
FA
U

 U
N

IV
E

R
S

IT
Y

 P
R

E
S

S
 2

01
2

 

B
en

ed
ik

t 
K

rü
g

er
 

 
S

im
ul

at
in

g 
Tr

ia
ng

ul
at

io
ns

: G
ra

ph
s,

 M
an

ifo
ld

s 
an

d 
(Q

ua
nt

um
) S

pa
ce

tim
e

FA
U

 U
N

IV
E

R
S

IT
Y

 P
R

E
S

S
 2

01
6

UNIVERSITY 
P R E S S

Benedikt Krüger

Simulating Triangulations:
Graphs, Manifolds and 
(Quantum) Spacetime

Triangulations, which can intuitively be described as a tessellation of space into simplicial 
building blocks, are structures that arise in various different branches of physics: They 
can be used for describing complicated and curved objects in a discretized way, e.g., in 
foams, gels or porous media, or for discretizing curved boundaries for fluid simulations 
or dissipative systems. Interpreting triangulations as (maximal planar) graphs makes it 
possible to use them in graph theory or statistical physics, e.g., as small-world networks, 
as networks of spins or in biological physics as actin networks. Since one can find an 
analogue of the Einstein-Hilbert action on triangulations, they can even be used for  
formulating theories of quantum gravity. Triangulations have also important applications 
in mathematics, especially in discrete topology. 
Despite their wide occurrence in different branches of physics and mathematics, there 
are still some fundamental open questions about triangulations in general. It is a prior 
unknown how many triangulations there are for a given set of points or a given manifold, 
or even whether there are exponentially many triangulations or more, a question that 
relates to a well-defined behavior of certain quantum geometry models. Another major 
unknown question is whether elementary steps transforming triangulations into each 
other, which are used in computer simulations, are ergodic. Using triangulations as  
model for spacetime, it is not clear whether there is a meaningful continuum limit that  
can be identified with the usual and well-tested theory of general relativity.
Within this thesis some of these fundamental questions about triangulations are  
answered by the use of Markov chain Monte Carlo simulations, which are a probabilistic 
method for calculating statistical expectation values, or more generally a tool for  
calculating high-dimensional integrals. Additionally, some details about the Wang-
Landau algorithm, which is the primary used numerical method in this thesis, are  
examined in detail. FAU Studies Mathematics & Physics  9

   ISBN 978-3-944057-90-3





 

 

Benedikt Krüger 
 
Simulating Triangulations: 
Graphs, Manifolds and (Quantum) Spacetime 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



 

 

FAU Studies Mathematics & Physics 
Band 9 
 
Herausgeber der Reihe: 

Prof. Dr. Karl-Hermann Neeb und Prof. Dr. Klaus Mecke 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



 

 

Benedikt Krüger 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulating Triangulations: 
Graphs, Manifolds and 
(Quantum) Spacetime 
 

 

 

 

Erlangen 
FAU University Press 
2016 
  



 

 

Bibliografische Information der Deutschen Nationalbibliothek: 
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der 
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind 
im Internet über http://dnb.d-nb.de abrufbar. 
 
 
 
 
 
Das Werk, einschließlich seiner Teile, ist urheberrechtlich geschützt. 
Die Rechte an allen Inhalten liegen bei ihren jeweiligen Autoren. 
Sie sind nutzbar unter der Creative Commons Lizenz BY-NC-ND. 

 
Der vollständige Inhalt des Buchs ist als PDF über den OPUS Server  
der Friedrich-Alexander-Universität Erlangen-Nürnberg abrufbar:  
https://opus4.kobv.de/opus4-fau/home 
 
 
 
 
 
 
 
 

Verlag und Auslieferung: 

FAU University Press, Universitätsstraße 4, 91054 Erlangen 
 
 
 

Druck: docupoint GmbH 
 
 
 
ISBN: 978-3-944057-90-3 (Druckausgabe) 
eISBN: 978-3-944057-91-0 (Online-Ausgabe) 
ISSN: 2196-7482 



Simulating Triangulations:
Graphs, Manifolds and
(Quantum) Spacetime

Triangulierungen auf dem Computer:
Graphen, Mannigfaltigkeiten und (quantisierte) Raumzeiten

Der Naturwissenschaftlichen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

zur Erlangung des

Doktorgrades Dr. rer. nat.

vorgelegt von

Benedikt Krüger

aus Kaider, Bad Staffelstein



Als Dissertation genehmigt
von der Naturwissenschaftlichen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 19. Juli 2016
Vorsitzender des Promotionsorgans: Prof. Dr. Jörn Wilms
Gutachter: Prof. Dr. Klaus Mecke

PD Dr. Frank H. Lutz (TU Berlin)



Abstract

Triangulations, which can intuitvly be described as a tessellation of space
into simplicial building blocks, are structures that arise in various different
branches of physics: They can be used for describing complicated and
curved objects in a discretized way, e.g., in foams, gels or porous media, or
they can be used for discretizing curved boundaries for fluid simulations or
dissipative systems. Interpreting triangulations of graphs makes it possible
to use them as networks in statistical physics, e.g., as networks of spins or
in biological physics as actin networks. Since one can find an analogue of
the Einstein-Hilbert action on triangulations, they can even be used for
formulating theories of quantum gravity.

Triangulations have also important application in mathematics: They are
maximal planar graphs in the sense that one cannot insert an interior edge
without violating the planarity of the graph, so each planar graph is the
subgraph of a triangulation. This means that triangulations can be used
for getting an insight into general planar graphs. Furthermore, they are the
simplest possibility for discretizing topological manifolds, which make them
to an important topic in discrete topology. Additionally, triangulations are
often used as a tool for describing curved boundaries, e.g., for finite element
methods or for evaluating measures from integral geometry.

Despite their wide occurrence in different branches of physics and mathe-
matics, there are still some fundamental open questions about triangulations
in general. It is a prior unknown how many triangulations there are for a
given set of points or a given manifold. For manifolds it is even unknown
for three and more dimensions whether there are exponentially many trian-
gulations of a given manifold or more, which is equivalent to the physical
question whether the entropy of triangulations scales linearly in the system
size. This becomes important if one uses triangulations as model for quan-
tum geometry using a path integral formalism, which is only well defined if
there are only exponentially many triangulations. Another major unknown
question is whether elementary steps called Pachner moves, which transform
triangulations into each other and are used for computer simulations on
triangulations, are ergodic.
Beside this fundamental issues about triangulations themselves, also
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within their physical applications there are questions that are unfinishedly
discussed in literature or have not been answered at all. E.g., the behavior of
graph observables on triangulations is known only for the random topological
triangulations on surfaces, and not for triangulations of point sets or any
ensemble that can weight order or disorder in triangulations, and the
spectrum of the discrete Laplace operator, which is important for transport
or diffusion problems on graphs, has not been studied for triangulations at
all. Within the usage of triangulations as model for spacetime it is not clear
whether there is a meaningful continuum limit that can be identified with
the usual and well-tested theory of general relativity.

Within this thesis we will answer some of these fundamental questions
about triangulations, mainly using the numerical method of Markov chain
Monte Carlo (MCMC) simulations. These simulations use a Markov chain to
generate states according to a given probability distribution, e.g., the Boltz-
mann distribution as the famous Metropolis algorithm. For the applications
in this thesis mainly flat histogram MCMC simulations as the Wang-Landau
algorithm are used, which sample according to a probability distribution
that is flat in energy space. Within Sec. 2.3.3 we develop an algorithm
for approximately counting states of arbitrary systems that utilizes such
flat histogram methods. Furthermore the dependence of the runtime of
a Wang-Landau algorithm on the number of energy bins and the flatness
criterion (which is a measure of the quality of a simulation) is calculated
(see Eqs. (2.93) and (2.96)).

Considering embedded triangulations, integer lattices as underlying point
sets are an important subclass, because in general triangulations are maximal
planar graphs in the sense that no further (interior) edge can be inserted
without violating planarity, and every planar graph can be realized with
rational coordinates, which by scaling leads to integer coordinates. We
calculate the entropy density of two-dimensional triangulations on quadratic
integer lattices and on stripes with a fixed width, which radically improves
previously analytical bounds (see Eq. (3.16)). For three-dimensional integer
lattices of different geometries, where there are no analytical calculations at
all, we find similar results for the entropy density (see Eq. (3.50)). We will
show in Sec. 3.4 results of the interpretation of lattice triangulations as planar
graphs: While within a random ensemble there is a scaling behavior similar
to common random graph models in terms of the system size (compare
Fig. 3.37), in a canonical ensemble, where the inverse temperature measures
order and disorder in the triangulation, we find a crossover behavior between
an ordered, large-world and a disordered, small-world behavior (see Figs. 3.50
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and 3.54). Calculating the spectrum of the associated Laplacian matrix
enables us to calculate the inverse participation ratio, which results in
the conclusion that the localization on random lattice triangulations is on
average higher than in similar random graph models (Fig. 3.43).
The developed approximate counting algorithm allows to inspect impor-

tant properties of triangulations of manifolds, which play an important
role in discrete topology. While from direct enumeration techniques the
number of triangulations is only known for small genus and a small number
of vertices, we can approximatively count triangulations with a far larger
number of vertices (as depicted in Fig. 4.13). It is even possible to find
asymptotics of for the number of triangulations or the entropy density in
terms of the number of triangles and the genus of the considered surface,
both for orientable and non-orientable surfaces (see Eqs. (4.18) and 4.19).
For triangulations of the 3-sphere we are able to extract results about the
numerical ergodicity of Pachner moves (see Fig. 4.24 and Eq. (4.33)), where
we consider the entropy density as measure for the ergodicity in terms
of the number of maximal simplices and the size of the allowed detour.
Furthermore we are able to improve existing results of the entropy density
in the limit of infinite system size (compare Eq. (4.34a)), and show that
probably there are in fact only exponentially many triangulations of the
3-sphere.
Considering triangulations as a spacetime model in the setup of causal

dynamical triangulations, using the Wang-Landau algorithm we are able to
calculate the one-slice propagator and develop a transfer matrix approach
in Sec. 5.3.5 to derive the limit of infinite number of time slices. Applying
this method to (2 + 1)-dimensional causal dynamical triangulations we show
that the fine-tune transition used to obtain a possible continuum limit is a
discontinuous phase transition (see Fig. 5.31), and that the continuous phase
transition at a certain coupling constant found in literature does occur only
in one of the two phases of the fine-tune transition (see in Fig. 5.36). We fur-
thermore list conceptional problems of the (causal) dynamical triangulation
approach.

As an outlook on other discrete space(-time) models that can be considered
numerically we present in Sec. 6.1 how to define equidistance in finite
projective geometries, and in Sec. 6.2 how to calculate spin foam amplitudes
for small quantum numbers.
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Kurzzusammenfassung

Triangulierungen, die anschaulich als eine Überdeckung des Raums mit
simplizialen Grundbausteinen beschrieben werden können, spielen in vielen
Bereichen der Physik eine wichtige Rolle: Man verwendet sie, um komplizierte
und gekrümmte Objekte zu diskretisieren, zum Beispiel in Schäumen, Gelen
und anderen porösen Materialien, weiterhin werden sie zur Beschreibung
gekrümmter Ränder in Fluidsimulationen oder in dissipativen Systemen
verwendet. Triangulierungen, oder genauer ihre Interpretation als Graph,
können auch als Netzwerke in der statistischen Physik eingesetzt werden,
beispielsweise als Netzwerke aus Spins oder in der biologischen Physik als
Aktinnetzwerke. Da man innerhalb von Triangulierungen ein Analogon
der Einstein-Hilbert-Wirkung finden kann, ist es möglich, mit ihrer Hilfe
Quantengravitation zu betreiben.
Auch in der Mathematik gibt es wichtige Anwendungsgebiete von Trian-

gulierungen: Sie sind maximale planare Graphen (das heißt, man kann keine
inneren Kanten einfügen, ohne die Planarität des Graphen zu zerstören),
somit ist jeder planare Graph ein Untergraph einer Triangulierung. Diese
Eigenschaft kann man nutzen, um Einblicke in die Eigenschaften von allge-
meinen planaren Graphen zu gewinnen. Weiterhin stellen Triangulierungen
die einfachste Möglichkeit da, topologische Mannigfaltigkeiten zu diskretisie-
ren, was sie zu einem wichtigen Werkzeug in der diskreten Topologie macht.
Auch werden Triangulierungen häufig eingesetzt, um Randwertprobleme
mit Krümmung zu beschreiben, beispielsweise in der Methode der finiten
Elemente, oder um integralgeometrische Maße zu berechnen.
Obwohl Triangulierungen in den verschiedensten Bereichen der Physik

und der Mathematik eine wichtige Rolle spielen, gibt es einige wichtige, offe-
ne Fragen über Triangulierungen an sich. Es ist nicht ohne weiteres möglich,
die Zahl der Triangulierungen einer bestimmten Punktkonfiguration oder
einer gegebenen Mannigfaltigkeit zu bestimmen. Für Mannigfaltigkeiten in
drei oder mehr Dimensionen ist zudem nicht einmal bekannt, ob zu einer
gegebenen Mannigfaltikeit exponentiell viele oder mehr Triangulierungen
existieren, in die Sprache der Physik übersetzt heißt das, dass nicht bekannt
ist, ob die Entropie der Triangulierungen linear oder stärker mit der System-
größe wächst. Diese Frage ist von besonderer Bedeutung für den Einsatz
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von Triangulierungen als quantengeometrisches Modell, der entsprechende
Pfadintegralformalismus ist nämlich nur wohldefiniert, falls nur exponentiell
viele Triangulierungen existieren. Eine weitere wichtige, offene Frage ist, ob
die elementaren Pachnerschritte, die Triangulierungen ineinander überfüh-
ren und vor allem in numerischen Simulationen verwendet werde, ergodisch
sind.
Neben diesen fundamentalen Fragen über Triangulierungen an sich gibt

es auch innerhalb ihrer physikalischen Anwendung Fragen, die in der be-
stehenden Literatur nur unzureichend oder gar nicht beantwortet worden.
Beispielsweise wurden Graphobservablen nur auf zufälligen, topologischen
Triangulierungen von Oberflächen untersucht, nicht aber für Triangulierun-
gen von Punktmengen oder für Ensembles, die Ordnung oder Unordnung
von Triangulierungen gewichten können, weiterhin wurde das Spektrum des
diskreten Laplace-Operators, das für Transport- oder Diffusionsprobleme
auf Graphen relevant ist, noch überhaupt nicht auf Triangulierungen be-
trachtet. Bei der Nutzung von Triangulierungen als Raumzeitmodell es ist
noch nicht klar, ob ein sinnvoller Kontinuumsgrenzwert existiert, der mit
der normalen und experimentell bestätigten allgemeinen Relativitätstheorie
übereinstimmt.

