why defining ψ was useful when considering the effect
of the fluid viscosity.) Despite the sobriquet ‘reduced’, κ is not dimensionless but
has the dimensions of length, and provides a scale to which the reduced friction
coefficient, which too has the dimensions of length, may be compared. We find
that the smallest reduced friction coefficient λmin defines a global critical value κc
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Figure 5.2: (a) Reduced friction coefficient λ for prolate ellipsoids of a constant
volume or surface area and oblate ellipsoids of a constant volume. (b) The cor-
responding velocity vforce curves, for either A = B or α = π/2 if A ≥ B (or
α = −π/2 if A < B). (c) λ for oblate ellipsoids of a constant surface area. (d)
The corresponding velocity vforce curves, for either A = B or α = π/2 if A ≥ B
(or α = −π/2 if A < B). In (a) and (b), ‘I’ and ‘II’ denote the drag-dominated
and the interaction-dominated regimes, respectively, while in (c) and (d), ‘Ia’ and
‘Ib’ denote the drag-dominated regime and ‘II’ denotes the interaction-dominated
one. Figure taken from publication P1 [Pande and Smith, 2015].
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of the reduced spring constant, given by

κc = 2
√

3λmin. (5.6)

As we shall see, depending on whether the reduced spring constant of the swim-
mer is larger or smaller than this critical value, the extremum vλmin in the velocity-
aspect ratio curve may be a maximum or a minimum.

Eq. (5.4) allows us to connect the optimal shapes to the different forces act-
ing on the beads, since its solutions relate the reduced friction coefficient to the
reduced spring constant, the driving frequency and the fluid viscosity. Let the
springs in the swimmer have a reduced spring constant given by

κ = κs. (5.7)

Then, there is a shape with the reduced friction coefficient given by

λ1
s = κs/(2

√
3), (5.8)

such that λ1
s is a solution to Eq. (5.4). This leads to the velocity extremum

vλ1
s
=

7
(
2
√

3AB sinα+ A2 − B2
)

768 π2η2l2ωκs
ẑ. (5.9)

If λ1
s is the only solution to Eq. (5.4), then one can show (see the Appendix

in section 5.5) that if κs < κc, the magnitude of the velocity has only one maxi-
mum obtained from the geometric condition which determines the most stream-
lined shape (solid curve, labelled ‘I’, in Fig. 5.2 (b)). We call this regime ‘drag-
dominated’, as here the velocity is maximised upon minimising the drag. On the
other hand, if κs > κc, then the velocity curve has two more extrema (one in the
case of oblates of a constant surface area), which are degenerate and are attained
for the ellipsoids whose reduced friction coefficient equals λ1

s (dashed curve, la-
belled ‘II’, in Fig. 5.2(b)). In this case, the magnitude of these latter velocity ex-
trema is globally the maximum. We label this regime as ‘interaction-dominated’,
as here the velocity is maximised at an intermediate value of the drag, where the
hydrodynamic interaction between the beads becomes important. In this regime,
in fact, one sees the highly counter-intuitive effect of the most streamlined shape
forming locally the slowest swimmer (as the dashed curve in Fig. 5.2(b) has a
local minimum at emin).

The fact that these two regimes exist can be attributed to the two conflict-
ing effects that drag has upon a swimmer: while on one hand it resists motion
through the fluid, on the other hand it promotes the fluid’s agitation, resulting in
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Figure 5.3: Phase diagrams and solution maps for the forcing parameters A/B vs
α, for particular values of κs. If κs/λmin < 2

√
3, then for some parameters we have

vmax = vλmin (i.e. the drag-dominated regime), and if κs/λmin > 2
√

3 the whole
phase space is interaction-dominated. Figure taken from publication P1 [Pande
and Smith, 2015].

hydrodynamic interaction among the beads and ultimately in swimming. In the
interaction-dominated regime, where the spring constant (and consequently κs)
is relatively high, most of the input work is consumed in deforming the springs,
and so an increased drag is beneficial for a heightened hydrodynamic interaction
among the bodies. Therefore, the swimmer with ellipsoids of a reduced friction
coefficient λmin, which agitates the fluid the least, is locally the slowest. In con-
trast, in the drag-dominated regime, where the spring constant is low, most of the
input work is transferred directly onto the agitation of the fluid, so having a high
drag only slows the swimmer down.

5.3 Phase diagram for effect of shape

More generally, Eq. (5.4) can have several solutions for λ depending on the force
parameters A, B and α. Then the velocity–seen as a function of the ellipsoid’s as-
pect ratio e and its orientation–can have upto seven extrema (see the Appendix in
section 5.5 for details). In this case, too, we can identify the drag-dominated and
the interaction-dominated regimes, as the regimes respectively where the highest
velocity magnitude is attained for the most stream-lined bead shapes and for the
bead shapes where a higher drag causes a sufficiently positive hydrodynamic in-
teraction to lead to an increase in the velocity. Fig. 5.3 shows phase diagrams
identifying these two regimes (top graph in each panel), and solution maps show-
ing the number of velocity extrema (bottom graph), as a function of the driving
parameters and for different values of the reduced spring constant κs. Since the
velocity magnitude is unchanged under the transformation {A↔ B, α→ −α}, we
restrict these diagrams to −π ≤ α ≤ 0.
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Figure 5.4: Velocity vforce (dashed blue curve) and transport efficiency εT (solid
orange curve) of constant-volume prolate swimmers, with B = 3A and α = π/4.
The λν written near each velocity extremum (λν = λi

s or λmin) specifies that the
respective extremum is attained at λ = λν. For the definition of λ2

s and λ3
s and the

corresponding velocity extrema, please see the Appendix in section 5.5. Figure
taken from publication P1 [Pande and Smith, 2015].

These diagrams show that, in general, as the reduced spring stiffness κs in-
creases, the swimmer goes from the drag-dominated regime to the interaction-
dominated one. In particular, for κs = 0, the swimmer is always in the drag
dominated regime (light blue in the phase diagrams), irrespective of the other pa-
rameters. There is only one velocity extremum (light green in the solution maps),
at λ = λmin. As κs increases, two more extrema, associated with λ2

s (see the Ap-
pendix in section 5.5), appear in the velocity curve for some values of the driving
parameters (shown by purple in the solution maps), and parts of the corresponding
phase diagrams enter the interaction-dominated regime (indicated by dark blue).
This holds true as long as κs < κc. As soon as κs becomes larger, upto four extrema,
associated with λ1

s and λ3
s (see the Appendix in section 5.5), appear in the velocity-

shape curve (shown by yellow and orange in the solution maps) depending on the
force parameters, and the whole phase diagram enters the interaction-dominated
regime.

5.4 Transport efficiency

To quantify the ability of swimmers to carry cargo, we define the transport effi-
ciency εT as the ratio of the reduced transport energy |vforce|

2 and the input power
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1
T

∫ T
0

∑3
j=1 F j(t) · v j(t)dt, giving

εT =

∣∣∣∣∣∣∣∣vforce
AB

(
κ2

s + 12λ2
)

sinα − 2
(
B2 − A2

)
κsλ

(A2 + B2)
(
κ2

s + 12λ2
)
− AB

(
κ2

s − 12λ2
)

cosα

∣∣∣∣∣∣∣∣ .
This definition favours fast swimmers, but penalises ones which require a high
power input. It is also bounded as a function of ω, κs and λ, thus ensuring that it
does not diverge on, for example, increasing the time period. It is more suitable
than the simple ratio of the current (which is proportional to vforce) to the input
work (as in Felderhof [2006]), which is insensitive to changes in shape for fixed
driving in the far-field approximation. Also, the Lighthill efficiency [Lighthill,
1952] is unsuitable because it penalises swimmers facing a high drag, and this is
inapt for the interaction-dominated swimming regime.

In spite of the natural correlation between the transport velocity and efficiency,
the most efficient swimmer is not necessarily the fastest one (Fig. 5.4). This is
particularly important in the interaction dominated regime, where designs which
propagate with the same speed can have significantly different efficiencies due
to a different repartition of the input work on the fluid and the compression of
the springs. For instance, in Fig. 5.4, εT at λ3

s is much less than at λ2
s , although

vλ2
s
= vλ3

s
. In contrast, in the drag-dominated regime, the input work consumed

by the elastic components is negligible, and so optimally-shaped swimmers are
typically the most efficient.