In dieser Arbeit werden einige dieser fundamentalen, offenen Fragen über
Triangulierungen beantwortet, hauptsächlich durch die Anwendung von Mar-
kowketten Monte-Carlo-Simulationen. Diese Simulationen verwenden eine
Markowkette, um Zustände entsprechend einer gegebenen Wahrscheinlich-
keitsverteilung zu erzeugen, z.B. entsprechend der Boltzmann-Verteilung wie
im bekannten Metropolisalgorithmus. Für die Zwecke dieser Arbeit werden
hauptsächlich solche Simulationen verwendet, die Zustände gleichverteilt in
einem Energieraum erzeugen, wie z.B. der Wang-Landau Algorithmus. In
Kap. 2.3.3 wird eine Methode zum näherungsweisen Zählen von Zuständen
in beliebigen Systemen entwickelt, der auf solchen Algorithmen basiert,
die Zustände gleichverteilt im Energieraum erzeugen. Weiterhin wird die
Abhängigkeit der Laufzeit des Wang-Landau Algorithmus von der Anzahl
der verwendeten Energieklassen und des verwendeten Flachheitskriteriums
(das ein Maß für die Güte einer Simulation ist) berechnet (vgl.Gl. (2.93)
und (2.96)).
Betrachtet man eingebettete Triangulierungen, so sind Gitter mit ganz-

zahligen Koordinaten ein wichtiger Spezialfall, da Triangulierungen in dem
Sinne maximale planare Graphen sind, dass keine weitere innere Kante
eingefügt werden kann, ohne die Planarität zu verletzen. Weiterhin kann
jeder planare Graph mit rationalen Koordinaten realisiert werden, die durch
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eine Skalierung auf ganzzahlige Koordinaten abgebildet werden können. In
dieser Arbeit wird die Entropiedichte von zweidimensionalen Triangulie-
rungen von quadratischen und rechteckigen Gittern mit konstanter Breite
berechnet (vgl. Gl. (3.50)), dieser Ergebnisse verbessern die bisher bekannten
analytischen Schranken deutlich. Für dreidimensionale Triangulierungen
von Gittern unterschiedlicher Form kann man ähnliche Ergebnisse erhalten
(vgl. Gl. (3.50)), hier gibt es leider keinerlei analytische Schranken. In Kap. 3.4
werden Ergebnisse gezeigt, die aus der Interpretation von Triangulierungen
als planare Graphen entstehen: Während für zufällige Triangulierungen in
Abhängigkeit der Systemgröße ein Skalenverhalten beobachtbar ist, dass
den üblichen Zufallsgraphen entspricht (vgl. Abb. 3.37), findet man in ei-
nem kanonischen Ensemble, in dem die inverse Temperatur Ordnung und
Unordnung der Triangulierung misst, einen Übergang zwischen einem geord-
neten, Große-Welt-Verhalten zu einem ungeordnete, Kleine-Welt-Verhalten
(vgl. Abb. 3.50 und 3.54). Die Berechnung des Spektrums der zugehörigen
Laplace-Matrizen ermöglicht es, die inverse Beteiligungsquote zu berechnen,
aus der geschlossen werden kann, dass die Lokalisierung auf zufälligen Gitter-
triangulierungen im Durchschnitt höher als in vergleichbaren Zufallsgraphen
ist (Abb. 3.43).

Die entwickelten Algorithmen zum näherungsweisen Zählen erlauben es,
wichtige Eigenschaften von Triangulierungen von Mannigfaltigkeiten zu
untersuchen, die eine wichtige Rolle in der diskreten Topologie einnehmen.
Während durch direktes Abzählen die Anzahl der Triangulierungen nur
für einen kleinen Genus und eine kleine Anzahl von Vertices bekannt ist,
kann durch das näherungsweise Zählen die Anzahl der Triangulierungen
für eine viel größere Zahl an Vertices berechnet werden (wie in Abb. 4.13
dargestellt ist). Es ist sogar möglich, die Asymptotik der Zahl der Triangulie-
rungen bzw. der Entropiedichte von orientierbaren und nicht-orientierbaren
Oberflächen für unendlich viele Simplices in Abhängigkeit vom Genus zu
bestimmen (vgl. Gl. 4.18 und 4.19). Für Triangulierungen der 3-Sphäre kön-
nen mit diesem Algorithmus Schlussfolgerungen über die Ergodizität der
Pachnerschritte gezogen werden, indem bei einer gewissen, festen Anzahl
an maximalen Simplices die Abweichung der Entropiedichte in Abhängig-
keit des erlaubten Umwegs als Maß für die Ergodizität betrachtet wird
(vgl. Abb. 4.24 und G l. (4.33)). Weiterhin können in diesem Fall bereits
bekannte Ergebnisse über die Entropiedichte im Grenzwert unendlich großer
Systeme verbessert werden (vgl. Abb. 4.34a), weiterhin wird gezeigt, dass es
sehr wahrscheinlich nur exponentiell viele Triangulierungen der 3-Sphäre
gibt.
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Durch Anwendung von Wang-Landau Simulationen auf kausale dynami-
sche Triangulierungen, die Triangulierungen als Raumzeitmodell interpretie-
ren, kann der Ein-Schnitt-Propagator berechnet werden. Zusammen mit der
Entwicklung eines Transfermatrix-Ansatzes in Kap. 5.3.5 erlaubt dies, den
Grenzwert unendlich vieler zeitlicher Schnitte zu berechnen. Durch Anwen-
dung auf (2 + 1)-dimensionale kausale Triangulierungen kann gezeigt wer-
den, dass der Feinabstimmungs-Phasenübergang, der genutzt wird, um den
möglichen Kontinuumsgrenzwert zu erhalten, ein diskontinuierlicher Phasen-
übergang ist (vgl. Abb. 5.31), und dass der bereits in der Literatur bei einer
bestimmten Kopplungskonstante gefundene kontinuierliche Phasenübergang
nur in einer der beiden Phasen des Feinabstimmungs-Phasenübergang auf-
tritt(vgl. Abb. 5.36. Weiterhin werden einige konzeptionelle Probleme von
(kausalen) dynamischen Triangulierungen herausgestellt.

Als Ausblick werden weitere diskrete Raumzeitmodelle vorgestellt, die
numerischen Simulationen zugänglich sind. In Kap. 6.1 wird dargestellt,
wie man Äquidistanz in endlichen projektiven Geometrien definieren kann,
in Kap. 6.2 wird präsentiert, wie man Spinschaumamplituden für kleine
Quantenzahlen berechnen kann.
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1 Introduction

Triangulations are objects that occur in various different branches of physics.
They are maximal planar graphs in the sense that no interior edge can be
inserted without violating planarity. This means that every planar graph
is a subgraph of a triangulation, so understanding the graph and spectral
properties of triangulations can lead to more insight into planar graphs [47,52,
259,372,433]. Triangulations are often used to discretize and describe curved
boundaries, e.g., in finite element methods which solve partial differential
equations on the computer. Triangulations can also be used for calculating
several additive measures from integral geometry, the so-called Minkowski
tensors [362], which can be used for characterizing various experimental
data ranging from the structure of the atomic nucleus [363] to telescope
images of astronomical objects [192]. Due to their inherent description
of curvature they are predestined for an usage in one of the most famous
physical theories incorporating the concept of curvature, namely general
relativity. It was shown by Tullio Regge in 1961 [338] that triangulations
can in fact describe general relativity without coordinates, which is often
use for numerical classical general relativity [187]. Since triangulations are
also discrete, they naturally can be used for formulating theories of quantum
gravity, e.g., in the Ponzano-Regge model [330], simplicial gravity [204] and
in (causal) dynamical triangulations [38,280].
Triangulations are also an important subject of study in mathematics.

There is a strong relation between triangulations and combinatorics, e.g., the
number of triangulations of a convex polygon with n edges matches the
number of binary trees with n − 2 nodes [132, Thm. 1.1.3], and a slight
generalization of triangulations can also be used for examining linear op-
timization problems [132, Sec. 2.1]. Furthermore, triangulations are the
way mainly used for describing manifolds in discrete topology, because they
allow for a simple calculation of topological invariants.

Naturally the question arises why triangulations are so commonly used in
the described contexts in mathematics and physics. In fact there are several
reasons. The first is that triangulations are a more clever way for representing
smooth structures on a digital computer (as the one you probably read this
thesis on), where one has to use some discretization method to map the
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continuous degrees of freedom to a countable set of parameter, which then
can be stored in the finite memory of the computer. For this one usually
uses lattices, which are a regular and repeating arrangement of points in Rd,
e.g., the points of Zd. Famous examples of such approximative discretizations
are finite elements methods, which are used for numerically solving partial
differential equations, or every image taken with a pixel detector, where
smooth structures are mapped to discrete count numbers of single pixels
(e.g., in a CCD or a particle detector). The usual discretization method using
lattices reaches its limits if the underlying space to be discretized is not flat,
but somehow curved. This happens e.g., if there are complicated boundary
conditions in finite element methods (for modeling the flow through a
complicated object), or if a curved structure should be described itself. To
make the latter case clear, consider a ball B embedded into the R3 which is
described by

B := {x ∈ R3 | x2
1 + x2

2 + x2
3 ≤ 1}. (1.1)

If one uses a discretization of the whole space into cubes with constant edge
length a, and calculates the volume by summing the volumes of the cubes
that are completely contained in the ball B, then the discretized volume
converges towards the actual value 4π/3. But if one approximates the area
of the boundary A(∂B) = 4π with the boundary area of the cubes, one gets

Adiscretized(∂B) = 6π,

since for every one of the six normal directions the boundary areas of the
cubes approximates the area π of a circle. Using a triangulation of the
surface, as depicted in Fig. 1.1, the surface area has the correct asymptotics.

In principle there are several other methods (e.g., quadrangulations that
use quadrangles or polygons with more edges), but triangulation have the
advantage that the geometry is determined soly by the edge lengths of the
triangulation, and one needs no information about angles between edges.
Furthermore, they allow for an easy calculation of topological invariants,
e.g., the Euler characteristic χ. For an arbitrary surface S that is given
implicitly, the Euler characteristic has to be calculated using the Gauss-
Bonnet theorem as

χ = 1
2π

∫
S
KdA ,

where K is the Gaussian curvature and dA is an area element. If one can
find a triangulation of the surface, one can calculate the Euler characteristic
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Figure 1.1: Discretizing surfaces with lattices
and triangulations.
(Top) Discretization of the ball Eq. (1.1) using a reg-
ular build from cubes. For decreasing edge length,
the volume of the cubes converges towards the vol-
ume of the ball, but the surface converges towards
6π and not towards the actual value of 4π. (Bottom)
Discretization of the ball Eq. (1.1) using a (Delaunay)
triangulation of randomly distributed points on the
sphere, both the volume and the surface converge to-
wards the actual value. In both cases the color of a
face encodes the direction of its normal vector.

using the much simpler equation

χ = N2 −N1 +N0,

where N2 is the number of triangles, N1 is the number of edges and N0
is the number of vertices. Using triangulations of manifolds one can also
address very fundamental questions of discrete topology, e.g., whether
there is an exponential bound of the number of different (non-isomorphic)
discretizations of a manifold in terms of the number of discrete objects used.

From a geometric point of view, triangulations can be defined as a tessel-
lation of space with triangles or higher-dimensional simplices, alternatively
within a graph theoretic approach triangulations are (maximal) planar
graphs where each face is triangular (or their higher dimensional analogs).
Mathematically there are different structures that are denoted as triangula-
tions: One can consider triangulations of point sets embedded into an Rd,
or one can neglect the actual coordinates of the points and consider only the
topological degrees of freedom for triangulations of manifolds. There are
several methods for constructing triangulations, for the standard application
in finite element methods one can use the cutting cube method [361] or
the marching algorithm [213] for calculating triangulations of a surface.
Due to their discreteness triangulations are a good candidate for numerical
examinations on a computer. Within this thesis, we apply (flat histogram)
Markov chain Monte Carlo simulations on the different types of triangu-
lations. These algorithm are designed to calculate ensemble averages in
statistical physics, but also allow to count the number of states in certain
systems.