5.5 Appendix†

Here we show the calculation of the critical value κc of the reduced spring constant
and of the general extrema in the velocity–aspect ratio curve (which also takes the
ellipsoid orientation into account, as in Fig. 5.2). First we consider the three
special cases of (i) A = B, (ii) α = π/2 with A > B, and (iii) α = −π/2 with
A < B. For these cases, it can be easily shown that λ1

s (Eq. (5.8)) is the only
solution to Eq. (5.4). Therefore, if the springs are so soft that κs < 2

√
3λmin, then

there can be no ellipsoid with the reduced friction coefficient radius λ1
s , since in

that case λ1
s = κs/(2

√
3) would be smaller than λmin, which is impossible. On the

other hand, if the springs are stiff enough so that κs > 2
√

3λmin, then–for prolate
ellipsoids of a constant volume, as in Fig. 5.2(a)–exactly two ellipsoids have the

†A much more detailed exposition of the number of velocity extrema and the corresponding
velocity values for the different regions in the phase diagram of Fig. 5.3 is provided for the inter-
ested reader at the end of the thesis in Appendix A1. It is not essential for following the arguments
in this chapter.
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reduced friction coefficient λ1
s (with aspect ratios given by e1 and e2 in regime II,

Fig. 5.2(a)). Therefore, κc = 2
√

3λmin acts as a critical value of κ.
The above discussion is identical for prolates of a constant surface area and

for oblates of a constant volume. The case of oblates of a constant surface area
is slightly different, since emin = 0 and λmax is finite. In this case, if the springs
are too soft, i.e. with κs < 2

√
3λmin or too stiff, with κs > 2

√
3λmax, then there

is no ellipsopid with the reduced friction coefficient λ1
s . Moreover, since emin

equals 0, the velocity curves are monotonic functions of the aspect ratio e. For
soft springs, this function decreases with e (regime Ia in Fig. 5.2), while for stiff
springs it increases (regime Ib). If, however, the spring stiffness is intermediate,
i.e. 2

√
3λmin < κs < 2

√
3λmax, then there is one velocity maximum obtained from

the condition in Eq. (5.4).
For a general choice of parameters, Eq. (5.4) provides two further pairs of so-

lutions, namely {λ2
s , λ3

s } (when the relation between the force amplitudes is B < A),
and {λ4

s , λ5
s } (when A < B). These solutions can be ordered as λ2

s < λ1
s < λ3

s and
λ4

s < λ1
s < λ5

s . A solution λi
s of Eq. (5.4) for the reduced drag coefficient is physi-

cally relevant only if λi
s ∈ R and λi

s ≥ λmin. Each such physically relevant solution
λi

s provides two degenerate velocity extrema vλi
s
. Furthermore, the degeneracy ex-

tends over the solution pairs, with vλ2
s
= vλ3

s
and vλ4

s
= vλ5

s
. These extrema values

are given by

|vλi
s
| =

7
(
F2
> − F2

< −

√
F4
> + F4

< − 2F2
>F2

< cos (2α)
)

384 π2η2l2ωκs
, (5.10)

where i = 2, ..., 5 and F> and F< denote the larger and the smaller of the force
amplitudes A and B, respectively. Consequently, the velocity vforce as a function
of the aspect ratio e has, in addition to one extremum from λmin, up to 3 pairs of
extrema from λi

s.



6
Effect of inertia on swimming

In this final part of the thesis, we consider the motion of microswimmers be-
yond the bounds of the Stokes regime, i.e. when effects of inertia are no longer
negligible. As discussed in section 0.1, the assumption of Stokes flow simplifies
the swimming problem a lot, as the inconvenient non-linear and time-dependent
terms in the Navier-Stokes equation (Eq. (0.1)) disappear. This assumption results
unavoidably in some non-physical effects, such as a direct proportionality of the
swimming speed to the applied force and an instantaneous response of the fluid,
up till infinity, to any disturbance within it. These effects can usually be ignored,
firstly in the interest of the linearity of the resulting Stokes equation which is quite
evidently crucial for analytic treatments of the swimming problem, and secondly
because these effects turn out not to cause significant errors in the flow descrip-
tion. All of our calculations presented so far have been rooted in the linearity of
the Stokes equation.

Inclusion of the inertial contributions to the flow is a very daunting task in
general. To bring it within the realm of tractability, we restrict our attention to
the lowest order effects of inertia on our swimmer. In other words, we study the
swimming regime where inertial or non-Stokesian effects first emerge and impart
quantitative, and possibly qualitative, differences to the motion when compared to
that in purely Stokes flow. Our approach will be to follow as closely as possible
our methods described thus far in this thesis, and modify them appropriately to
take inertia into account. We will do this in two ways. Firstly, we will provide a
heuristic scheme for identifying the non-Stokesian regime of motion by consid-
ering the relaxation of a swimmer from an initially stably-moving configuration.
In the Stokesian approximation, this relaxation is instantaneous, and the degree of
non-instantaneity in it will speak to the non-Stokesian aspect of the motion. We
will show that the larger the mass of the swimmer, the slower does it have to be
for the relaxation to display an inertial component. Secondly, we will perform a
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full calculation of the swimming velocity of our bead spring swimmer model with
non-negligible inertia, by including a mass acceleration term in the equations of
motion governing the swimming. This shall confirm the finding that for larger
swimmer masses the inertial or the non-Stokes regime begins at smaller swim-
ming speeds (i.e. smaller driving forces). In both cases the theoretical predictions
will be supported by LBM simulations.

6.1 Relaxation of inertial swimmers ∗

We wish to observe and identify non-inertial effects in our swimmer’s motion by
considering its relaxation in the fluid when all forces on it cease. For this purpose,
we make the beads in the swimmer much heavier than the surrounding fluid, and
let the swimming motion be much faster, with the expectation that both these
contributions aid in violating the assumptions of Stokes flow. We therefore run
simulations of swimmers with spherical beads using thewaLBerla-pe framework,
where the radius of each sphere is 6∆x and the rest length of each arm is 32∆x.
The cycle period is kept at 8000 time steps to aid simulation accuracy. The phase
shift α is set to 0.5π.

The simulations are run in four sets, with the mass of each sphere in the four
sets being 20000, 30000, 40000 and 50000 lattice units, respectively. Note that
these masses imply that the sphere densities are about 22 to 55 times larger than
the density of the surrounding fluid, respectively, in the four sets, meaning that the
beads are not neutrally buoyant. This is not a problem since gravity plays no role
in our simulations.

Within each simulation set we increase the driving force amplitudes succes-
sively and check first the swimming veolcity of the swimmer in the steady state,
and then its relaxation to zero velocity when the driving forces are suddenly
switched off. The range of driving force amplitudes checked is slightly differ-
ent in the different sets, because (as we shall show) the critical force amplitude
values where non-inertial effects first become visible depend on the swimmer’s
mass. The force ranges chosen in each simulation set are those at which the Stokes
regime, the non-Stokes regime, and an intermediate regime each become visible.

We find that for all the simulation sets, the Stokesian theory of section 1.2.1
gives the correct swimmer velocities in the steady state only for low driving force
amplitudes, and diverges from the simulations as the forces increase. In each case,
the velocities found from the simulations are higher than those predicted by the
theory. As an example, Fig. 6.1 shows the velocity curves from the Stokesian the-
ory and the simulations for a sphere mass of 40000 lattice units. This matches the
expectation of a continuous transition from the Stokes regime to the non-Stokes
∗This section has been adapted from publication P4 [Pande* et al., 2016], with changes for
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Figure 6.1: Velocity of a swimmer with inertia for different force amplitudes, from
simulations and theory. Figure taken from publication P4 [Pande* et al., 2016].

one, which we have loosely marked as blue and yellow regions respectively in
Fig. 6.1. In between lies an intermediate regime, marked in pink in Fig. 6.1,
where the transition occurs. We now locate this transition more precisely.

6.1.1 Underdamped relaxation of the swimmer

Our bead-spring swimmer can be viewed as a system of connected harmonic os-
cillators, which are coupled through both the middle sphere and the surrounding
fluid, as well as damped by the fluid. Since the drag force is dominant in Stokes
flow, we postulate that the Stokes and the non-Stokes regimes are characterised
by overdamping and underdamping, respectively, in the motion of this oscillator
system. For an underdamped driven harmonic oscillator, the trajectory is given by

x(t) = x0e−γt cos (ωrt − αr) , (6.1)

where x0 is the maximum amplitude, γ is the damping constant, and ωr and αr
are constants of oscillation. For underdamped motion of a coupled system such as
ours, and of any mechanical microswimmer in general, it is difficult to specify the
different parameters in Eq. (6.1), yet the damping coefficient γ may still be iden-
tified. To do this, consider the swimmer’s relaxation from an initially steady state
when the driving forces are switched off. In the steady state, the swimmer faces
the Stokes drag force FSt = −6πηreffu where reff is its effective hydrodynamic

consistency.
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Figure 6.2: Relaxation of a swimmer for different driving force amplitudes. Figure
taken from publication P4 [Pande* et al., 2016].

radius. When the driving forces vanish, then the body stops instantly if inertial
effects are discounted, but in the presence of inertia the body exhibits coasting,
and its velocity decreases continuously as

FSt = mdu/dt = −6πηreffu.

⇒ u = Ce−γt, with γ =
6πηreff

m
and C a constant. (6.2)

Due to the use of the Stokes drag force FSt in obtaining γ, Eq. (6.1) with said γ
describes the relaxation only in the intermediate regime between the Stokes and
the non-Stokes ones. Therefore, by fitting the relaxation curve of the swimmer
with Eq. (6.1), the intermediate regime can be identified. This can then also be
used to determine the swimmer’s effective hydrodynamic radius reff , by using
Eq. (6.2) to find reff once γ has been identified from the fit to Eq. (6.1). This
procedure can be used for other mechanical microswimmers such as in Purcell
[1977], Avron et al. [2005] which can be viewed as oscillators.

6.1.2 Identification of intermediate regime

We now check the relaxation curves obtained from the simulations of our swim-
mers when the driving forces are turned off after the steady state has been reached.
We find that Eq. (6.1) at times underestimates and at times overestimates the
damping seen from the simulations. As illustration, Fig. 6.2 shows the relax-
ation obtained from simulation (blue dotted curve) and the fit to this curve using
Eq. (6.1) (orange solid curve) for three different force amplitude values for the
simulation set with sphere mass = 40000 lattice units. In each case, the fit param-
eters are chosen such that they minimise the error to the simulation curve in the
initial part of the relaxation, i.e. from the initial point on the left to the first local
minimum. It may be seen that the middle simulation, with a force amplitude of
0.28 lattice units, shows near-perfect agreement with the theoretically predicted
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Figure 6.3: Effective radius of a swimmer for different force amplitudes, as de-
termined by relaxation after force cut-off. Only the simulations in the intermedite
regime are expected to reproduce the theoretically predicted value of 12.3 lattice
units (marked by a dashed red line). Figure taken from publication P4 [Pande*
et al., 2016].

relaxation curve based on Eq. (6.1). In contrast, in the plot on the left, with a force
amplitude of 0.056 lattice units, the swimmer’s damping is underestimated by the
fitting curve, while in the plot on the right with a force amplitude of 0.56 lattice
units, the fitting curve from Eq. (6.1) overestimates the damping.

The different extents of agreement between the simulations and the theoretical
fitting curves for different force amplitudes are understandable, since the theoret-
ical fit is only expected to work well in the regime which shows characteristics of
both Stokesian and non-Stokesian motion (due respectively to Eq. (6.2) which de-
pends on the Stokes drag law and Eq. (6.1) which assumes underdamped motion
which is a non-Stokesian effect). This means that the relaxation from the simula-
tion should match the theory the most perfectly in the intermediate regime. Such
a reasoning shows the three simulations plotted in Fig.6.2 to lie, from left to right,
in the Stokes, intermediate, and non-Stokes regimes, respectively.

There is another way to check such a determination of the three regimes. In
chapter 1, section 1.2.4, we found a theoretical expression for the effective ra-
dius reff of our swimmer. In all the simulations that we are here considering, we
have λi = 6∆x and li = 32∆x, which gives a theoretically expected reff value
of reff = 12.3∆x. The corresponding values for each simulation can be found
by combining Eqs. (6.1) and (6.2). Focussing first on the case of sphere mass
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Figure 6.4: Effective radius of a swimmer for different force amplitudes and dif-
ferent mass values, as determined by relaxation after force cut-off. Figure taken
from publication P4 [Pande* et al., 2016].

= 40000, we plot the reff value obtained from each simulation in Fig. 6.3, with
the black circles. The theoretical value of 12.3∆x is marked with the horizon-
tal dashed red line. It is clear that there is an excellent agreement between the
theoretical and the simulation values, for a force amplitude of 0.28 lattice units,
i.e. precisely the force amplitude which we identified as marking the intermedi-
ate regime on the basis of the accuracy of the underdamped oscillator description
of the swimmer’s relaxation. In general, the reff value found from simulations
increases monotonically as the driving forces increase, because the parameter γ
found from Eqs. (6.1) and (6.2) initially underestimates and then overestimates
the actual damping in the simulations. This is a good check of our reasoning to
identify the intermediate regime.

We now consider similar curves obtained from all four sets of simulations.
Fig. 6.4 shows that in each case, the reff values given by the simulations increase
monotonically. (The only exceptions to this are the simulations with the very high-
est force amplitude values probed–see for instance the orange curve for sphere
mass = 30000 lattice units–but that is a relic of the spheres almost colliding with
each other at these high driving force values.) Moreover, as the sphere mass in-
creases, the curves shift to the left, and so do the respective force ranges marking
the intermediate regime. In each case, the simulations where Eq. (6.1) best fits
the swimmer relaxation are the same ones where the reff curves are closest to the
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theoretical value, marked by the horizontal red dashed line in Fig. 6.4. What this
means is that as the mass of the swimmer increases, the non-inertial effects, which
first make their presence felt in the intermediate regime, become visible at smaller
driving force amplitudes, i.e. for smaller swimming strokes. This is understand-
able, since in the Reynolds number it is the product of the velocity and the density
which comes together, and increasing either sufficiently breaks the bounds of the
Stokes flow assumption. Note that to find the true Reynolds number of a swimmer
which is not neutrally buoyant, one should replace the density of the fluid in the
definition of the Reynolds number (Eq. (0.4)) by that of the swimmer itself.

6.2 Theory for inertial swimming †

Having phenomenologically studied in the previous section the motion of our
swimmer when inertial effects start becoming visible, we now present a basic
theoretical treatment of the situation. The calculations are based on our theory
for a swimmer with rigid beads swimming in Stokes flow (section 1.2.1), and
non-Stokesian effects are included in the model by adding a mass acceleration
term to the governing equations of motion in Eq. (1.9). As we shall show, the
theory provides results which are in good agreement with the simulations of the
swimmer with non-negligible mass, and also confirms the three regimes and their
characteristics discussed in the previous section.

6.2.1 Calculation of velocity for a swimmer with inertia

We wish to calculate to the lowest non-negligible order the inertia-induced effect
on the motion of our bead-spring swimmer. To begin with, we adopt the same
model as in section 1.2.1, with the sinusoidal driving forces specified by Eq. (1.3),
and the equation of motion for the ith bead given by Eq. (1.9). The latter equation
can on rearrangement be written as

Fd
i (t) + Fs

i (t) =
3∑

j=1

Qi j(t)v j(t), (6.3)

where Fd
i (t) and Fs

i (t) are respectively the driving and the spring force on the ith

bead, and the introduced variables Qi j(t) are functions of the differences R j(t) −
Rk(t) ( j, k = 1, 2, 3) of the bead positions. The left hand side in Eq. (6.3) is the

†The calculations presented in this section were carried out by Oleg Trosman under the super-
vision of the author [Trosman, 2016]. Note also that this section has been adapted from publication
P4 [Pande* et al., 2016], with changes for consistency.
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sum of the forces on the ith bead not counting the force applied by the fluid, and
in the Stokesian description this sum is exactly balanced by the hydrodynamic
force of the fluid which opposes the motion of each bead. This is manifestly not
the case in the non-Stokes regime, and we postulate that in the latter regime the
effect of the applied forces (the driving and the spring forces) on each bead is to
accelerate the bead, in addition to neutralising the opposing force provided by the
fluid which is given by the right hand side of Eq. (6.3). In other words,

Fd
i (t) + Fs

i (t) =
3∑

j=1

Qi j(t)vmass
j (t) + miv̇mass

i (t), (6.4)

where mi is the mass of the ith bead and the velocity of the ith bead is now written
as vmass

i (t), in order to highlight its mass-dependence.

Since the sum of the driving and the spring forces over the entire swimmer is
still zero, the above equation yields

3∑
i=1

3∑
j=1

Qi j(t)vmass
j (t) +

3∑
i=1

miv̇mass
i (t) = 0. (6.5)

Eq. (6.5) represents a set of coupled homogenous ordinary differential equations
for the velocities vmass

i (t) of the three beads, which can be solved if a suitable
form for the deformations of the lengths of the two arms of the swimmer is given,
a specification which allows one to treat the coefficients Qi j(t) as known functions
of time. It may be noted that this approach is stroke-based, unlike our force-based
approach for the Stokes regime case in chapter 1. The form for the armlength
deformations that we assume is sinusoidal, given by

R2(t) −R1(t) = L1(t)ẑ = (l1 + d1 cos(ωt + δ1)) ẑ, and
R3(t) −R2(t) = L2(t)ẑ = (l2 + d2 cos(ωt + δ2)) ẑ. (6.6)

Here ω is the frequency of the swimming cycles (which equals the frequency
of the driving forces). The above form for the arm length deformations is the
same as that adopted by the arms of the swimmer in the non-inertial (Stokesian)
case, where it emerges as a response to the sinusoidal driving forces, and also
identical to the form assumed in Golestanian and Ajdari [2008] in the stroke-
based formulation of the swimmer model in the non-inertial case (Eq. (1.1)). In
the inertial case the armlengths may be expected to have a dependence on the
masses mi, but comparison with the armlength trajectories obtained in simulations
suggests that the functions in Eq. (6.6) describe the armlengths well even in the
inertial swimming case if the three beads are identical.
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The above equations can be solved fully for unequal masses mi, but here we
present the result only for the case mi = m for the sake of brevity. Using the set
of equations (6.6) to specify the coefficients Qi j(t), Eqs. (6.5) can be decoupled
to

v̇mass
i (t) + β(t)vmass

i (t) + γi(t) = 0, (6.7)

where vmass
i (t) denotes the magnitude of vmass

i (t), and the coefficients β(t) and
γi(t) are given by

β(t) =
1

3m

3∑
i=1

3∑
j=1

Qi j(t), and (6.8)

 γ1(t)
γ2(t)
γ3(t)

 = 1
3m



L̇1(t)
3∑

j=1
Q2 j(t) + (L̇1(t) + L̇2(t))

3∑
j=1

Q3 j(t) + m (2L̈1(t) + L̈2(t))

−L̇1(t)
3∑

j=1
Q1 j(t) + L̇2(t)

3∑
j=1

Q3 j(t) + m (−L̈1(t) + L̈2(t))

− (L̇1(t) + L̇2(t))
3∑

j=1
Q1 j(t) − L̇2(t)

3∑
j=1

Q2 j(t) −m (L̈1(t) + 2L̈2(t))


.