3
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We do not go into greater detail about existing literature, application
or importance of the considered systems in this part of the thesis. For
those informations we refer to the respective introductory parts of the single
chapters. The thesis is structured as following:

Markov chain Monte Carlo simulations The second chapter describes
the numerical method of Markov chain Monte Carlo simulations, which are
the main method for the calculations done throughout this thesis. In this
chapter, we give first the necessary basic notations of statistical physics,
furthermore we introduce phase transitions and the Ising model. Afterwards
we present the general ideas of Markov chain Monte Carlo simulations
before describing certain algorithms in detail, especially the Metropolis
algorithm, which is the MCMC developed first and most accessible to the
non-experts, and the Wang-Landau algorithm, which allows to calculate the
density of states of a system and can be used for an approximate counting
the number of states of arbitrary systems. We conclude by presenting our
results about the Wang-Landau method in general, the most important
results are the analytical approximation of the runtime of the algorithm
in terms of the number of bins of the density of states in Eqs. (2.93) and
(2.96), and the development of an approximative state counting algorithm
for systems without any a prior information in Sec. 2.3.3.

Entropy and graph properties of lattice triangulations The third
chapter is concerned with triangulations of point sets embedded into the
Euclidean space Rd, especially lattice triangulations in R2 and R3. We start
with a description of the definition of embedded triangulations in general,
including some special triangulations used in mathematics and physics and
the elementary steps that will be used within the MCMC simulations of such
triangulations. Then we use the Wang-Landau algorithm for approximating
the number of unimodular triangulations of a two-dimensional integer lattice,
where we can improve analytical bounds of the entropy density in Eq. (3.16).
The same methods are then applied to triangulations of three-dimensional
integer lattices, after we examined triangulations of the three-dimensional
unitcube to give the reader a more intuitive look on this higher dimensional
triangulations.
A major part of this section is the interpretation of two-dimensional

lattice triangulations as random graph models. In Fig. 1.2 a small random
triangulation is displayed, and one can see that the inherent random struc-
ture can lead to shortcuts in the graph and to large clusters, which is a
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t = 2 t = 10 t = 20 t = 30

t = 2 t = 10 t = 20 t = 30

Figure 1.2: Random lattice triangulations as graphs.
(Left) Random triangulation on a 8× 8 lattice. One can see that compared to an
ordered lattice there shortcuts for traversing the lattice (blue path), and vertices
with a high number of neighboring vertices (green), which are denoted as clusters.
(Right) Random walk probability density (color code) evolved using the discrete
Laplacian after a certain number of time steps for a random (top) and an ordered
(bottom) 16× 16 lattice triangulation. The initial condition is to set p = 1 on one
center site. The shortcuts and the clusters lead to a faster spread for the random
triangulation, due to the randomness the spread is also inhomogeneous.

key feature of real world networks. Furthermore, one can see that random
triangulations exhibit interesting transport and diffusion properties.

Comparing random triangulations with usual random graph models as the
Erdös-Rényi , the Newman-Watts and the Barabási-Albert random graph
we find in Fig. 3.37 that graph observables like the clustering coefficient
or the average shortest path length show a similar behavior in terms of
the system size. Defining an energy that measures order and disorder of
the triangulation, we find a transition behavior in the inverse temperature
between an ordered, large-world behavior and an unordered, small-world
behavior in Figs. 3.50 and 3.54. As an application of the calculated spectrum
of the Laplacian matrix we calculate the inverse participation ratio of random
and canonical triangulations, and show in Fig. 3.43 that this measure of
localization is on average higher than in the comparable random graphs.

Entropy and ergodicity of topological triangulations The fourth
chapter considers triangulations of topological manifolds, where in contrast
to embedded triangulations only the topological degrees of freedom are taken
into account, and not the actual coordinates of the vertices. Examples for
topological triangulations of a two-dimensional torus can be found in Fig. 1.3
for various number of simplices. We first give the definition of topological
manifolds, their triangulations as well as Alexander and Pachner moves,
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Figure 1.3: Topological triangulations of the torus surface with 50 (left), 100
(mid) and 500 (right) vertices, which were chosen randomly distributed on a torus
surface. The color of the faces corresponds to their normal direction.

which can be used for transforming triangulations of the same manifold
into each other and are the elementary steps used in the Markov chain
simulations. Furthermore we present some interesting results and open
problems from the mathematical literature.

In the following, we are interested in answering to main questions about
manifold triangulations: Are they (computational) ergodic, which means
whether it is possible to reach every triangulation of a given manifold
with a finite number of Pachner moves, or whether there is restriction
due to the limited system sizes we can consider on a computer, and are
there exponentially many triangulations as for lattice triangulations (or
perhaps more)? Both questions are important for the consideration of
triangulations as spacetime models in the following chapter. For two-
dimensional triangulations of surfaces, we consider both the limit of small
and of large triangulations. Where in the former case exact results are only
available for triangulations with very few vertices [379], we are able to find
approximate numbers for far larger triangulations in Fig. 4.13. In the latter
case we calculate in (4.19) next-to-leading order corrections for the entropy
density that depend on the genus of the underlying (non-)oriented surface.
We find that there is a qualitative change of the behavior for different genus
in the orientable case: While for spheres the entropy density increases for
increasing lattice size, it is approximately constant for a torus and decreases
for surfaces with higher genus (compare Fig. 4.14). For triangulations of the
3-sphere we are able to give the deviation of the entropy density from its
limiting value in terms of the size of the triangulation and the allowed range
of Pachner moves in Eq. (4.33), which can be interpreted as a quantitative
measure for the violation of ergodicity, and to verify and improve previous
results about the scaling of the entropy density for 3-spheres in (4.34a).
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Figure 1.4: Causal triangula-
tion of S×I in (1+1) dimensions.
The time-direction goes from left
to the right. Note that this is only
a symbol picture not originating
from an actual simulation.

(Causal) dynamical triangulations The fifth chapter describes the
usage of triangulations as spacetime models. We introduce first the so-called
Regge formalism, where one is able to find a discrete analogue of the Einstein
equations using a discretization of space in terms of triangulations. This
Regge formalism is the foundation for two models for quantum spacetime
using triangulations, which we will consider afterwards. The first approach
is denoted as dynamical triangulations and uses a path integral-like sum
over all triangulations of a given manifold weighted with the Regge action,
the second approach is the causal enhancement of this theory, where only
triangulations that admit a causal structure contribute to the path integral.
In contrast to other quantum theories based on Regge calculus, in (causal)
dynamical triangulations the edge length are fixed, and the triangulations
themselves are used as dynamical variables (a symbol picture of a causal
triangulation in (1 + 1) dimensions can be found in Fig. 1.4). For both
cases we give a short literature review and list some major results as well as
problems that still have to be addressed by these theories. We furthermore
give a detailed derivation of the action of (causal) dynamical triangulations
for two, three and four dimensions. Using the Wang-Landau algorithm we
calculate the density of states for one time slice, which can then be used in
a transfer matrix approach to calculate expectation values for an arbitrary
number of time slices, and even to consider the limit of infinite time slices.
For (2 + 1)-dimensional triangulations we present in Fig. 5.31 that the fine-
tuning phase transition is discontinuous (one has to choose the coupling
constants so that the system is on the coexistence line of this transition in
order to be able to get a continuum limit). We furthermore confirm that on
the phase transition line there is a critical point where there is a continuous
phase transition (which is needed for finding a discretization-scale invariant
continuum limit), but we show that this phase transition does occur only in
one of the two coexisting phases in Fig. 5.36.

Other discrete spacetime models The last chapter summarizes the
main results of this thesis and gives an outlook about possible new research
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directions that arise from the methods developed or the results obtained in
this thesis. Furthermore we give an extended outlook about two alternative
approaches that were tested during this thesis. The first is the usage of finite
projective geometries as the underlying geometry of a physical theory, which
requires the notion of distance or even weaker the notion of equidistance,
which can be done with introducing a certain combination of two quadrics
denoted as biquadric. The second are numerical calculations within the
EPRL spin foam model for small quantum numbers. Both approaches were
examined by students that were supervised by me during there thesis. The
last part of the chapter gives a short overview about the software that was
developed for this thesis.

General remarks Considering the outline of the thesis one can see that
a large part of this thesis is concerned with mathematical foundations
and applications of triangulations. Additionally, also in the physical part
about triangulations as possible models for quantum gravity, experimental
data is rare due to the high energy scales or small length scales where
deviations from general relativity or quantum field theory are expected,
scales that are not accessible by particle accelerators, also in the near
futures. There are some proposals for experiments from phenomenological
quantum gravity [219], and some very recent results from the BICEPS2
telescope [118], both are based on astronomical observations. This means
that this thesis has almost no contact to present experiments, which can be
seen already from the bibliography, where there are almost no experiments
cited. The thesis on hand can be seen rather as experimental mathematics,
because simulations that are inspired from physics are used for finding not
rigorous proofs, but probable results or hints that can be very valuable for
mathematicians to proof certain theorems.
Parts of this thesis have been published in the following papers (the

numbers refer to their place in the bibliography)

[253] J. F. Knauf, B. Krüger, and K. Mecke, Entropy of unimodular lattice
triangulations, EPL 109(4), 40011 (2015)

[265] B. Krüger, E. M. Schmidt, and K. Mecke, Unimodular lattice trian-
gulations as small-world and scale-free random graphs, New J. Phys.
17(2), 023013 (2015)

[266] , Sepectral properties of unimodular lattice triangulations, J.
Stat. Phys. 163(3), 514–543 (2016)
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[264] B. Krüger and K. Mecke, Genus dependence of the number of (non-
)orientable surface triangulations, Phys. Rev. D 93, 085018 (2016)

where Sec. 3.2 is based on Ref. [253], Sec. 3.4 is based on Refs. [265,266],
and Sec. 4.2 is based on Ref. [264]. In the respective sections the respective
contributions to the numerical and analytical results as well as the text is
stated in detail. Furthermore, there are several short term project reports
and theses of students that were (co)supervised by me during my PhD-thesis

[10] N. Alex, Quadriken in endlichen projektiven Ebenen, (2012), bachelor’s
thesis

[62] W. Barfuss, Quadrics in finite projective planes, (2012), short term
research project

[94] W. Billenstein, Monte Carlo simulations of the Ising model on trian-
gulations, (2013), bachelor’s thesis

[144] M. Düll, Effiziente Berechnung von Wigner 3nj-Symbolen, (2013),
short term research project

[145] , Numerische Berechnung von Vertex-Amplituden im EPRL-
Modell, (2013), bachelor’s thesis

[271] , Biquadric fields: Equipping finite projective spaces with metric
structure, (2014), master’s thesis

[360] E. M. Schmidt, Spectrum of the discrete Laplace operator on two-
dimensional lattice triangulations, (2013), short term research project

[411] T. Wasserka, Critical phenomena of the Ising model on triangulations,
(2016), master’s thesis

[413] J. Wechs, Lattice Laplacian on triangulations, (2013), short term
research project

[425] F. Winterhalter, Monte-Carlo-Simulationen mit Quadriken in end-
lichen projektiven Ebenen, (2013), bachelor’s thesis

where the number again corresponds to their place in the bibliography, and
where the data of Ref. [360] is used in Sec. 3.4, results of Refs. [10, 271]
are used in Sec. 6.1, and data and results of Refs. [144, 145] are used in
Sec. 6.2. In all cases the exact contribution of the students is mentioned in
the introductory parts of the respective sections.
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The pictures within the footer show some of the 852 triangulations of the
4× 3 integer grid, so that there is a different triangulation on every page,
and so that the triangulations on neighboring pages are connected by only
one diagonal edge flip of the dashed edge. As an exercise, the interested
reader can construct the remaining triangulations that are not displayed.
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2 Markov chain Monte Carlo
simulations

Markov chain Monte Carlo (MCMC) simulation are numerical approxima-
tion methods for calculating expectation values in statistical physics, or
in general methods for evaluation high-dimensional integrals. The basic
principle is to construct an ordered set of states which are connected by
some elementary moves so that the probability to find a certain state (or in
general a supporting point) in the Markov chain equals a given probability

MCMC methods are important in various branches of physics, especially
in statistical and solid state physics [85, 269, 315]. Such methods are not
restricted to physics, but are an important tool for many other branches
of science: They are used to integrate over the probability distribution
occurring in Bayesian statistics [185,186,384] (see [342,348] for historical
reviews) and therewith are an important tool in economics, political and
social sciences as well as for medical science and psychology, where Bayesian
statistics is often used. MCMC methods are also used directly in biology
and medicine to understand e.g. the behavior of biological objects or the
transport of drugs (see [298] for a collection of various applications in biology
and medicine). Computational linguistic uses (mainly simple sampling)
Monte Carlo results, too, e.g. for automatic language identification [332],
comparing different languages for common roots [244] and for comparing
the language usage of different social and ethnic groups [311]. Optimization
problems can be solved using a special MCMC method called simulated
annealing [250].
For all these problems there are various types of Monte-Carlo simula-

tions available: The first invented method, which is also the commonly
used Monte-Carlo simulations, is the Metropolis(-Hasting) algorithm sam-
pling the Boltzmann distribution [214, 291]. Optimization problems are
often used with a special Metropolis simulation called simulated anneal-
ing, where basically the temperature of the system is slowly decreased to
find a ground state in the energy landscape [250]. A parallelization of
the Metropolis algorithm calculation various inverse temperatures at once
and allowing temperature interchanges is known as Parallel Tempering or
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Replica Exchange Monte Carlo [223,382], which overcomes the problem with
complicated energy landscapes that can occur in Metropolis simulations,
but is known to have problems with first order phase transitions and large
free energy barriers. Multicanonical simulations [84, 88] do not use the
Boltzmann factor as weights for the certain states, but other more feasible
weights. Concretizations are flat histogram methods like Entropic sam-
pling [274], the Wang-Landau algorithm [406,407] and the optimal ensemble
sampling [392,393] calculating the density of states, which is basically the
number of states with given energy, using iterative approaches. Another
method for determining the density of states of a system is Transition Matrix
Monte Carlo [408]. For many MCMC algorithms there are rejection-free
(also denoted as continuous time or N-fold way) versions [99, 364], which do
not reject steps but calculate the average time the system would stay in the
state, which is the average number of rejected steps before the actual step
will be accepted.