(6.9)

The equations (6.7)-(6.9) are closed by requiring the motion to be periodic in
the steady state, i.e.

vmass
i (t) = vmass

i (t + 2π/ω). (6.10)

In terms of the velocities of the individual beads, the velocity vmass of the whole
swimmer is

vmass = vmassẑ =
ω

6π

2π/ω∫
0

3∑
i=1

vmass
i (t)dt, (6.11)

where the averaging of the bead velocities has been done over the three beads and
over one swimming cycle.

Eqs. (6.7)-(6.11) are solved for vmass by the integrating factor method, and the
final closed-form expression comes out to be

vmass =
ω

6π

2π/ω∫
0

3∑
i=1

1
I(t)


−

t∫
0

γi(t′)I(t′)dt′ +

1
I(2π/ω)

−

2π/ω∫
0

γi(t′)I(t′)dt′

1 −
1

I(2π/ω)


dt,

(6.12)
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where the function

I(t) = exp


t∫

0

β(s)ds

 (6.13)

has been introduced for ease of expression.

6.2.2 Comparison with simulations

We check the results of our calculation for the same four sets of simulations (for
sphere masses 20000, 30000, 40000 and 50000 on the lattice) discussed in sec-
tion 6.1. Fig. 6.5 displays the velocity of the swimmer for each mass value as a
function of the driving forces. The different velocity curves shown are the one
obtained from the simulations (labelled as vsimulation and marked with orange tri-
angles), the one given by vmass using the theory of section 6.2.1 (marked with blue
circles), and the one given by vstroke in Eq. (1.2) which does not consider the effect
of inertia (marked with green squares).

An immediate observation is that the vmass curves match much better with the
vsimulation ones than the vstroke curves do. The higher the mass the better is the
agreement between the vsimulation curves and the theoretical vmass curves. This
shows that at least in the parameter ranges that we have explored, our velocity
calculation for swimming with inertia works well.

A second result is that the vmass curves initially overestimate the simulation
velocities and then, beyond some force amplitude value dependent on the mass
value, begin to underestimate them. This is most clearly seen in parts (a) and
(b) of Fig. 6.5, for masses 20000 and 30000 on the lattice, but is also the case
for the other two mass values. To show this more clearly, we plot in Fig. 6.6 the
relative errors between the vsimulation and the vmass curves for the different sphere
masses as functions of the driving force amplitudes. Here one sees clearly that the
relative errors, never very large (. 15%), are initially negative and then become
positive for each mass value except for mass 50000, in which case they are small
enough (< 5%) to be within the error bounds of the LBM. Moreover, the errors
get progressively smaller as the mass of the spheres increases.

To sum up, the observations above and in section 6.1 lead to the following
conclusions:

1. The Stokesian approaches for predicting the swimmer’s motion work well
for low driving forces (or equivalently, for small swimming strokes).

2. As the driving forces/strokes get large, the swimming begins to diverge from
the Stokesian predictions.
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Figure 6.5: Comparison of velocity expressions from simulations (vsimulation) and
from theories which do (vmass) and do not (vstroke) include the effect of inertia, for
different mass values. Figure taken from publication P4 [Pande* et al., 2016].
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3. Combining the Stokesian approach with non-Stokesian elements–such as an
underdamped relaxation of the swimmer or a mass acceleration term in the
equations of motion–leads to accurate description of the swimmer’s mo-
tion in a narrow, intermediate regime between the Stokes and non-Stokes
regimes. To the left of this regime (in a velocity vs. driving force plot), the
combined approach overestimates the swimmer velocity, and to the right of
the regime it underestimates the velocity, which is consistent with the iden-
tification of the left and right regions as the Stokesian and non-Stokesian
regimes, respectively.

4. As the mass of the swimmer increases, the intermediate regime becomes
visible at smaller driving forces (or swimming strokes).

It may be observed that there is a small difference between the values of the
driving force amplitudes in Figs.6.4 and 6.6 at which, respectively, the reff curves
equal the theoretical value and the errors between the vsimulation and vmass curves
become zero. This is to be expected since the methods of sections 6.1 and 6.2 are
quite different, with the one based on the force-free relaxation of the swimmer,
and the other on the force-induced swimming. Nevertheless, the fact that both the
methods lead to the above listed conclusions points to the validity of the general
approach in trying to identify inertial features in the motion.



7
Conclusions and outlook

In this thesis we have endeavoured to explain some fundamental properties of
mechanical microswimmers through analytical study and accompanying lattice
Boltzmann simulations of the bead-spring swimmer model. We have shown that a
force-based study of the swimmer, with its starting point the driving forces acting
on the swimmer, enables the identification of some features of motion which are
lost in a stroke-based study, such as the specification of the swimmer’s pusher or
puller nature and the onset of synchronicity in the deformation of the two arms.

In addition, we have discovered a number of interesting influences on mi-
croswimming which have before our work gone unknown. For instance, we have
explained how microswimmers, moving in low Reynolds number flow, can swim
faster in a simple Newtonian fluid when the viscosity of the fluid is increased. This
happens when the driving forces are small enough and there is an elastic compo-
nent to the motion. This provides one possible explanation of many experiments
reported in the literature in which some bacteria swim quicker in more viscous
fluids.

We have also described the effect that passive shape changes of the swimmer,
in response to the fluid flow, can have on the velocity, by assuming the effec-
tive radii of the three beads in the swimmer to vary weakly in time. We have
shown how a frequency decomposition of the effective radii indicates that only
the driving frequency mode contributes to the swimming in the limit of small de-
formations, and in this limit the swimming velocity may rise or fall with the bead
deformability depending on the swimmer’s elasticity.

In the same vein, we have studied the effect of the mean swimmer shape by a
consideration of ellipsoidal beads of varying aspect ratios in the swimmer. In this
case again, a given shape can form the slowest or the quickest swimmer depending
on the stiffness of the springs. This is because different spring constants cause
different apportioning of the driving energy between the movement of the beads
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and the deformation of the springs, and this causes either the reduction in the drag
faced by each bead or the hydrodynamic interaction amongst the beads to be the
dominant effect enhancing the speed.

In addition to the above results, which were all found for a swimmer in the
Stokes regime, we have explored the onset of non-Stokesian inertial effects in mi-
croswimming, by combining simulations of increasingly heavier and faster swim-
mers with a theory which solves the equations of motion after supplementing them
with mass acceleration terms which are absent in purely Stokesian flow. We have
shown that the results of the theory are in good agreement with those obtained
from the simulations, and improve significantly upon the predictions of the non-
inertial theory when the driving forces become large. The simulations as well as
the theory show that the smooth transition between the Stokes and the non-Stokes
regimes is marked by an intermediate regime, where the inertial theory works
best, and which can be accurately identified for a general mechanical microswim-
mer by equating its relaxation with that of an underdamped harmonic oscillator.
Another observation we make is that, given two otherwise identical swimmers,
the intermediate regime for the heavier swimmer occurs at smaller driving forces
(or smaller swimming speeds) than for the lighter one. This happpens because
(swimmer) density and velocity appear together in the Reynolds number (which
determines the importance of the inertial component to the flow with respect to
the viscous component), and increasing either of the two sufficiently causes the
inertial component to become significant.

7.1 Future directions
While we have been able to use our model to shed light on many known and
unknown features of microswimming, a lot more can (and yearns to) be done.
Here we suggest some possible extensions of our work.

7.1.1 Effect of inertia from first principles
In our investigation of inertial effects on microswimming (chapter 6), our method
was stroke-based, since we assumed a sinusoidal form for the variation of the arm
lengths with time. Comparison with simulations showed that this assumption was
justified for the parameter ranges we explored. This approach nevertheless faces
the same limitations as other stroke-based analyses, namely that the effects of the
fluid and other force influences are lost. To overcome this, a natural extension of
our work would be to employ the force-centric approach that we have adopted for
the bead-spring swimmer in the Stokes regime (chapter 1, section 1.2.1) in service
of the non-Stokesian swimmer. For this one would again begin with Eq. (6.5)
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as the main equations of motion, and instead of using Eqs. (6.6) to specify the
swimming stroke, one would assume that the bead positions in the steady state
were given by an equation akin to Eq. (1.10), with the different functions no longer
sinusoidal but informed by the functional forms of the armlengths obtained from
the stroke-based approach in chapter 6. The main difficulty here would be caused
by the non-sinusoidal forms of the functions describing the bead positions, and
the fact that the system of differential equations in the bead positions would now
be of order two. We expect our perturbation-based approach to nevertheless lead
to analytical solution in appropriate parameter ranges, and numerically the system
would certainly be tractable.

7.1.2 Effect of deformability from first principles

Similar to the case with inertia, in our calculation of the way that the swimming
speeds are affected by passive deformations in the swimmer, we took recourse to
a partly geometry-based method, where the shape deformations were taken from
the simulations and gave rise to the variations in the bead effective radii, assumed
to be known (section 1.2.3). An extension of our study would be to find the ef-
fect of bead deformability from first principles, without needing the input from
the simulations. This is a challenging problem since the coupling between the
deformable membranes and the fluid–a feedback mechanism wherein the defor-
mation in a membrane and the fluid flow around it both affect each other–has to be
fully resolved, a step we evaded by assuming the membrane shapes to be given. In
spite of its inherent difficulty, the deformation of flexible capsules and membranes
under various kinds of flow has been a highly-researched area of study [Barthès-
Biesel, 1980, Li et al., 1988, Chang and Olbricht, 1993, Misbah, 2006, Abkarian
et al., 2007], and an approach which may prove particularly fruitful is the de-
composition of the membrane deformation into spherical harmonics via a spectral
method à la [Kessler et al., 2008]. While an analytical solution of the resulting
equations would likely be difficult, a numerical solution should be possible, which
would enhance the predictive power of the study.

7.1.3 Study of deformable cargo carriers

An intriguing and potentially useful extension of our work would lie in combining
the above two problems by studying the motion of a swimmer with deformable
beads when inertial effects are important. Such a swimmer could be of use in
designing vesicular or membranous bead carriers, the fluid inside some of which
could act as cargo and possibly be of a significantly different density and viscosity
than the surrounding fluid.
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Figure 7.1: A cluster of 11520 bead-spring swimmers, arranged initially on a
lattice, after 123 swimming cycles have passed. The display of the springs is
suppressed for clarity. Contiguous colours mark beads being simulated on one
simulation core. Figure taken from [Pickl, 2016].

7.1.4 Swimmer swarms

Study of microswimmer swarms is a fascinating and active field of research, which
seeks to explain the various complex long-range dynamic patterns that appear in
large populations of microswimmers and which cannot be explained on the level
of the individual organisms within the swarm (for a review see Copeland and
Weibel [2009]). Some examples of such patterns are plumes [Pedley et al., 1988,
Ghorai and Hill, 1999], vortices [Riedel et al., 2005], bands [Guell et al., 1988,
Carlile and Dudeney, 1993], and other arrangements [Drescher et al., 2009]. In
spite of a lot of research in the field, realistic yet detailed simulations which fully
model the individual constituents in a swarm are rare, and the usual approach is
to replace the individual active swimmers with effective force fields. While such
coarse-grained studies have been very useful, a fully detailed representation of
the individual swimmers is certain to yield important insight into the collective
effects.

The fully-resolved nature of both ourwaLBerla-pe and LB3D swimmer simu-
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Figure 7.2: The cycle-averaged velocity of a bead-spring swimmer in cuboidal
channels of different widths. The thickness of the swimmer, which is the same as
the diameter of the spherical beads, is 10 lattice units.

lations, in which we explicitly simulate all the particles in the fluid and treat all the
forces at different points on the particle surfaces, makes such realistic modelling
of swarms possible. We have in previous work begun to investigate the large-
scale effects that emerge in clusters of tens of thousands of bead-spring swimmers
in different configurations [Pickl et al., 2016]. We have reported a steady and an
unsteady configuration, depending on the uniformity of the lattice on which the
swimmers are initially arranged (Fig. 7.1). The unsteady configuration results in
the rotation of swimmers in addition to translation, with different swimmers ro-
tating differently depending on their positions within the cluster. This preliminary
work needs to be followed upon to characterise the full spectrum of features that
swarms are expected to exhibit in their motion.

7.1.5 Swimming near boundaries and in constrictions

Another important field of study barely touched upon in this thesis but which
would act as a natural extension of it is microswimming near boundaries and in
channels. Microswimmers are very often surrounded by or in the presence of
confining surfaces and various kinds of flotsam, and it has long been known that
their motion in these conditions differs from swimming in the bulk of a fluid. For
instance, the accumulation of bull sperm cells near a surface in vitro was dis-
cussed in Rothschild [1963], and many other instances of similar behaviour by
biological swimmers are known [Bernstein and Head, 1984, Winet et al., 1984,
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Figure 7.3: Two snapshots of a swimmer with deformable beads passing through
a constriction.

Fauci and Mcdonald, 1995, Cosson et al., 2003, Woolley, 2003, Berke et al.,
2008, Kantsler et al., 2013]. Various other ways in which surfaces affect swimmer
movement have also been discussed in the literature, such as a change in swim-
ming speeds [Reynolds, 1965, Katz, 1974, Katz et al., 1975], rotation and different
aligning patterns of pushers and pullers [Berke et al., 2008, Spagnolie and Lauga,
2012], and change in swimming trajectories such as in the case of E. coli [Frymier
et al., 1995, Vigeant and Ford, 1997, Lauga et al., 2006]. Study of each of these
phenomena and more would be enhanced by a detailed swimmer model such as
ours and could benefit from the results presented in this thesis. For instance, it is
known that the viscous force on a swimmer increases as it approaches a surface,
and allied to our results from chapter 3 on the effect of viscosity increase, one
may expect the swimmer to show an extremum in the velocity as a function of
the distance to the boundary. Indeed, preliminary investigations with simulations
suggest just such a behaviour (Fig.7.2).

An allied case is the ability of a swimmer to swim through constrictions of dif-
ferent sizes. In the literature it has been reported that for passive particles, surface
deformability can aid them in travelling through narrow channels which prohibit
the passage of more rigid bodies [Kusters et al., 2014]. It would be useful to ex-
tend this to active swimmers like ours, to study the additional possible benefits of
phenomena such as metaboly (Fig. 7.3).

7.1.6 Swimming with noise

In all the results presented in this thesis, any diffusive components in the motion
of the swimmer were ignored (in other words, the Péclet number, which measures
the relative importance of advection and diffusion in determining the transport,
was taken to be infinite). While the model has been useful in elucidating many
aspects of microswimming–a claim, it is hoped, this thesis sustains–the real world
is a lot more chaotic, especially at the micro-scales, and a worthwhile and im-
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portant direction of investigation would be the study of our simple model when
noise terms are included in the equations of motion. Such an analysis, while chal-
lenging and no doubt necessitating appropriate simplifications, would enhance the
predictive power of the model vis-à-vis real-world swimming of micro-organisms
and artificial machines.

7.1.7 Comparison with experiments
Last but not the least, while our work has focussed on clarifying the principles
underlying microswimming, its worth would be heightened were experimental
prototypes designed after the model to be built, tested and, hopefully, gainfully
employed in technological applications. As all theoreticians are only too aware of
in their disconsolate hearts, the proof of the pudding really does lie in the eating.

7.2 Concluding remarks
The field of microswimming is at present a very fertile, very fast-moving one,
with new research emerging daily that sheds valuable light on the behaviour of the
smallest of our fellow-denizens of Nature, who have until recently guarded their
secrets zealously. In this respect, Purcell’s famous 1977 lecture [Purcell, 1977],
which we have had occasion to mention a few times in this thesis, is a wonderfully
representative one, as it captures, even today, the continuing advances in the field,
the long way there is to go yet before we can claim to understand the workings
of the micro-world, and, most importantly, the excitement of the journey. We
hope that our work, partaking of some of this same excitement, has succeeded in
illumining a step of the way, and that others will find it fruitful to continue on the
path.
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A1
Appendix: Analysis of phase diagram for

effect of shape

Here we give a detailed proof of the number of velocity extrema and the drag-
or interaction-dominated nature of the swimming as a function of the force am-
plitude ratio A/B and the force phase difference α, for different values of the
reduced spring constant κ as in Fig. 5.3. As a reminder, the swimming is said
to be drag-dominated if the highest velocity over all the swimmers composed of
ellipsoids in a given family (prolates or oblates of a constant volume or surface
area) is obtained when the drag coefficient of the ellipsoid is at a minimum, i.e. for
dλ/de = 0, where e is the aspect ratio of the ellipsoids. If this is not the case, then
the maximum velocity magnitude is obtained due to the condition dvforce/dλ = 0
(where vforce is the magnitude of vforce from Eq. (1.14)) which relates the optimal
shape to the different forces acting on the beads, and the swimmer is then in the
interaction-dominated regime.

Figure A1.1: Division of phase space into quadrants.
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We divide the phase space into four regions as marked on Fig. A1.1. Since the
system is invariant under the transformation {A → B, B → A,α → −α, ẑ → −ẑ},
it is clear that the quadrants marked I and III in the phase diagram are analogous,
as are those marked II and IV. Therefore, to describe them analytically, we need
only focus our attention on, say, quadrants I and IV, where we have A ≥ B.