In this chapter we present first the basic notions of statistical physics,
including phase transitions and the Ising model, which is commonly used
for testing new MCMC algorithms. Afterwards we give an introduction into
various types of MCMC algorithms, with a special emphasis on the Wang-
Landau sampling, which is commonly used throughout this thesis. In the
last part our results about MCMC algorithms in general are presented: We
perform a numerical study to find optimal parameters of the Wang-Landau
algorithm (see Fig. 2.14), in Eqs. (2.92) and (2.96) we present analytical
approximations of the runtime of a Wang-Landau simulation in terms of
the flatness criterion and the number of bins, which fit well with numerical
results presented in Figs. 2.15 and 2.16, and we present an algorithm for
counting the number of states of arbitrary systems using the extended
energy function (2.98).
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2.1 Statistical physics and phase transitions
For describing systems that consist of a huge number of similar, interacting
objects, the usual methods of classical Lagrangian or Hamiltonian mechanics
does not help. Due to the large number of degrees of freedom, on the one
hand it is not possible to determine the initial state of the system, on the
other hand integrating the equations of motions is practically impossible.
However, it is possible to calculate average macroscopic quantities using
methods of statistical physics.

In this section we will introduce the basic notions of statistical physics that
we need in the course of this thesis, especially for introducing Markov chain
Monte Carlo simulations. The considerations will be restricted to discretized
systems, but can be generalized for continuous systems. In the latter case,
instead of discrete sums one has to perform the integrals over small shells
and add some factors for regularizing the phase space volume, which we
will omit. Conceptionally we follow Ref. [317], but the considerations can
be found in almost every other textbook about statistical physics. As an
abbreviation we write ∑∫ dω , which equals ∑ω∈Ω in the discrete and

∫
Ω dω

in the continuous case. Although we consider only discrete systems, we
assume in the following that the considered systems are large enough to
approximately make use of derivatives.

Consider now an arbitrary discrete system, e.g. a chain of N interacting
spins. We denote by ω the microstate of the system, which can be the set
of generalized coordinates and momenta in a Hamiltonian formulation, or
some other configuration variables. So a microstate ω can be identified with
a point in the phase space Ω. In our example ω ∈ Ω = {−1, 1}N , so a state
consists of all orientations of the spins, and Ω denotes the set of all possible
states ω the system can have, so Ω is the whole phase space of the system.
Furthermore, we denote by H : Ω→ R the Hamilton function of the system,
and by a macrostate of energy E all states with H(ω) = E.

2.1.1 Expectation values

As the next step we calculate the average value of an observable A(ω) that
depends on the microstate, therefor we follow Ref. [317, Sec. 1.2.1 and 1.2.2].
For every time t the system is in a certain microstate ω(t). Suppose that
the system fluctuates so fast that we can in fact measure only the time
average of the observable

〈A〉t0(t) = 1
t

∫ t0+t

t0
A(ω(t′))dt′, (2.1)
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where ω0 = ω(t0) is the microstate of the system at the beginning of the
measurement (initial conditions). In general the value of 〈A〉t0(t) does
depend on ω(t0) for finite t, but we stipulate the limit

〈A〉 := lim
t→∞
〈A〉t0(t) (2.2)

exists and is independent of the initial conditions.
Now denote by ρ(ω, t0, t) the (normalized) density distribution of the

system, which is the probability to find the system in state ω between time
t0 and t0 + t in a discrete system1. Using the density distribution ρ, the
time average (2.1) can be formulated as

〈A〉t0(t) =
∑∫

dω ρ(ω, t0, t)A(ω).

As for expectation values of observables, we also assume that ρ(ω) :=
limt→∞ ρ(ω, t0, t) is independent of the initial conditions. So we take the
limit t→∞ and get

〈A〉 = lim
t→∞
〈A〉t0(t) = lim

t→∞

∑∫
dω ρ(ω, t0, t)A(ω).

Now we postulate that the limit and the integral commute (this is denoted
as ergodic hypothesis), and get

〈A〉 =
∑∫

dω ρ(ω)A(ω), (2.3)

which is the average of the observable A. This induces that we can replace
the (infinite) time average (2.2) of an observable with the phase space
or ensemble average (2.3), which is sometimes also denoted as ergodic
hypothesis.
What is left is to determine the density distribution ρ(ω) of the system.

This depends on the type of interaction of the system with the environment.

2.1.2 Microcanonical ensemble

For the presentation of this section we follow Ref. [317, Sec. 1.2.4]. Consider
first a system that is completely isolated, so that neither particles nor energy
can be transfered between system and environment. So if H is the Hamilton

1 For continuous system, the density distribution is defined so that ρ(ω, t0, t)dω is the
probability to find a state in the phase space volume dω
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function of the system and H(ω) is the energy of microstate ω, we have the
constraint H(ω) = E in a discrete system2.
We now have to determine the value of the density distribution ρ(q,p).

The only reasonable choice is that the density is constant for every allowed
microstate (equal a prior probability postulate, which is equivalent with he
Gibbs entropy being maximal), so

ρ(ω) = ρ0δ(H(ω), E) :=
{
ρ0 H(ω) = E

0 H(ω) 6= E
.

Because ρ is a normalized probability distribution, one gets∑∫
dω ρ0δ(H(ω), E) != 1

⇒ ρ−1
0 =

∑∫
dω δ(H(ω), E) =: g(E) (2.4)

where g(E) is the density of states (DOS), which is the number of states
with energy E. The logarithm

S(E) := log g(E) (2.5)

of the density of states is denoted as microcanonical entropy and is the
thermodynamic potential of the microcanonical ensemble.

So the expectation value of an observable can be calculated using Eq. (2.3)
as

〈A〉(E) =
∑∫ dωA(ω)δ(H(ω), E)∑∫ dω δ(H(ω), E) = 1

g(E)
∑∫

dωA(ω)δ(H(ω), E) (2.6)

in the microcanonical ensemble.

2.1.3 Thermodynamic equilibrium

In this section some important properties of the microcanonical entropy
S(E) = log g(E) are derived by considering two systems that are in thermo-
dynamic equilibrium, following closely Ref. [317, Sec. 1.3.1, 1.3.2 and 1.3.4].
Consider a microcanonical system Ω = Ω1 × Ω2 that is composed of two

2 In continuous systems one must replace this constraint with E < H(ω) < E + δE for a
small δE that has to be introduced because it is not possible to suppress all energy
transfer between system and environment. Additionally all distributions δ(H(ω,E) in
the following integrals have to be replaced with the step functions Θ(H(ω)− E)Θ(E +
δE −H(ω)).
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2. Markov chain Monte Carlo simulations

subsystems Ω1 and Ω2 which are in weak contact. The energy E = E1 +E2
and the total system size N = N1+N2 of the whole system (where Ei and Ni

are energy and system size of the two subsystems) are then constant3. The
system is in thermal equilibrium, if the product g1(E1, N1) ·g2(E2, N2) of the
density of states of the single systems is maximal, due to the maximization
of Gibbs entropy.
Consider now first the case which allows an exchange of energy between

the systems, but keeps the system size of the two subsystems fixed. In this
situation the total differential

d (g1g2) =
(
∂g1
∂E1

)
N1

g2 dE1 +
(
∂g2
∂E2

)
N2

g1 dE2
!= 0

vanishes if the two subsystems are in thermal equilibrium. Dividing this
equation by g1 · g2 and using dE = dE1 + dE2 = 0 gives the condition

1
g1

(
∂g1
∂E1

)
N1

= 1
g2

(
∂g2
∂E2

)
N2

⇒
(
∂S1
∂E1

)
N1

=
(
∂S2
∂E2

)
N2

,

where Si(Ei, Ni) is again the microcanonical entropy. If one defines the
temperature T or the inverse temperature β using(

∂S

∂E

)
N

=: 1
T

=: β, (2.7)

a necessary condition for the two systems to be in thermal equilibrium is
T1 = T2 or β1 = β2.
As a second case consider the case where beside the exchange of energy

also the exchange of system size of the two subsystems is allowed. Here the
total differential becomes

d (g1g2) =
[(

∂g1
∂E1

)
N1

dE1 +
(
∂g1
∂N1

)
E1

dN1

]
g2

+
[(

∂g2
∂E2

)
N2

dE2 +
(
∂g2
∂N2

)
E2

dN2

]
g1

!= 0,

using dE = dE1 + dE2 = 0 and dN = dN1 + dN2 = 0 leads to the following
to independent conditions(

∂S1
∂E1

)
N1

=
(
∂S2
∂E2

)
N2(

∂S1
∂N1

)
E1

=
(
∂S2
∂N2

)
E2

,

3 In this section we denote the variable N generalized as system size. In concrete systems
this can be the number of particles, the number of spins or, as we will use later, the
number of maximal simplices in a triangulation,
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2.1. Statistical physics and phase transitions

because dEi and dEj are independent in general. The first conditions is
fulfilled if both systems have the same temperature as defined in Eq. (2.7),
the second definition is fulfilled for equal chemical potential µ1 = µ2 in both
subsystems, where the chemical potential is defined as(

∂S

∂N

)
E

=: −µ
T

= −βµ. (2.8)

The intuitive meaning of the chemical potential is the energy a system gains
if increasing the system size by 1.

2.1.4 Canonical ensemble

Until now only systems that do not allow an exchange of energy or parti-
cles with the environment were considered, they could be described using
the microcanonical ensemble. If one allows for energy exchange with the
environment, but still fixes the particle number, one gets systems that can
be described with the canonical ensemble. These are often described as
systems within a heat bath. In this section we follow Ref. [317, Sec. 1.4].
Consider now a (microcanonical) system with energy E and particle

number N , which consists of two parts, a small system Ω1 with energy
H1(ω1) = E1 and particle number N1 that is coupled to a large bath Ω2
with energy H2(ω2) = E2 and particle number N2 so that E = E1 +E2 and
N = N1 + N2. Both systems are weakly coupled, so that the interaction
energy E12 = H12(ω1, ω2) can be neglected compared to E1 or E2. The
density distribution of the whole system is

ρ(ω1, ω2) = 1
g(E)δ(H1(ω1) +H2(ω2), E),

and the density distribution of the first system can be obtained by integrating
over the degrees of freedom of the second system:

ρ1(ω1) =
∑∫

dω2 ρ(ω1, ω2)

= 1
g(E)

∑∫
dω2 δ(H2(ω2), E − E1) = g2(E − E1)

g(E)

Since we postulated a small system Ω1 in a large bath Ω2, we have
E1 � E, and we can use a Taylor expansion for the microcanonical entropy
of the bath

log g2(E − E1) = S2(E − E1) ≈ S2(E)−
(
∂S2
∂E1

)
E1 = S2(E)− βE1,
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2. Markov chain Monte Carlo simulations

where we denote by β the inverse temperature defined in Eq. (2.7). Since
E = const. for the whole system (which is still considered to be describable
by a microcanonical observable, g(E) and g2(E) are constants, and we get
for the density distribution of the canonical ensemble

ρ1(ω) = ρ0 exp(−βH(ω)).

Using that the density distribution is normalized, we get∑∫
dω ρ0 exp(−βH(ω)) != 1

⇒ ρ−1
0 =

∑∫
dω exp(−βH(ω)) =: Z(β), (2.9)

where Z(β) is the canonical partition function, that is sometimes also
denoted as Z(β,N) or ZN (β) to denote the implicit dependence of the
partition function on the system size N .

So the expectation value of an observable can be calculated using Eq. (2.3)
as

〈A〉(β) =
∑∫ dωA(ω) exp(−βH(ω))∑∫ dω exp(−βH(ω)) = 1

Z(β)
∑∫

dωA(ω) exp(−βH(ω))

(2.10)
in the canonical ensemble.
If considers an observable A that only depends on the energy of a mi-

crostate, and not on the microstate itself, one can calculate canonical
expectation values also using the density of states

〈A〉(β) = 1
Z(β)

∑∫
dE g(E)A(E) exp(−βH(E))

Z(β) =
∑∫

dE g(E) exp(−βE).
(2.11)

This result implies that the canonical partition function Z(β) is the Laplace
transform of the density of states g(E). A similar result can be found
for observables A that do depend on the actual microstate, therefor all
microcanonical expectation values 〈A〉(E) of this observables must be known:

〈A〉(β) = 1
Z(β)

∑∫
dE 〈g(E)A〉(E) exp(−βH(E)). (2.12)

The thermodynamic potential of the canonical ensemble is the free energy

F (β,N) = − 1
β

logZ(β,N), (2.13)
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2.1. Statistical physics and phase transitions

which has the same role as the density of states in the microcanonical
ensemble. The canonical entropy S(β,N) can be defined as a derivative of
the free energy by

S(β,N) := −
(
∂F

∂T

)
N

= −
(
∂F

∂β

∂β

∂T

)
N

= β2
(
∂F

∂β

)
N

, (2.14)

and every other thermodynamic quantity can be calculated in terms of
derivatives of the free energy, e.g. the mean energy

〈E〉(β,N) = − ∂

∂β
logZ(β,N) = ∂

∂β
(βF (β,N)) (2.15)

and the heat capacity

C(β,N) :=
(
∂〈E〉
∂T

)
= β2

(〈
E2
〉

(β,N)− 〈E〉2(β,N)
)

=

= −β2 ∂
2

∂β2βF (β,N).
(2.16)

So knowledge of the partition function Z(β,N) or the free energy F (β,N)
means knowledge about the thermodynamic properties of the system de-
scribed by the canonical ensemble.