We begin by providing a short summary of the number of velocity extrema
and the highest velocity obtained over all the ellipsoids in a family for a swimmer
at any given point of the phase space (i.e. with given force parameters A, B and
α). Throughout our discussion in this appendix we will employ the following
notation:

γ ≡
κ

λmin
,

ci ≡
λi

κ
, where λi (i = 1 to 6) are obtained from the condition

dvforce

dλ
= 0,

M ≡ − sinα, and

N ≡
A2 − B2

2AB
. (A1.1)

Quadrant I is summarised in Table A1, while quadrant IV can be described
easily as:

if γ < 2
√

3, 1 extremum, and vmax = |vλmin |,

if 2
√

3 < γ, 3 extrema, and vmax = |vλ1 |. (A1.2)

Now we describe the different regions in both quadrants I and IV in detail.
One extremum of the velocity is obtained through the geometric condition

dλ/de = 0. (A1.3)

Here we would like to determine all the other extrema, obtained through the con-
dition

dvforce

dλ
= 0. (A1.4)
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Table A1.1: Summary of Quadrant I

M/N γ # extrema vmax

M/N ∈
(√

3,∞
)

γ ∈
(
0, 2
√

3
)

1 |vλmin |

M/N ∈
(√

3,∞
)

γ ∈
(
2
√

3,∞
)

3 |vλ1 |

M/N ∈
(
0,
√

3
)

γ ∈ (0, 1/c4) 1 |vλmin |

M/N ∈
(
4
√

2 − 3
√

3,
√

3
)

γ ∈
(
1/c4, 2

√
3
)

3 |vλ3 |

M/N ∈
(
0, 4
√

2 − 3
√

3
)

γ ∈

 1
c4

,
2
(
N −
√

N2 − 3M2
)

M

 3 |vλ3 |

M/N ∈
(
0, 4
√

2 − 3
√

3
)

γ ∈

2
(
N −
√

N2 − 3M2
)

M
, 2
√

3

 3 |vλmin |

M/N ∈
(
4
√

2 − 3
√

3,
√

3
)

γ ∈
(
2
√

3, 1/c3
)

5 |vλ3 |

M/N ∈
(
0, 4
√

2 − 3
√

3
)

γ ∈
(
2
√

3, 1/c3
)

5 |vλ1 |

M/N ∈
(
4
√

2 − 3
√

3,
√

3
)

γ ∈ (1/c3,∞) 7 |vλ3 |

M/N ∈
(
0, 4
√

2 − 3
√

3
)

γ ∈ (1/c3,∞) 7 |vλ1 |
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This gives the following 6 solutions for λ.

λ1,2 = ±κ
1

2
√

3
≡ c1,2κ,

λ3,4 = κ
−1

12AB


(
A2 − B2 +

√
A4 + B4 − 2A2B2 cos (2α)

)
sinα

±

√√√√
2
(
A4 + B4 + 2A2B2 cos (2α) − 4A2B2 +

(
A2 − B2

) √
A4 + B4 − 2A2B2 cos (2α)

)
sin2 α


≡ c3,4κ,

λ5,6 =
−κ

12AB


(
A2 − B2 −

√
A4 + B4 − 2A2B2 cos (2α)

)
sinα

±

√√√√
2
(
A4 + B4 + 2A2B2 cos (2α) − 4A2B2 −

(
A2 − B2

) √
A4 + B4 − 2A2B2 cos (2α)

)
sin2 α


≡ c5,6κ. (A1.5)

Here we have defined ci (i = 1, 2, ..., 6) as λi/κ, and they are functions only of the
forcing parameters A, B and α.

To simplify notation, we write these solutions in terms of the dimensionless
variables M and N defined by

M = − sinα

N =
A2 − B2

2AB
. (A1.6)
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The ci’s in Eq. (A1.5) are then

c1,2 = ±
1

2
√

3
,

c3,4 =
1
6

N +
√

N2 + M2

M
∓

√
2
(
N2 −M2 + N

√
N2 + M2

)
M2

 ,

c5,6 =
1
6

N −
√

N2 + M2

M
∓

√
2
(
N2 −M2 − N

√
N2 + M2

)
M2

 , (A1.7)

from which the λi’s can of course be immediately obtained.

The λ solutions lead to the following expressions for the velocity extrema,

vλ1,2 =
7AB

(
N ∓
√

3M
)

384π2η2ωl3κ
,

vλ3 = vλ4 =
7AB

(
N −

√
N2 + M2

)
192π2η2ωl3κ

,

vλ5 = vλ6 =
7AB

(
N +

√
N2 + M2

)
192π2η2ωl3κ

. (A1.8)

Since λ3 and λ4 result in the same velocity, and so do λ5 and λ6, one can,
a priori, only have five distinct velocity extrema values, including the extremum
obtained from the geometric condition dλ/de = 0. This latter can be expressed
as

vλmin =
7ABγ

[
4γN −

(
γ2 + 12

)
M

]
24π2η2ωl3κ (γ4 + 40γ2 + 144)

, (A1.9)

where the quantity γ = κ/λmin has been introduced in order to keep the subse-
quent treatment independent of the particular value of λmin.

From Eq. (A1.5), λ2(< 0) is clearly a disallowed root, which renders vλ2 too
invalid. Now we will show that for B ≥ A, λ3 and λ4 are disallowed, while
for A ≥ B, λ5 and λ6 are disallowed. This will imply that for any B/A ratio,
there are at most only two non-degenerate velocity extrema values obtained from
dvforce/dλ = 0, in addition to vλmin obtained from dλ/de = 0.

So assume B ≥ A. This means N ≤ 0. We will show that then N2 − M2 +
N

√
N2 + M2 < 0, implying that λ3,4 < R.
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Suppose that N2 −M2 + N
√

N2 + M2 ≥ 0.

⇒ N2 ≥ M2 − N
√

N2 + M2 ≥ 0 (∵ N ≤ 0).

⇒ N4 ≥ M4 + N2
(
N2 + M2

)
+ 2M2(−N)

√
N2 + M2.

⇒ 0 ≥ M4 + N2M2 + 2M2(−N)
√

N2 + M2.

This is impossible unless N = M = 0, which is of course a disallowed case.
Therefore we have reached a contradiction, and our proof is done. In an exactly
analogous manner, one can show that if A ≥ B, then λ5,6 < R.

Therefore, if A ≥ B, then the only possible velocity extrema values are vλmin ,
vλ1 and vλ3 , whereas if B ≥ A, then the only possible velocity extrema values are
vλmin , vλ1 and vλ5 .

A1.1 Quadrant I (A ≥ B, −π ≤ α ≤ 0)
Here A ≥ B and −π ≤ α ≤ 0, meaning that 0 ≤ N and 0 ≤ M ≤ 1. We showed
above that in this case, λ5 and λ6 are invalid solutions to Eq. (A1.4). We will show
that if M >

√
3N, then λ3 and λ4 are invalid too.

So let N <
M
√

3
.

⇒ N2 −M2 <
−2M2

3
and N2 + M2 <

4M2

3

⇒ N2 −M2 + N
√

N2 + M2 <
−2M2

3
+

2M2

3
= 0.

⇒ c3,4 < R. (A1.10)

Therefore, for M >
√

3N, the only possible λ solution to Eq. (A1.4) is λ1, and,
consequently, the only possible velocity extrema values are vλmin and vλ1 .

A1.1.1 M >
√

3N

We will describe the number of velocity extrema and the global velocity maximum
for the different possible values of γ = κ/λmin.

γ < 2
√

3

In this case, the only velocity extremum is obtained at λ = λmin, so we have
vmax = |vλmin |.
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γ > 2
√

3

In this case, there are three velocity extrema, two of them obtained for λ = λ1 and
one for λ = λmin. To determine the global velocity maximum, we will compare
|vλmin | and |vλ1 |. Since N ≥ 0 and M ≥ 0, it is clear from the expressions in (A1.8)
that both vλmin and vλ1 are negative.

Suppose |vλmin | > |vλ1 |. ⇒ vλ1 > vλmin .

⇒
7AB

(
N −
√

3M
)

384π2η2ωl3κ
>

7ABγ
[
4γN −

(
γ2 + 12

)
M

]
24π2η2ωl3κ (γ4 + 40γ2 + 144)

.

⇒
(
N −
√

3M
)
γ4 + 16Mγ3 +

(
−24N − 40

√
3M

)
γ2

+ 192Mγ+ 144
(
N −
√

3M
)

> 0.

⇒
(
N −
√

3M
) (
γ − 2

√
3
)2
(γ − γ1) (γ − γ2) > 0, (A1.11)

where

γ1,2 =
2
(
M +

√
3N ±

√
8M

(√
3N −M

))
√

3M − N
. (A1.12)

⇒ (γ − γ1) (γ − γ2) < 0,
(
since

(
N −
√

3M
)
< 0

)
(A1.13)

The expression under the square root sign in γ1,2 is clearly negative, meaning
γ1,2 < R. Consequently, the relation (A1.11) is satisfied for no γ, and we arrive at
a contradiction. This means that,

for γ > 2
√

3 (with M >
√

3N), we have vmax = |vλ1 |. (A1.14)

Now we let M <
√

3N.

A1.1.2 M <
√

3N

In this case, the first thing to check is whether λ3,4 are valid solutions to Eq. (A1.4)
or not. Clearly, now, c3,4 ∈ R, and c4 > c3. So for both λ3 and λ4 to be valid
solutions, we need to have c3 > 0.
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Suppose that c3 < 0.

⇒ (0 <)
N +

√
N2 + M2

M
<

√
2
(
N2 −M2 + N

√
N2 + M2

)
M2 .

⇒ N2 + N2 + M2 + 2N
√

N2 + M2 < 2
(
N2 −M2 + N

√
N2 + M2

)
.

⇒ 3M2 < 0. (A1.15)

So we reach a contradiction, and consequently, in this case, c3,4 > 0.
Having established the existence of c3 and c4, one can now show (or check

explicitly via Mathematica) that

λ4 ≥ λ1 ≥ λ3

⇒
1
c3
≥ 2
√

3 ≥
1
c4

. (A1.16)

We determine the number of velocity extrema as well as the global velocity
maximum for the different possible values of κ, or, equivalently, γ.

γ <
1
c4

In this case κ is so small that c4κ < λmin, meaning that Eq. (A1.4) has no solution
for λ. Therefore, the only velocity extremum is obtained at λmin, and consequently
vmax = |vλmin |.

1
c4

< γ < 2
√

3

In this case, there are three velocity extrema, two of them obtained for λ = λ4 and
one for λ = λmin. The different velocity extrema values in this case are vλmin and
vλ3 . We would like to determine the global maximum velocity, for which we will
compare |vλmin | and |vλ3 |.

From Eq. (A1.8), clearly vλ3 < 0, therefore |vλ3 | = −vλ3 . Suppose now that
|vλmin | = vλmin . This means

vλmin > 0.

⇒ 4γN −
(
γ2 + 12

)
M > 0. (A1.17)
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The discriminant of the left hand side is negative if N2 < 3M2. Therefore,

−if M >
N
√

3
, then vλmin < 0 for all possible γ, and (A1.18)

−if 0 < M <
N
√

3
, then

vλmin > 0, for γ ∈

2
(
N −
√

N2 − 3M2
)

M
,

2
(
N +

√
N2 − 3M2

)
M


vλmin < 0, otherwise. (A1.19)

So first let M >
N
√

3
. Then, |vλmin | = −vλmin . Suppose in this case that |vλmin | >

|vλ3 |.

⇒
7AB

(
N −

√
N2 + M2

)
192π2η2ωl3κ

>
7ABγ

[
4γN −

(
γ2 + 12

)
M

]
24π2η2ωl3κ (γ4 + 40γ2 + 144)

.

⇒

(
N −

√
N2 + M2

)
γ4 + 8Mγ3 +

(
8N − 40

√
N2 + M2

)
γ2

+ 96Mγ+ 144
(
N −

√
N2 + M2

)
> 0. (A1.20)

Using Mathematica, one can check that this relation holds for no value of γ > 0,
if N > 0 and M > 0. So we reach a contradiction, meaning that

for M >
N
√

3
, vmax = |vλ3 |. (A1.21)

Now suppose that M <
N
√

3
. Since in this case vλmin can be positive or negative,

assume first that γ is such that vλmin < 0.
In this case, suppose that |vλmin | > |vλ3 |. ⇒ vλ3 > vλmin .

⇒
7AB

(
N −

√
N2 + M2

)
192π2η2ωl3κ

>
7ABγ

[
4γN −

(
γ2 + 12

)
M

]
24π2η2ωl3κ (γ4 + 40γ2 + 144)

.

(A1.22)

From this, we get the same inequality as in relation (A1.20), and so again there is

no solution for any γ > 0 if N > 0 and M > 0. Therefore for M <
N
√

3
, if γ is
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such that vλmin < 0, we have |vλ3 | ≥ |vλmin |.

Now assume that γ is such that vλmin > 0. And, in this case, suppose that
|vλmin | > |vλ3 |. ⇒ vλmin > −vλ3 .

⇒
7ABγ

[
4γN −

(
γ2 + 12

)
M

]
24π2η2ωl3κ (γ4 + 40γ2 + 144)

>
−7AB

(
N −

√
N2 + M2

)
192π2η2ωl3κ

.

⇒

( √
N2 + M2 − N

)
γ4 + 8Mγ3 +

(
40

√
N2 + M2 − 72N

)
γ2

+ 96Mγ+ 144
( √

N2 + M2 − N
)

< 0. (A1.23)

It is possible to factorize the left hand side of the inequality in relation (A1.23)
as

( √
N2 + M2 − N

)
(γ − γ1) (γ − γ2) (γ − γ3) (γ − γ4). (The γi’s here are rather

large and unwieldy expressions and are thus not listed here.) Therefore, we have( √
N2 + M2 − N

)
(γ − γ1) (γ − γ2) (γ − γ3) (γ − γ4) < 0. (A1.24)

It can be shown (or checked using Mathematica) that for 0 < M < N
√

3, we have
γ1 < 0 and γ2 < 0. Moreover, for M >

(
4
√

2 − 3
√

3
)

N, γ3 < R and γ4 < R. Also
it ought to be borne in mind that relation (A1.23) is obtained under the assumption
vλmin > 0, which means that any γ solution to it must also satisfy, from relation
(A1.19),

γ ∈

2
(
N −
√

N2 − 3M2
)

M
,

2
(
N +

√
N2 − 3M2

)
M

 . (A1.25)

It can be shown that
2
(
N −
√

N2 − 3M2
)

M
≤ 2
√

3 and
2
(
N +

√
N2 − 3M2

)
M

≥

2
√

3, for M <
N
√

3
. Therefore, the γ range above reduces to

γ ∈

2
(
N −
√

N2 − 3M2
)

M
, 2
√

3

 . (A1.26)
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From all these considerations, one finds that for M <
N
√

3
,

−if 0 < M <
(
4
√

2 − 3
√

3
)

N and γ ∈

2
(
N −
√

N2 − 3M2
)

M
, 2
√

3

,
then vmax = |vλmin |,
−otherwise vmax = |vλ3 |. (A1.27)

2
√

3 < γ <
1
c3

In this case, there are five velocity extrema, two of them obtained for λ = λ4, two
for λ = λ1 and one for λ = λmin. These different values for λ yield respectively
vλ3 , vλ1 and vλmin as the corresponding velocity extrema. As before, we would like
to determine the largest of these velocity extrema for different forcing parameters.

We begin with comparing |vλ3 | and |vλmin |.
Much of the comparison is identical to that in section A1.1.2. For instance, it

can be shown that, as before,

for M >
N
√

3
, we have |vλ3 | ≥ |vλmin |. (A1.28)

For the case 0 < M <
N
√

3
, we find, analogously (but not identically) to

(A1.27), that

−if 0 < M <
(
4
√

2 − 3
√

3
)

N and γ ∈

2√3,
2
(
N +

√
N2 − 3M2

)
M

,
then |vλmin | > |vλ3 |,
−otherwise |vλ3 | ≥ |vλmin |. (A1.29)

Next we compare |vλ1 | and |vλmin |. Since we are only interested in the global
velocity maximum and know that for M >

(
4
√

2 − 3
√

3
)

N, we have |vλ3 | ≥ |vλmin |,
we need only concern ourselves with the relative order of |vλ1 | and |vλmin | for M <(
4
√

2 − 3
√

3
)

N.

So let M <
(
4
√

2 − 3
√

3
)

N. This means vλ1 > 0, but the sign of vλmin depends
on γ.

Assume first that γ is such that vλmin > 0. In this case, suppose that |vλmin | >



130

|vλ1 |.

⇒
7ABγ

[
4γN −

(
γ2 + 12

)
M

]
24π2η2ωl3κ (γ4 + 40γ2 + 144)

>
7AB

(
N −
√

3M
)

384π2η2ωl3κ
.

⇒
(
N −
√

3M
)
γ4 + 16Mγ3 +

(
−24N − 40

√
3M

)
γ2 + 192Mγ+ 144

(
N −
√

3M
)
< 0.

⇒
(
N −
√

3M
) (
γ − 2

√
3
)2
(γ − γ1) (γ − γ2) < 0, (A1.30)

where

γ1,2 =
2
(
M +

√
3N ±

√
8M

(√
3N −M

))
√

3M − N
. (A1.31)

It can be shown that γ1,2 < 0, which renders inequality (A1.30) non-satisfiable
for γ > 0. So we reach a contradiction, and therefore in this case |vλ1 | ≥ |vλmin |.

Now assume that γ is such that vλmin < 0, and again suppose that |vλmin | > |vλ1 |.

⇒
−7ABγ

[
4γN −

(
γ2 + 12

)
M

]
24π2η2ωl3κ (γ4 + 40γ2 + 144)

>
7AB

(
N −
√

3M
)

384π2η2ωl3κ
.