2.1.5 Grandcanonical ensemble

We can further generalize the canonical ensemble if we allow for the exchange
of system size between the two subsystems, but keeping N = N1 + N2
constant, arriving at the grandcanonical ensemble, following Ref. [317,
Sec. 1.5]. Denote by ωN1 a state of the small system Ω1 with system size N1,
and by ωN2 a state of the bath Ω2 with large system size N2, the density
distribution of the whole system is then ρ(ωN1 , ωN2). As in the canonical
distribution, the density distribution ρ1(ωN1) of the small system can be
calculated by integrating over the states of the bath:

ρ1(ωN1) =
∑
N2

∑∫
dωN2 ρ(ωN1 , ωN2)δN1,N2

= 1
g(E,N)

∑∫
dωN−N2 δ(H2(ω2), E − E1) = g2(E − E1, N −N1)

g(E,N)
The microcanonical entropy S2(E − E1, N − N1), which is now both a
function of E and N , can be expanded to first order in N1 and E1,

S2(E − E1, N −N1) ≈ S2(E,N)−
(
∂S2
∂E1

)
E1 −

(
∂S2
∂N1

)
N1 =

= S2(E)− β(E1 − µN1),
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2. Markov chain Monte Carlo simulations

where we used the Definitions (2.7) and (2.8) for the inverse temperature β
and the chemical potential µ as first derivatives of the microcanonical entropy.
As in the canonical ensemble S2(E,N) as well as g(E,N) are constants, so
that ρ1(ωN1) = ρ0 exp[−β(E1 − µN1)]. Using the normalization condition
and renaming the variable N1 → N leads to

ρ0 = 1∑
N
∑∫ dωN exp[−β(H(ωN )− µN)] =: 1

Ξ(β, µ) ,

where Ξ(β, µ) is the grandcanonical partition function. Note that one
can write the grandcanonical partition function in terms of the canonical
partition function by

Ξ(β, µ) =
∑
N

exp(βµN)ZN (β) =
∑
N

zNZN (β),

where the quantity z = exp(βµ) is denoted as fugacity.
So the expectation value of an observable can be calculated using Eq. (2.3)

as

〈A〉(β, µ) =
∑
N
∑∫ dωN A(ωN ) exp[−β(H(ωN )− µN)]∑
N
∑∫ dωN exp[−β(H(ωN )− µN)] =

= 1
Ξ(β, µ)

∑
N

∑∫
dωN A(ωN ) exp[−β(H(ωN )− µN)]

(2.17)

in the grandcanonical ensemble.
The thermodynamic potential Ω(β, µ) of the grandcanonical ensemble is

given by
Ω(β, µ) = − 1

β
log Ξ(β, µ). (2.18)

As in the canonical ensemble, all expectation values can be expressed in
terms of derivatives of this grandcanonical potential.

2.1.6 Phase transitions

A phase transition is the qualitative change of macroscopic equilibrium
quantities within a thermodynamic or statistical system if changing some
external parameters (generalized inverse temperature or coupling constants).
In this section we study phase transitions in more detail. We start by

introducing the order of a phase transition by examining derivatives of
the thermodynamic potential. For so-called continuous phase transitions,
one can observe a power-law behavior for the relevant observables near
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2.1. Statistical physics and phase transitions

the critical point, where the (critical) exponents are universal in the sense
that they do not depend on the microscopic details of the system. As a
last part we present renormalization group theory, which can be used for
understanding and deriving critical exponents and scaling relations between
different critical exponents.

Order of phase transitions

Historically there are different characterizations of phase transitions [227]:
The first categorization goes back to Ehrenfest and classifies a phase tran-
sition to be of n-th order, if all (n − 1)-th partial derivatives of the ther-
modynamic potential (e.g., free energy (2.13) for the canonical ensemble,
grand-potential (2.18) for the grandcanonical potential) with respect to
one of the intensive parameter (inverse temperature, chemical potential or
coupling constant) are continuous, and at least one n-th partial derivative
is not continuous. There are two main problems if using this classifica-
tion [227, 317]. On the one hand, no phase transition of third or higher
order was found in nature, and discriminating between a second- and a
higher-order phase transition is difficult in experiments as well as in sim-
ulations. On the other hand there are some transitions that do not fit
into the classification scheme, e.g., the famous logarithmic divergence in
the two-dimensional Ising model discovered by Onsager [320]. Therefore,
today one discriminates between discontinuous phase transitions, which
correspond to the first-order transitions in the Ehrenfest classification, and
continuous phase transitions, which comprise all higher-order transition in
terms of Ehrenfest and all divergent phase transitions. In Fig. 2.1 examples
for the two different types of phase transitions are displayed.
Continuous phase transitions are additionally characterized by the exis-

tence of an order parameter. This is an observable of the system that takes
values only at one side of the phase transition, but vanishes at the other. In
a spin system often the magnetization per spin m can be used as an order
parameter, which is 0 for β < βc (T > Tc), and has a non-vanishing value
for β > βc (T < Tc).

Scaling and critical exponents

An important property of continuous phase transitions is the occurrence of
critical exponents. One finds that near the critical temperature Tc = β−1

c
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Figure 2.1: Discontinuous and continuous phase transitions.
Qualitative plot of the two different types of phase transitions at βc, characterized
by an arbitrary thermodynamic potential Φ in terms of a generalized inverse
temperature or coupling constant β. The potential is section defined, where the
red solid curves correspond to β < βc, and the blue curves correspond to β > βc.
The dashed curves are the corresponding tangents at the critical point βc. (a-c)
Potential Φ, observable ∂Φ/∂β and susceptibility ∂2Φ/∂β2 for a first-order or
discontinuous phase transition. The thermodynamic potential Φ is continuous, but
not differentiable at the critical point, the first derivative of the thermodynamic
potential is discontinuous. (d-f) Potential, observable and susceptibility for a
second-order or continuous phase transition. The thermodynamic potential Φ is
simply differentiable at the critical point, the first derivative of the thermodynamic
potential is continuous, the second derivative is discontinuous.
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2.1. Statistical physics and phase transitions

observables O of the system behave as

〈O〉(t) ∝ tφ (1 + c · tε + . . . ) with t := T − Tc
Tc

, ε > 0, (2.19)

where t is denoted as reduced temperature [317]. Formally the critical
exponent can be defined using the limit [317]

φ± := lim
t→0±

log |〈O〉|(t)
log |t| , (2.20)

which includes also logarithmic divergences at the critical points, where one
gets φ = 0.

The critical exponents of different observables are not independent, they
can be related using the scaling relation (compare Ref. [317, Sec. 4.2.2]).
This relation is based on the conjecture that the free energy density near
the critical point is a generalized homogeneous function (GHF)

f(t, h) = λ−df(λxtt, λxhh), (2.21)

where d is the dimensionality of the system, t is again the reduced tempera-
ture and h is the order parameter of the continuous phase transition. The
parameter λ is an arbitrary scaling factor, and xt and xh are the scaling
exponents of t and h. The scaling relation can be explicitly derived for some
systems using renormalization group techniques (compare the following
section), see Ref. [237] for one of the first derivations for the Ising model.
Since all expectation values can be calculated from derivatives of the

thermodynamic potential, their critical exponents φ should be functions
only of the dimensionality d and the scaling exponents xt and xh. In the
usual Ising model one finds six observables with different critical exponents
(for β < βc, compare Ref. [317, Sec. 4.2.1]):

CH := −β2∂
2 logZ
∂β2

β≈βc−−−→ t−α heat capacity at H = 0 (2.22a)

M := 1
β

∂ logZ
∂H

β≈βc−−−→ tβ order parameter at H = 0 (2.22b)

χ := ∂M

∂H

β≈βc−−−→ t−γ mag. susceptibility at H = 0 (2.22c)

M := 1
β

∂ logZ
∂H

H≈0−−−→ H1/δ critical isotherm at β = βc (2.22d)

ξ
β≈βc−−−→ t−ν correlation length (2.22e)
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2. Markov chain Monte Carlo simulations

Note that these quantities are defined for the whole system, one can define
Eqs. (2.22a) to (2.22d) also per spin or per particle without changing the
critical exponents. Furthermore one introduces the critical exponent η of
the two-point correlation function as

g(r1, r2) ≈ |r1 − r2|−d+2−η (2.22f)

near the critical point. Note that the correlation length (2.22e) and the
two-point correlation function (2.22f) cannot be derived from the free energy
as simple as the other quantities, but it is possible in principle.4

One can then use the scaling equation (2.21) to eliminate xt and xh and
find connections between the different critical exponents [317, Sec. 4.2.1]

α+ 2β + γ = 2 Rushbrooke’s identity (2.23a)

δ − 1 = γ

β
Widom’s identity (2.23b)

2− α = dν Josephson’s identity (2.23c)
γ = ν(2− η) (2.23d)

Often also the Eqs. (2.23) are denoted as scaling equations.

Universality and the renormalization group

The critical exponents are conjectured to be universal, and depend only
on the dimensionality, the symmetry and the spin-dimensionality of the
system. This idea goes back to Fisher [171] (see also the work [196] by
Griffiths for some similar ideas), who first observed that within a system with
Hamiltonian H(ω) = H0(ω) + λH1(ω), where H1 breaks some symmetry
that H0 does posses, the critical exponents are not continuous in λ, but
take one value for λ = 0 and another constant value for λ 6= 1. There are
also experimental confirmations, one of the first can be found in Ref. [217],
where critical exponents of xenon, sulfur hexafluoride and carbon dioxide
are found to coincide with the critical exponents of the three-dimensional
Ising model.

4 For the ising model, one has to calculate the free energy F (β,Hi), where Hi is the
external field at spin i. Expectation values of the form 〈σiσj〉 can then be calculated
using the mixed derivatives

〈σiσj〉 ∝
∂

∂Hi

∂

∂Hj
logZ

∣∣∣∣
H0=···=HN−1=H

at equal external fields.
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2.1. Statistical physics and phase transitions

A very valuable tool to understand both universality and the scaling
relations is the renormalization group theory (see [172,173,424] for some
reviews), that was developed mainly by Kadanoff [236] and Wilson [423]
in the setup of statistical physics. The basic idea of the renormalization
group is the following: Consider a Hamiltonian H(~σ0, ~J0) that depends on
variables ~σ0 describing the state of the system and on coupling constants ~J0
that describe the interaction of the single states. Now reduce the number of
variables describing the system as ~σ0 → ~σ1, and find the coupling constants
~J1 so that the Hamiltonian H(~σ1, ~J1) still describes the system (e.g., using
block-spins as in Ref. [236]). This step can be repeated arbitrarily often,
which corresponds to a description of the system on larger and larger scales.
If one denotes by β( ~Jn) = ~Jn+1 the Beta function that maps the coupling
constants of one step to the coupling constants of the next step, a fixed point
~Jf (with β( ~Jf ) = ~Jf ) of β corresponds to a critical point of the system.

2.1.7 Ising model

In this section we will present some basic features of the Ising model on
integer lattices. This has three reasons: The first is that the Ising model
is the simplest model where one can observe (in two dimensions) a second-
order phase transition at finite temperature, which make it a prototype
model of statistical physics. The second reason is that the solution of the
one-dimensional Ising model using the transfer matrix method is very similar
to our approach to solve causal dynamical triangulations in Sec. 5.3. The
last reason is that we will later examine the Ising model coupled to lattice
triangulations in Secs. 3.4.4 and Sec. 3.4.6.
The Ising model was first defined in the PhD-thesis of Ernst Ising (see

Ref. [226] for a journal summary of the thesis) and solved analytically for
the one-dimensional case, where no sign of a phase transition could be
found. The analytical solution in two dimensions was found in 1944 by
Lars Onsager [320] for vanishing external field, he showed that there is
in fact a continuous phase transition at finite temperature. Neither the
two-dimensional case with external field nor a higher-dimensional case could
be solved analytically since then.

The usual definition of the lattice Ising model is the following: Consider a
d-dimensional integer lattice with periodic boundary conditions, and assign
to each lattice site i an integer spin σi = ±1, so that a state of the Ising
model is given by specifying the orientation of all spins, denoted by ~σ. The
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Hamiltonian of the model is given by

H(~σ) = −J
∑
〈i,j〉

σiσj −H
∑
i

σi (2.24)

The scalar quantities J and H are coupling constants, and the first sum
denotes the sum over all pairs 〈i, j〉 of next neighbors. Two sites of a
lattice are considered as next neighbors if all but one integer coordinates
are equal, and the remaining coordinate differs only by one, taking into
account periodic boundary conditions. This implies that in a d-dimensional
lattice every spin has 2 · d neighbors.

Transfer matrix solution of the one-dimensional Ising model

The one-dimensional Ising model can be solved in terms of the transfer matrix
method, for our solution we follow Sec. 2 in the nice book of Baxter [70].
Consider a chain of N spins σi, i = 0, . . . , N − 1 with periodic boundary
conditions, and identify σN := σ0. The Hamiltonian of the Ising model
(2.24) can then be written as

E(~σ) = −
N−1∑
i=0

(
Jσiσi+1 + H

2
∑
i

(σi + σi+1)
)
,

and the partition function Z(β,H) is given by

Z(β,H) =
∑

σ0=±1
· · ·

∑
σN−1=±1

exp
[
β
N−1∑
i=0

(
Jσiσi+1 + H

2
∑
i

(σi + σi+1)
)]

.

This can be rewritten as

Z(β,H) =
∑

σ0=±1
· · ·

∑
σN−1=±1

N−1∏
i=0

T (σi, σi+1),

with T defined as

T (σi, σi+1) := exp
[
β

(
Jσiσi+1 + H

2
∑
i

(σi + σi+1)
)]

.

Since σi = ±1, the function T can be interpreted as a 2× 2 transfer matrix

T (β,H) =
(
T1,1(β,H) T1,−1(β,H)
T−1,1(β,H) T−1,−1(β,H)

)
=
(

eβ(J+H) e−βJ
e−βJ eβ(J+H)

)
,
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and the partition function is given by

Z(β,H) =
∑

σ0=±1
· · ·

∑
σN−1=±1

Tσ0,σ1(β,H) · Tσ1,σ2(β,H) . . . TσN−1,σ0(β,H)

= Tr
[
T (β,H)N

]
,

the trace of the product of N copies of the transfer matrix.
Evaluating the trace in the diagonal basis of the transfer matrix results in

Z(β,H) = λ1(β,H)N + λ2(β,H)N ,

where λ1,2(β,H) are the two eigenvalues of T (β,H), w.l.o.g. we assume
that λ1 > λ2. These eigenvalues are given by

λ1,2(β,H) = exp(βJ) ·
[
cosh(βH)±

(
sinh2(βH) + e−4βH

)1/2
]
. (2.25)

Since λ2 < λ1, for N → ∞ the partition function becomes Z(β,H) =
λ1(β,H)N , and we get for the free energy per spin

βf(β,H) = − logZ(β,H) = βJ +log
[
cosh(βH) +

√
sinh2(βH) + e−4βH

]
.

(2.26)
One can see that the free energy is composed from analytic functions, which
are smooth wherever there are defined. The argument of the logarithm is
always bigger than 1, since cosh(βH) ≥ 1, and the argument of the square
root is always greater or equal to 0. So the free energy or their derivatives
have no discontinuities, and the one-dimensional Ising-model does not show
a phase transition.
Furthermore, one can calculate the magnetization per spin

m(β,H) = ∂

∂H
f(β,H) = −

sinh(βH) + sinh(βH) cosh(βH)√
sinh2(βH)+e−4βH

cosh(βH) +
√

sinh2(βH) + e−4βH
(2.27)

and see that m(β,H = 0) = 0 for finite temperature, so that there is no
spontaneous magnetization in the one-dimensional model.

Onsager’s solution of the two-dimensional Ising model

There are several possibilities to solve the two-dimensional Ising model,
the first one was given by Lars Onsager in 1944 [320], which analytically
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calculated the free energy of the two-dimensional Ising model in the absence
of an external field (H = 0) to be

f(β,H = 0) = 1
2π

∫ π

0
dϑ log

[
2
(

cosh(2βJ)2 + 1
k

√
1 + k2 − 2k cos(2ϑ)

)]
with k = (sinh βJ)2,

(2.28)

where we used the formulation of Ref. [70, Sec. 7.12], which we will follow
now closely to derive the value of the critical temperature.
One can find the singular part of the free energy [70, Eq. (7.12.7)]

βfsingular = (1 + k)(1− k)2

2πk cosh2(2βJ)
log

∣∣∣∣1 + k

1− k

∣∣∣∣ , (2.29)

which has a non-analytic point only at k = 1, which implies

Jβc = log(1 +
√

2)
2 ≈ 0.44069 (2.30)

for the critical temperature of the two-dimensional Ising model. Expanding
the singular part (2.29) of the free energy (2.28) near the critical temperature
k ≈ 1, which is equivalent to the reduced temperature t ≈ 0, yields

fs(t) ∝ t2 log |t| ⇒ cs(t) ∝ log |t| (2.31)

for the singular part of the heat capacity (2.22a) per spin, which implies
the critical exponent α = 0.

Note that the free energy (2.28) was calculated only for the case of H = 0
in Ref. [320]. Until now it was not possible to calculate the functional
dependency of f(β,H) for arbitrary H. But it is possible to calculate the
spontaneous magnetization (which is the order parameter (2.22b)) given by
the derivative of f with respect to the external field H at H = 0, yielding

m = (1− k2)1/8 k≈1−−→ k1/4 ≈ t1/8

near the critical temperature for β < βc, which implies the critical exponent
β = 1/8. This result was given by Lars Onsager on a conference in 1949 [321],
a complete proof was published by C. N. Yang in 1952 [429].
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2.1. Statistical physics and phase transitions

Mean-field solution of the Ising model

In the last section we saw that the Ising-model is hard to solve even in the
two-dimensional case, and until now no analytical solution was found in three
or more dimensions. So to derive properties of these higher-dimensional
models, on has to use either approximate or numerical methods. In this
section we present the mean field solution of the Ising model in arbitrary
dimensions, following closely Ref. [70, Sec. 2]. In the standard Ising model,
each spin interacts with a number q of neighbors (q = 2 for the standard
one-dimensional model, and d = 4 for the standard two-dimensional model).
For the mean field model one assumes that the spins interacts with all the
other spins, but with a reduced interaction constant, so that the Hamiltonian
becomes

E(~σ) := qJ

2
∑
i

σi
1

N − 1
∑
j 6=i

σj −H
∑
i

σi, (2.32)

where one can see that each spin interacts with the average field of all the
other spins, hence the name mean field. One can re-express this Hamiltonian
in terms of the total magnetization M of all the spins, yielding

E(~σ) = qJ

2
M2 −N
N − 1 −HM

This is a great simplification, because the magnetization itself depends only
on the number of spins pointing in each direction, so one can derive the
partition function and give the following self-consistent equation for the
magnetization m = M/N per particle,

m = tanh(βqJm+ βH), (2.33)

which allows also to express the free energy f(β,M) as a function of β and
M , and therewith also as a function f(β,M) of β and H.
One cannot solve (2.33) for m in terms of analytical functions. But it is

possible to calculate

H(m) = −qJm+ 1
β

artanh(m),

which is invertible for βqJ ≤ 1, for βqJ > 1 one finds spontaneous mag-
netization. So one can conclude that the critical temperature is given
by

βc = 1
qJ
, (2.34)
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2. Markov chain Monte Carlo simulations

and by expanding (2.33) or the free energy for β ≈ βc one can find the
critical exponents

α = 0 β = 1
2 γ = 1 δ = 3 (2.35)
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2.2. Markov chain Monte Carlo simulations

2.2 Markov chain Monte Carlo simulations

The phrase Monte Carlo simulations is used widely in the area of com-
putational physics. It is used as a buzzword for describing simulational
setups where (pseudo-)random numbers or randomness in general are used.
They can e.g., be used in experimental particle physics or in astrophysics
for a better understanding of the used detectors. The name Monte Carlo
simulations was mainly embossed by the 1949 paper of Nicholas Metropolis
and Stanislaw Ulam [292]
In this thesis and in this section we restrict ourselves to Markov chain

Monte Carlo (MCMC) simulations, which sample from a population of
states according to some probability distribution by accepting or reject-
ing elementary moves that relate all states of the population. Important
textbooks about MCMC simulations include [86,269,315]. We start by de-
scribing the Metropolis algorithm, which is the oldest and the most popular
MCMC simulation, and afterwards present the Wang-Landau algorithm,
which is the mainly used algorithm throughout the thesis. After presenting
some other important algorithms, we describe how to analyse the statistical
error of MCMC simulations, and conclude with some remarks about phase
transitions in MCMC simulations.

2.2.1 The Metropolis MCMC algorithm

The Metropolis algorithm was proposed in the 1953 paper by Nicholas
Metropolis and the married couples Arianna and Marshall Rosenbluth as
well as Augusta and Edward Teller. It was originally used in the Los
Alamos development of the Hydrogen bomb [216] and describes a method
for sampling states according to a Boltzmann distribution. The idea was
later generalized in 1970 by Hastings [214] for arbitrary target distributions,
and the Metropolis algorithm is known as Metropolis-Hastings algorithm in
mathematics, sometimes only as Hastings-algorithm.
In this section the basic principles of the Metropolis algorithm will be

derived, following closely [315] with slight generalizations. These are also
the foundations of all other Markov chain Monte Carlo algorithms covered
in this book.

Simple and importance sampling

Let Ω be the phase space of an arbitrary system, and denote by ω ∈ Ω
the single possible states of the system. Consider a canonical ensemble at
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2. Markov chain Monte Carlo simulations

inverse temperature β, so that the expectation value of an observable A can
be calculated according to

〈A〉(β) =
∑
ω∈ΩA(ω) exp(−βE(ω))∑

ω∈Ω exp(−βE(ω)) ,

where the denominator can is the partition function Z(β) of the system.
Since one usually deals with very large systems, and |Ω| normally scales
exponentially with the system size, enumerating all microstates ω ∈ Ω and
evaluating the observable at each microstate is impossible. An approximation
is to use not the whole set Ω of microstates to calculate the canonical
expectation value, but only a subset {ω1, . . . , ωk} ⊂ Ω of k microstates ωi,
so that p(ωi) is the probability of choosing the microstate ωi from Ω. We
then get

〈A〉(β) ≈
∑k
i=1A(ωi)p(ωi) exp(−βE(ωi))∑k

i=1 p(ωi) exp(−βE(ωi))
(2.36)

as an approximation for the actual expectation value.
The important question is how to select the test microstates ωi from the

huge set Ω, or precisely, which probabilities p(ωi) to choose. The simplest
possibility is to choose the ωi uniformly distributed, so that p(ωi) = |Ω|−1,
which simplifies the approximation (2.36) of the expectation values to

〈A〉(β) ≈
∑k
i=1A(ωi) exp(−βE(ωi))∑k

i=1 exp(−βE(ωi))
. (2.37)

Using this uniform distribution (denoted often as simple sampling) one
expects that most chosen microstates have a very low Boltzmann weight
exp(−βE(ωi)) and do not contribute at all to the sums in the expectation
values. This is bad, because either the approximation for the expectation
value is poor, or one has to sample a number of microstates that is in the
range of the total number of microstates, which will lead to the original
problem.
A better choice is to use

p(ωi) = exp(−β(ωi))∑
ω∈Ω exp(−β(ω)) = exp(−β(ωi))

Z(β) , (2.38)

where every states is selected with its Boltzmann weight, which is also
denoted as importance sampling. Using the weights (2.38) in Eq. (2.36)
leads to the simple formula

〈A〉(β) = 1
k

k∑
i=1

A(ωi).
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So the expectation value of an observables just becomes the arithmetic mean
of the observables evaluated at the chosen microstates, and in contrast to
simple sampling, the states that are chosen are the states that contribute
most to the expectation value. But the simplicity of this equation is a
delusion: Until know we have no constructive algorithm for choosing the
microstates according to Eq. (2.38), and even worse, we cannot calculate
the weight of one certain microstate, because we would need to calculate
the partition function therefor.

Markov chains

The idea to solve the problems brought up in the previous section is not to
generate the states ωi with probability p(ωi) from scratch, but to create a
sequence of states, where each one is constructed from the former one, so
that the probability of a state ωi to occur in this sequence is p(ωi).
The mathematical tool that is used for this purpose is called Markov

chain:
Definition 2.1 (Markov chain):
Let Xj with j ∈ N be a sequence of random variables that take values
in a countable set of microstates Ω. The sequence Xj is called a
Markov chain of order m, if

P
(
Xj+1 = ωij+1 | Xj = ωij , . . . X0 = ωi0

)
!=P
(
Xj+1 = ωij+1 | Xj = ωij , . . . Xj−m+1 = ωij−m+1

)
which means that the probability for the random variable Xj+1 only
depends on the values of the previous m random variables.
For m = 1, the transition probabilities for ωk → ωl, ωk,l ∈ Ω are

defined as

P (ωk → ωl)(j) := P (Xj+1 = ωl | Xj = ωk) ,

they can be gathered in the transition matrix (T )(j)
kl = P (ωk → ωl)(j).

In the following we only deal with Markov chains of order 1 with stationary
or time-independent transition probabilities, i.e., P (ωk → ωl) does not
depend on the position j in the Markov chain (so we can omit the index (j)
in the notation).
The transition probabilities must fulfill the normalization condition∑

ωl∈Ω
P (ωk → ωl) = 1, (2.39)
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which intuitively means that being at state ωk another state ωl ∈ Ω has to
be reached in the next step. Note that P (ωk → ωk) 6= 0 is a valid choice
(which will be extensively made in the next sections), so it is possible to
stay at the same state in one step of the Markov chain.

Another demand for the Markov chain is ergodicity, that means that every
state ω ∈ Ω can be reached by every other microstate in a finite number of
steps. Mathematically such a Markov chain is denoted as irreducible:

Definition 2.2 (Irreducibility of Markov chains):
Let Xj with j ∈ N be a Markov chain that takes values Ω. The
Markov chain is called irreducible if for every pair ωk, ωl ∈ Ω there is
a j and ωi1 , . . . , ωij ∈ Ω so that

P (ωk → ωi1) · P (ωi1 → ωi2) · · · · · P (ωij → ωl) 6= 0

For the application for calculating statistical expectation values ergodicity
is strictly necessary, otherwise regions of the phase space that cannot
be accessed within the Markov chain would not be considered for the
calculations of the expectation values.