⇒
(
N −
√

3M
)
γ4 − 16Mγ3 +

(
104N − 40

√
3M

)
γ2

− 192Mγ+ 144
(
N −
√

3M
)

< 0. (A1.32)

Checking this inequality using Mathematica, one finds that it has no solution
for 0 < M <

(
4
√

2 − 3
√

3
)

N. Therefore we reach a contradiction again, and so
again, |vλ1 | ≥ |vλmin |.

The above analysis of the relative order of the different velocity extrema shows
that for any given value of M, N and γ, |vλmin | is smaller than at least one of |vλ1 |

and |vλ3 |. So, to determine the global velocity maximum, we finally need to only
compare the magnitudes of vλ1 and vλ3 , as the larger of the two quantities will give
the global vmax.

Now as we know, vλ3 < 0, always, while vλ1 < (>)0 for M > (<)
N
√

3
.
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So first consider the case M >
N
√

3
, and suppose that, then, |vλ1 | > |vλ3 |.

⇒
7AB

(
N −

√
N2 + M2

)
192π2η2ωl3κ

>
7AB

(
N −
√

3M
)

384π2η2ωl3κ
.

⇒N +
√

3M > 2
√

N2 + M2 > 0.

⇒N2 + 3M2 + 2
√

3MN > 4N2 + 4M2.

⇒
(
M −

√
3N

)2
< 0. (A1.33)

This is a contradiction, therefore

for M >
N
√

3
, we have |vλ3 | ≥ |vλ1 |. (A1.34)

Now consider the case M <
N
√

3
, and again suppose that |vλ1 | > |vλ3 |.

⇒
7AB

(
N −
√

3M
)

384π2η2ωl3κ
>
−7AB

(
N −

√
N2 + M2

)
192π2η2ωl3κ

.

⇒3N −
√

3M > 2
√

N2 + M2 > 0.

⇒M2 +
(
6
√

3N
)

M − 5N2 < 0.

⇒M ∈
(
0,

(
4
√

2 − 3
√

3
)

N
)

. (A1.35)

Therefore, finally, we find that

−if 0 < M <
(
4
√

2 − 3
√

3
)

N, then vmax = |vλ1 |,

−if
(
4
√

2 − 3
√

3
)

N < M, then vmax = |vλ3 |. (A1.36)

1
c3

< γ

In this case there are seven velocity extrema, two of them obtained for λ = λ4,
two for λ = λ1, two for λ = λ3 and one for λ = λmin. These yield vλ3 (from λ4
and λ3), vλ1 (from λ1) and vλmin (from λmin) as the velocity extrema values. The
relative order of the magnitudes of these velocity extrema is exactly the same as
in section A1.1.2 above.
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So with that, we have finished the description of quadrant I.

A1.2 Quadrant IV (A ≥ B, 0 ≤ α ≤ π)
Here A ≥ B and 0 ≤ α ≤ π, meaning that 0 ≤ N and −1 ≤ M ≤ 0. We recall that
for A ≥ B, λ5 and λ6 are invalid solutions to Eq. (A1.4). We will show now that
here λ3 and λ4 too are invalid.

From (A1.7),

c3 =
1
6

N +
√

N2 + M2

M
−

√
2
(
N2 −M2 + N

√
N2 + M2

)
M2


⇒ c3 < 0, for N > 0 and M < 0. (A1.37)

So λ3 is an invalid solution to Eq. (A1.4).
Now assume that c4 > 0.

⇒

√
2
(
N2 −M2 + N

√
N2 + M2

)
M2 >

N +
√

N2 + M2

(−M)
. (A1.38)

Since both sides are positive, we can square them without changing the inequality.
Doing that, though, finally yields

3M2 < 0, (A1.39)

which is a contradiction. Therefore, c4 ≤ 0, and λ4 is shown to be invalid too.
So the only possible λ-solution to Eq. (A1.4) is λ1(= κ/

√
3), and, consequently,

the only possible velocity extrema values are vλmin and vλ1 . As before, we will
describe the number of velocity extrema and the global velocity maximum for the
different possible values of γ = κ/λmin.

γ < 2
√

3

In this case, the only velocity extremum is obtained at λ = λmin, so we have
vmax = |vλmin |.

γ > 2
√

3

In this case, there are three velocity extrema, two of them obtained for λ = λ1 and
one for λ = λmin. To determine the global velocity maximum, we will compare
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|vλmin | and |vλ1 |. Since N ≥ 0 and M ≤ 0, it is clear from the expressions in (A1.8)
that both vλmin and vλ1 are positive.

Suppose |vλmin | > |vλ1 |.

⇒
7ABγ

[
4γN −

(
γ2 + 12

)
M

]
24π2η2ωl3κ (γ4 + 40γ2 + 144)

>
7AB

(
N −
√

3M
)

384π2η2ωl3κ
.

⇒
(
N −
√

3M
)
γ4 + 16Mγ3 +

(
−24N − 40

√
3M

)
γ2

+ 192Mγ+ 144
(
N −
√

3M
)

< 0.

⇒
(
N −
√

3M
) (
γ − 2

√
3
)2
(γ − γ1) (γ − γ2) < 0, (A1.40)

where

γ1,2 =
2
(
M +

√
3N ±

√
8M

(√
3N −M

))
√

3M − N
. (A1.41)

The expression under the square root sign in γ1,2 is clearly negative, meaning
γ1,2 < R. Consequently, the relation (A1.40) is satisfied for no γ, and we arrive at
a contradiction. This means that,

for γ > 2
√

3, we have vmax = |vλ1 |. (A1.42)

This concludes our proof.
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particulate flows on 294912 processor cores. In 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis, page 1. IEEE, 2010.

B. A. Grzybowsk, H. A. Stone, and G. M. Whitesides. Dynamic self-assembly of
magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature,
405:1033, 2000.



146

D. C. Guell, H. Brenner, R. B. Frankel, and H. Hartman. Hydrodynamic forces
and band formation in swimming magnetotactic bacteria. J. Theor. Biol., 135:
525, 1988.

J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Prentice-Hall
Inc., 1965.

J. Hardy, O. de Pazzis, and Y. Pomeau. Molecular dynamics of a classical lattice
gas: transport properties and time correlation functions. Phys. Rev. A, 13:1949,
1976.

M. Hatsumi and K.-I. Wakahama. The sperm length and the testis length in
Drosophila nasuta subgroup. Japan J. Genet., 61:241, 1986.

F. J. Higuera and J. Jimenez. Boltzmann approach to lattice gas simulations.
Europhys. Lett., 9:663, 1989.

T. Hiraiwa, K. Shitara, and T. Ohta. Dynamics of a deformable self-propelled
particle in three dimensions. Soft Matter, 7:3083, 2011.

J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golesta-
nian. Self-motile colloidal particles: from directed propulsion to random walk.
Phys. Rev. Lett., 99:048102, 2007.

S. Hudault, J. Guignot, and A. L. Servin. Escherichia coli strains colonising
the gastrointestinal tract protect germfree mice against Salmonella typhimurium
infection. Gut, 49:47, 2001.

Y. Hyon, T. Powers, R. Stocker, and H. Fu. The wiggling trajectories of bacteria.
J. Fluid Mech., 705:58, 2012.

K. Iglberger. Software Design of a Massively Parallel Rigid Body Framework.
PhD thesis, Computer Science Department, University Erlangen-Nürnberg,
2010.
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A. Keissner and C. Brücker. Directional fluid transport along artificial ciliary
surfaces with base-layer actuation of counter-rotating orbital beating patterns.
Soft Matter, 8:5342, 2012.

S. Kessler, R. Finken, and U. Seifert. Swinging and tumbling of elastic capsules
in shear flow. J. Fluid Mech., 605:207, 2008.

Y. W. Kim and R. R. Netz. Pumping fluids with periodically beating grafted elastic
filaments. Phys. Rev. Lett., 96:158101, 2006.

A. Klitorinos, P. Noble, R. Siboo, and E. C. S. Chan. Viscosity-dependent loco-
motion of oral spirochetes. Oral Microbiol. Immunol., 8:242, 1993.

J. M. V. A. Koelman. A simple lattice Boltzmann scheme for NavierStokes fluid
flow. Europhys. Lett., 15:603, 1991.



148
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• P3: J. Pande, L. Merchant, T. Krüger, J. Harting, and A.-S. Smith. Effect
of body deformability on microswimming. Submitted to Soft Matter. 2016.

• P4: J. Pande*, K. Pickl*, O. Trosman, U. Rüde, and A.-S. Smith. Mi-
croswimming with inertia. Submitted to New J. Phys. 2016.
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at the Chair for System Simulation in FAU. Collaborating with you has also been
a pleasant and instructive experience, and my work would be diminished greatly
without the graces of your baby, the waLBerla simulation system.

I am grateful to Prof. Dr. Kheya Sengupta for starting me off on this adventure
in the first place, and for her kind and encouraging words whenever I met her.

Many thanks to the various system administrators that have facilitated my
use of their computer systems throughout my research. In particular, the RRZE
high performance computing centre in Erlangen is a very powerful, very well
run one and a tremendous boon for any researcher requiring intensive computing
power. For it I would like to thank Prof. Dr. Thomas Zeiser and his entire laud-
able team. Sincere thanks also to the system administrators, especially Dennis
Hessling and Sten Reijers, of the computing clusters in the Department of Ap-
plied Physics at the Eindhoven University of Technology, as well as to Manuel
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