Detailed balance

For applying the Markov chains to generate states for calculating the
statistical expectation values, it is necessary to construct a Markov chain
such that the probability p(ω) for a state occurring in the Markov chain
equals a given probability distribution, e.g., the Boltzmann weight (2.38).
This can only be achieved if the Markov chain is in equilibrium, i.e. the
probability for going to a state ω must equal the probability for leaving this
state: ∑

ωj∈Ω
p(ωj)P (ωj → ωi) =

∑
ωj∈Ω

p(ωi)P (ωi → ωj) = p(ωi) (2.40)

where in the second part we used the normalization condition (2.39) for the
transition probabilities. This relation is often denoted as (global) balance
condition. Using a vectorized notation with (~p)i = p(ωi), the balance
condition can be formulated as T t~p = ~p. This means that T has to be
chosen such that ~p is an eigenvector of T t.
Demanding only the global balance condition (2.40) on the one hand

does not ensure a time-reversibility, and on the other hand can lead to non-
trivial cycles in the Markov chain. So one usually introduces the detailed
balance condition, which is stronger then the balance condition and demands
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2.2. Markov chain Monte Carlo simulations

that probability for leaving a state ω to a specific state ω′ must equal the
probability for entering the microstate ω from ω′

p(ω) · P (ω → ω′) = p(ω′)→ P (ω′ → ω). (2.41)

Note that the detailed balance conditions solves the mentioned problems of
the global balance condition, especially the time reversal symmetry.

Selection and acceptance probabilities

A common choice is to split the transition probability P (ωi → ωj) into

P (ωi → ωj) = S(ωi → ωj) ·A(ωi → ωj)

where S(ωi → ωj) is the probability for selecting a step ωi → ωj if being
at state ωi, and A(ωi → ωj) is the probability for accepting this step. This
split is motivated due to the usual implementation of a MCMC simulation,
where the possible steps are selected according to some distribution and
accepted or rejected afterwards.
Using this split in the detailed balance condition (2.41) results in

S(ωi → ωj) ·A(ωi → ωj)
S(ωj → ωi) ·A(ωj → ωi)

= p(ωj)
p(ωi)

.

The selection probability S(ωi → ωj) depends on the considered system and
the way possible steps are proposed. So the detailed balance condition fixes
the ratio

A(ωi → ωj)
A(ωj → ωi)

= p(ωj)
p(ωi)

· S(ωj → ωi)
S(ωi → ωj)

(2.42)

of the acceptance probabilities. Since only the ratio is determined by the
detailed balance condition, there is some freedom for choosing the actual
acceptance probability.
The following choice was proposed by Metropolis and coworkers in Ref.

[291]

A(ωi → ωj) = min
(

1, p(ωj)
p(ωi)

· S(ωj → ωi)
S(ωi → ωj)

)
. (2.43)

It can be easily verified that this acceptance probability fulfills detailed
balance, since if considering A(ωj → ωi), the fraction on the right hand side
becomes it reciprocal, and either the fraction or its reciprocal are greater
than one. In the special case S(ωi → ωj) = S(ωj → ωi) and for Boltzmann
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Figure 2.2: Comparison of
Metropolis (2.44) (solid) and
Glauber (2.46) (dashed) accep-
tance probabilities in terms of the
energy difference ∆E.

weights one gets the actual form of the choice of the acceptance probability
presented in Ref. [291],

A(ωi → ωj) = min (1, exp(−β∆Eij)) , (2.44)

where ∆Eij := E(ωj)− E(ωi) is the energy difference of the two states ωi
and ωj .
Another possibility was proposed by R. J. Glauber 1963 in Ref. [188],

where the acceptance probability is set to

A(ωi → ωj) = p(ωj)S(ωj → ωi)
p(ωi)S(ωi → ωj) + p(ωj)S(ωj → ωi)

= p(ωj)
p(ωi)S(ωi→ωj)

S(ωj→ωi) + p(ωj)
.

(2.45)

The original form in Ref. [188] was proposed for symmetric selection proba-
bilities and Boltzmann weights, so that

A(ωi → ωj) = exp(−βE(ωj))
exp(−βE(ωi)) + exp(−βE(ωj))

= 1
1 + exp(−β∆E) .

(2.46)
The Glauber acceptance probabilities (2.45) or (2.46) are often used for
examining (quasi-)dynamics of the considered systems. In Fig. 2.2 one can
find a comparison between the Metropolis (2.44) and the Glauber (2.46)
acceptance probabilities in terms of the normalized energy difference β∆E.
The Metropolis acceptance probability is always higher than the Glauber
one, which means that the system is transversed more often, so one should
prefer the former one for calculating equilibrium properties.

2.2.2 The Wang-Landau algorithm

Despite the Metropolis algorithm is the de facto standard algorithm for
performing Markov chain Monte Carlo simulations, it comes with some
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Figure 2.3: Metropolis (a) and
Wang-Landau (b) algorithm for a
two-dimensional 8×8 Ising model.
The specific magnetization m is
displayed in terms of the simula-
tion sweeps that were done since
the initial measurement. The
Metropolis-data was recorded at
inverse temperature β = 0.5 > βc.
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disadvantages. The acceptance probability (2.44) can be very low in cases
of low temperature (β →∞) or high energy differences between the states
(∆E � 1), so a lot of computation time is wasted rejecting those steps.
There are modifications that can cure these problems, e.g. using a continuous
time algorithm for the case of low temperatures or a replica exchange for the
high energy barriers, both are described later. But also these modifications
show problems near discontinuous phase transitions, because in general the
states that constitute the two different phases are separated by states that
are rarely sampled, so the system can be trapped effectively in one of the
two phases for long time. Fig. 2.3a shows the specific magnetization for
an 8 × 8 Ising ferromagnet at β > βc and H = 0, where a discontinuous
transition occurs, in terms of the Metropolis simulation time. The specific
magnetization of the system is near one of the extremal values for long
simulation time, until it jumps to the other extremal value, while the jumps
would be rarer if one increase the system sizes.

In contrast to this behavior, in Fig. 2.3 a similar measurement is done
for the Wang-Landau algorithm, which will be described in this section,
and shows that the system rapidly jumps between the different extremal
magnetizations and traverses the whole phase space. For this section we
follow the original papers [407, 407] by Fugao Wang and David Landau,
first explaining flat histogram sampling in general, then proceeding to the
actual calculation of the density of states (DOS) needed for flat sampling,
and concluding with some remarks about the convergence behavior of the
Wang-Landau algorithm.

Flat histogram sampling

A possibility to cure the problems of the Metropolis-like algorithms is called
flat histogram sampling. Recall that the canonical partition function can be
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formulated in terms of the density of states g(E) as

Z(β) =
∑
E

g(E) exp(−βE),

and observables A that are only functions of the energy can be calculated
by

〈A〉(β) = 1
Z(β)

∑
E

A(E)g(E) exp(−βE).

Even canonical expectation values of observables that do depend on the
actual system can be calculated if the microcanonical expectation values
are known, by

〈A〉(β) = 1
Z

∑
E

〈A〉mc(E)g(E) exp(−βE). (2.47)

Flat histogram Monte Carlo algorithms introduce weights for the micro-
states that are no longer the Boltzmann factor, but

p(ω) ∝ 1
g [E(ω)] . (2.48)

So the ratio of the acceptance probabilities (2.42) becomes

A(ωi → ωj)
A(ωj → ωi)

= g[E(ωi)]
g[E(ωj)]

· S(ωj → ωi)
S(ωi → ωj)

,

which can be incorporated by the Metropolis-like choice

A(ωi → ωj) = min
(

1, g[E(ωi)]
g[E(ωj)]

· S(ωj → ωi)
S(ωi → ωj)

)
. (2.49)

Using this weights for the microstates respectively these acceptance proba-
bilities the probability for being in a macrostate is

p(E) = g(E) · p(ω|E) ∝ g(E) · g(E)−1 = const.,

therefore also the name flat histogram sampling , because a histogram that
records the sampled macrostates (energies) is flat.
The calculation of microcanonical expectation values 〈A〉mc needed for

the calculations in Eq. (2.47) can also be done in the setup of flat histogram
sampling. During flat sampling one records the histogram H(E,A), which
counts the visits of the algorithm to states with energy E and observable
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value A. The microcanonical expectation values can then be estimated
using

〈A〉mc(E) =
∑
AA ·H(E,A)∑
AH(E,A) . (2.50)

Another possibility for including canonical expectation values of general
observables is to use an extended density of states g(E,A) [267,427].

Determining the density of states

Implementing the weights (2.48) or the acceptance probabilities (2.49) de-
pends on the knowledge of the DOS, but in most physical systems the
DOS is a prior unknown. So the actual problem is to numerically calculate
the density of states. F. Wang and D. P. Landau proposed the following
algorithm for calculating the DOS in Refs. [406, 407]: Start with an ini-
tial estimation of the density of states, which can be g(E) = 1∀E if no
information about the system is known or should be used in the simulation.
Propose steps and accept or reject them with the multicanonical acceptance
probability (2.49), and alter the DOS at the energy E after a step by

g′(E) = m · g(E),

independent on whether the step was actually executed, where 0 < m < 1 is
denoted as modification factor. Additionally update an incidence histogram
H ′(E) = H(E) + 1 that is initialized with H(E) = 0 for all E and that
counts the number of visits to the macrostate with energy E. After a certain
number of steps check whether the incidence histogram is flat

flatH(E) := minH(E)
avgH(E) ≥ f with 0 < f < 1. (2.51)

If this is the case, reset the incidence counter H(E) and reduce the modifi-
cation factor according to

m′ = mδm with 0 < δm < 1.

The choice used in Refs. [406,407] and in many other applications is f = 0.8
and δm = 0.9. One starts with a modification factor of minitial = exp(1)
and stops at a modification factor between mfinal = exp

(
10−6) and mfinal =

exp
(
10−12).

A small technical remark: The number of microstates in different macro-
states can differ by several order of magnitudes, so due to limited accuracy
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storing the DOS directly on a computer is difficult. One rather works with
the microcanonical entropy S(E) = log g(E), which is the logarithm of the
density of states, and performs the modification

log g′(E) = log g(E) + logm

during the simulation.
Note that the Wang-Landau algorithm has two problems: On the one

hand the sequence of generated states is not a Markov chain, because the
acceptance probabilities depend on the DOS, which contains information
about all states that were visited before. On the other hand, it does not
fulfill detailed balance, because the density of states are altered in each step:
Suppose that we have symmetric selection probabilities, and consider a step
ωi → ωj with g(E(ωi)) > g(E(ωj)). The acceptance probability for the step
is

A(ωi → ωj) = min
(

1, g(E(ωi))
g(E(ωj))

)
= 1,

so the step will be executed and the DOS will be multiplied with m at
E(ω2). Then the acceptance probability for the inverse step becomes

A(ωj → ωi) = min
(

1, m · g(E(ωj))
g(E(ωi))

)
= m · g(E(ωj))

g(E(ωi))
.

So detailed balance is not fulfilled, but the modified detailed balance condi-
tion

p(ωi)P (ωi → ωj) = 1
m
p(ωj)P (ωj → ωi)

Especially at the end of the simulation m ≈ 1, so the violation of detailed
balance asymptotically vanishes. Despite these two problems the Wang-
Landau algorithm is known to yield correct results for all tested simulational
setups.

Saturation of error and the 1/t-algorithm

Although all simulation results of the Wang-Landau algorithm are consistent
with known comparison data, one still has to answer whether the Wang-
Landau algorithm converges towards the actual density of states in general.
It can be shown analytical that also Markov chain Monte Carlo algorithms
that fulfill detailed balance only asymptotically converge under some weak
assumptions that the Wang-Landau algorithm fulfills, and that the obtained
error scales as O(t−1) with t being the simulation time (proportional to the
number of proposed steps) [149].
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An important question about Wang-Landau simulation is to quantify
the systematic and the statistical error. Consider e.g. Fig. 2.4, where the
evolution of a Wang-Landau sampling in terms of the modification factor
m for an Ising chain with 32 spins and periodic boundary conditions is
displayed for different choices of the flatness f and the modification factor
multiplier δm. In this Figure the systematic and the statistical error can be
found: In the Subfigs. 2.4a-c the difference of the calculated microcanonical
entropy S(E1) and its exact value are displayed for the first excited state.
One can see that this difference, which is a measure for the systematic
error, saturates for a small enough modification factor, and it decreases
for larger f and δm. The same is true for the statistical error displayed in
Subfigs. 2.4d-f, where we used the relative width of the obtained distribution
for S(E) as a measure for the relative error, simultaneously of course the
simulation time increases.

There are also several proposals to alter the flatness criterion (2.51). The
histogram H(E) of visited energies can be considered flat if H(E) ≥ H0,
which means that all energy bins have visited at least H0 times. Under
the condition that one can neglect the autocorrelation of adjacent Markov
chain members (which can be done by doing a high enough number of
steps that are not recorded in the histogram or the DOS), it can be shown
analytically that the algorithm then converges, and that the statistical
error scales as (logm)−1/2 [432]. A similar result was found numerically in
Ref. [273], additionally it was shown that the obtained error is determined
by the fluctuations of the energy histogram H(E). Another alternation of
the originally flatness criterion (2.51) was proposed in Refs. [72,73]. Here
the modification factor first scaled as in the original algorithm, but once
mi < t−1 is valid for the modification factor, where t is the simulation
time, one uses a modification factor m(t) = t−1. Numerical simulations and
analytical approximations performed in Refs. [72, 73] suggest that this can
reduce the saturation of errors. In Fig. 2.5 one can see a visualization of
the choice of the modification factor in this algorithm. Instead of using
some of these proposed algorithm, in the course of this thesis we choose the
parameter δm and the flatness criterion very carefully, so that we get small
statistical and total errors. The effect of statistical error can be reduced
furthermore by averaging over several independent simulation runs.

2.2.3 Other MCMC algorithms

In the previous section we discussed the Metropolis and the Wang-Landau
algorithm, which are the two Markov chain Monte Carlo (MCMC) algorithms
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Figure 2.4: Total and statistical errors in Wang-Landau simulations.
Errors in Wang-Landau sampling of an Ising chain consisting of 32 spins for different
values of the flatness f and for the modification factor multiplier δm in terms of
the final modification factor mf for initial modification factor mi = exp(1). The
obtained density of states was normalized with respect to the ground state bin,
the presented results are averaged over 400 independent simulations. (a-c) Total
error measured by the absolute difference of the calculated microcanonical entropy
S(E1) and its exact value Sexact(E1) = (L− 1)L/2 for the first excited state for
f = 0.7 (a), f = 0.8 (b) and f = 0.9 (c) in terms of mf . (d-f, left axis) Statistical
error measured by the standard deviation σ the distributions obtained for S(E)
normalized with the mean value and averaged over all energy bins of the DOS. (d-f,
right axis) Average of sweeps s necessary for reaching mf .
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Figure 2.5: Modification factors in standard Wang-Landau sampling and
1/t-sampling.
Choice of the modification factor in the 1/t-version of Wang-Landau sampling
introduced by Refs. [72, 73]. The logarithm logm of the modification factor is
plotted with respect to the simulation stage i of the Wang-Landau simulation, where
the i-th stage means the stage of the classical simulation where the modification
factor (δm)i (solid lines) is used. For comparing the two modification factors,
one assumes that in each stage of the simulation ∆t sweeps are needed to reach
flatness. The 1/t version of Wang-Landau sampling uses the standard modification
factors logmi = (δm)i as long as (δm)i > t−1 (solid lines), afterwards it uses the
modification factor logm = 1/t (dashed lines).

that will be used throughout this thesis. Of course a large number of other
MCMC algorithms has been developed since the original paper of Metropolis
and coworkers [291], many of them designed for dealing with only some
special systems. For completeness we present in this section some other
important all-purpose algorithms, which will also give some insight about
the similarities and differences of Markov chain Monte Carlo algorithms
that can be used for developing reusable software for doing Markov chain
Monte Carlo simulations on the computer (compare Sec. 6.3.1).

Parallel Tempering

The standard Metropolis algorithm as presented in Sec. 2.2.1 has the dis-
advantage that energy barriers cannot be crossed in a suitable simulation
time if the product β ·∆E becomes large. So for large β, which corresponds
to high temperature, ergodicity can effectively break, because the system
cannot access all possible states in a limited computer time.
One possible solution to this problem is using a modification of the

Metropolis algorithm which is known as replica exchange or parallel tem-
pering, which was first presented in Ref. [382]. For its presentation we
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follow Ref. [85, Sec. 6.3] and Ref. [223]. The idea of the algorithm is to
perform not one Metropolis simulation at one inverse temperature β, but n
Metropolis simulations with different inverse temperatures βi, 1 ≤ i ≤ n.
Additionally one allows for an exchange of the inverse temperatures between
the different systems. Intuitively this solves the problem of high energy
barriers at low temperatures by increasing the temperature of the system
(which allows to overcome the barrier) and lowering it afterwards due to
the possible exchange of temperatures.
By introducing this parallelization of the system, the detailed balance

condition becomes technically slightly more complicated. Consider for
example a simulation with two systems at different temperatures. The
weight of the complete system

p(ω(1)
i , ω

(2)
i ) = p1(ω(1)

i )p2(ω(2)
i )

is decomposable into the weights of the single system, which are in general
different for the two systems due to the different inverse temperature. The
detailed balance condition now reads

p(ω(1)
i , ω

(2)
i )P (ω(1)

i → ω
(1)
j , ω

(2)
i → ω

(2)
j ) =

=p(ω(1)
j , ω

(2)
j )P (ω(1)

j → ω
(1)
i , ω

(2)
j → ω

(2)
i ).

(2.52)

For ω(1)
i = ω

(1)
j as well as for ω(2)

i = ω
(2)
j , which are the steps in the single

systems, using the standard acceptance probabilities for the respective
inverse temperatures fulfills the two-system detailed balance condition
(2.52) if the one-system detailed balance condition (2.41) is fulfilled. The
remaining step is the interchange of the temperature between to replicas
(which is equivalent with the interchange of two replicas), where the ratio
of the transition probabilities has to fulfill

P (ω(1) → ω(2), ω(2) → ω(1))
P (ω(2) → ω(1), ω(1) → ω(2))

= p(ω(2), ω(1))
p(ω(1), ω(2))

= p1(ω(2))p2(ω(1))
p1(ω(1))p2(ω(2))

As for the standard steps we can split this probability into a selection
and an acceptance probability. The selection probability for selecting two
neighboring inverse temperatures to change is always 1/(n − 1), so that
the ratio of the selection probabilities is always 1. For the acceptance
probabilities of the interchange step to fulfill detailed balance, one can use
the standard Metropolis choice

A(ω(1) → ω(2), ω(2) → ω(1)) = min
(

1, p1(ω(2))p2(ω(1))
p1(ω(1))p2(ω(2))

)
, (2.53)
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which for Boltzmann weights becomes

A(ω(1) → ω(2), ω(2) → ω(1)) = min
(

1, e−β1E(ω(2)) · e−β2E(ω(1))

e−β1E(ω(1)) · e−β2E(ω(2))

)
= min (1, exp(∆β ·∆E)) ,

(2.54)

where ∆β := β2 − β1 is the difference of the inverse temperatures, and
∆E = E(ω(2))− E(ω(1)) is the energy difference of the two replicas. Note
that on average for β2 > β1 the energies are E(ω(2)) < E(ω(2)), so that
∆β ·∆E < 0.

A possibility for optimization of a replica exchange is the choice of the
different temperatures used. Suppose one is interested in the interval
[βmin, βmax] of inverse temperatures, and wants to perform k independent
simulations? The first possibility is to choose the inverse temperatures
such that the rates of temperature exchanges are equal for all neighboring
pairs of temperatures. This ensures that there is no small or even vanishing
exchange rate between two neighboring temperatures, which would imply
that some replicas get stuck in one part of the temperature ranges. This
can be done iteratively by measuring the exchange rates and adopting the
set of inverse temperatures as described e.g. in Ref. [85].

The second possibility is to optimize the frequency of the replicas transvers-
ing the temperature range, as described in [241]. The time of a transverse
of a replica is given by the time (measured e.g. in the number of replica ex-
changes tried) a certain replica of the system needs to go from one boundary
of the energy range (e.g. βmin) to the other boundary (e.g. βmax).

Compared to the standard single Metropolis algorithm, parallel tempering
can be used to overcome the problem of getting stuck in local minima for
small temperatures. But as the Metropolis algorithm it has also a problems
if simulating near discontinuous phase transitions. For this phase transitions
the first derivatives of the partition function are discontinuous, so this is
the case also for the energy. So the acceptance probability for the exchange
of the replicas with temperatures slightly above and below the critical
temperature then goes to zero, because there is a finite energy difference
that grows with increasing system size. So one has either to increase the
number of temperatures near the phase transition, or has to deal with very
small acceptance probabilities for the replica exchanges, both increase the
necessary simulation time.

The presented replica exchange generalization of the Metropolis algorithm
can also be applied to other Monte Carlo algorithms, e.g., the Wang-Landau
algorithm [404]. In this setup the desired energy range is split into n
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overlapping pieces, and calculates within each of the parallel simulation
the DOS for one of the energy ranges. The replica exchange step between
systems in neighboring energy ranges can take place if the energy of both
systems is in the overlap of both ranges.

Continuous time Monte Carlo

Even in the absence of large energy barriers, low temperatures can lead
to problems in the standard Metropolis algorithm. This is due to the
acceptance probabilities (2.44) becoming small, leading to the majority of
steps being rejected.
A solution to this problem, the so-called N-fold way algorithm, was

proposed in Ref. [99]. Alternative names are continuous time or rejection
free Monte Carlo. The idea of this algorithm is to calculate the average
number of steps a standard Metropolis algorithm would need to leave the
present state of the system, in fact execute a step without the possibility of
rejection, and then to book-keep the calculated time.
For calculating the average time the system would stay in a state ωi,

one has to calculate the self-transition probability P (ωi → ωi), which is
the probability for staying at the microstate ωi within one step. The
probability to be still at state ωi after t steps in then given by P (ωi →
ωi)t = exp(t · logP (ωi → ωi)), which is an exponential decay. The average
number of steps τ the algorithms stays in ωi can then be simply read of the
exponential and is

τ = − 1
logP (ωi → ωi)

= − 1

log
(

1− ∑
j 6=i

P (ωi → ωj)
) ≈ 1∑

j 6=i
P (ωi → ωj)

.

The step that actually will be executed can then be selected from the set of
all possible steps ωi → ωj , selected proportional to P (ωi → ωj).

This algorithm is suitable for low temperatures and low acceptance rates.
For high temperatures the average time the algorithm stays in a certain state
is small, and the bottleneck is to calculate all the transition probabilities,
which dramatically slows down the algorithm.

As for the replica exchange method, one can also use the continuous
time formulation in other algorithms, e.g., in Wang-Landau sampling [364].
Here also the average number τ of steps the algorithm stays in the actual
state is calculated, one then uses g′(E) = g(E) · mτ for the DOS and
H ′(E) = H(E) + τ for the incidence histogram.
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Transition matrix Monte Carlo

For the presentation of the transition matrix Monte Carlo algorithm we
follow closely Ref. [408]. The idea of transition matrix Monte Carlo is to
reformulate the transition probability P (ω1 → ω2) between two microstates
ω1 and ω2 in terms of a transition matrix T (E1 → E2) which encodes
the probability of a transition between two macrostates E1 and E2. As a
starting point, we sum the detailed balance condition (2.41) over the whole
macrostates E1 and E2∑
ω1∈Ω

δE(ω1),E1

∑
ω2∈Ω

δE(ω2),E2 [p(ω1)P (ω1 → ω2)− p(ω2)P (ω2 → ω1)] = 0

The next step is to define the stochastic transition matrix

T (E1 → E2) := 1
g(E1)

∑
ω1,ω2∈Ω

P (ω1 → ω2)δE(ω1),E1δE(ω2),E2 , (2.55)

where the density of states (DOS) g(E) is the number of microstates in the
macrostate E. This leads to the macrostate detailed balance condition

g(E1)p(E1)T (E1 → E2) = g(E2)p(E2)T (E2 → E1)
H(E1)T (E1 → E2) = H(E2)T (E2 → E1),

(2.56)

where by abuse of notation p(E) is defined by p(ω(E)) =: p(E), and where
H(E) := p(E) · g(E) is the probability to find a macrostate E in the
simulation. Using the macrostate detailed balance condition (2.56) on three
energy levels that are connected by elementary moves one gets the so-called
TTT-rule

T (E1 → E2)T (E2 → E3)T (E3 → E1)
= T (E1 → E3)T (E3 → E2)T (E2 → E1),

(2.57)

which can be used as a measure for reached convergence of the transfer
matrix that was calculated numerically.
Due to P (ω1 → ω2) being a stochastic matrix, also T (E1 → E2) is

a stochastic matrix and has an eigenvalue λ = 1, with corresponding
eigenvector ∑

E1

H(E1)T (E1 → E2) = H(E2). (2.58)

This can be used to extract g(E) from the transition matrix (2.55) by
diagonalization, but typically this is numerically unstable if the transition
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matrix T is known only up to statistical errors. So in fact one uses the
macrostate detailed balance condition (2.56) to calculate the DOS iteratively.

The remaining task is to numerically calculate the transition matrix (2.55).
Therefor consider first a random ensemble with p(ω) = p(E) = const., which
corresponds to a canonical ensemble at infinite temperature. We can then
assume that the infinite temperature transition matrix T∞ for constant
selection probabilities and N steps originating from every state is

T∞(E1 → E2) = 〈N(ω,E2 − E1)〉(E1)
N

= p(E)
N

∑
ω∈Ω

N(ω,E2 − E1)δE(ω),E1 ,

(2.59)
where N(ω,∆E) is the number of steps originating from ω that induce an
energy difference ∆E. If the selection probabilities of the steps used are not
constant, one has to use

T∞(E1 → E2) = p(E)
∑

ω1,ω2∈Ω
S(ω1 → ω2)δE(ω1),E1δE(ω2),E2 (2.60)

(note that by definition S(ω1 → ω2) = 0 for all states that are not connected
by a step, so one only has to inspect all steps originating from the actual
step). The actual transfer matrix for a different probability distribution can
then be recovered by

T (E1 → E2) = T∞(E1 → E2) ·A(E1 → E2),

where A(E1 → E2) is the chosen acceptance probability of the step that
has to fulfill

A(E1 → E2)
A(E2 → E1) = p(E2)

p(E1)
in order to make the macrostate detailed balance condition (2.56) hold. One
then can use a Metropolis-like choice for the acceptance probability

A(E1 → E2) = min
(

1, p(E2)
p(E1)

)
,

or every other choice that fits into this equation (compare Ref. [408] for a
comparison of different acceptance probabilities).
Note that one is also free in the choice of p(E). It is possible to use

the Boltzmann weights p(E) ∝ exp(−βE) for a suitable β, similar to
the Metropolis algorithm (in fact, in this situations one should use several
simulations at different β, becauseH(E) is normally peaked around a certain
energy for a given β). Additionally one could use estimations for g(E) from
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the transition matrix to get a flat sampling probability p(E) ∝ 1/g(E).
Since for calculating the transfer matrix according to Eqs. (2.59) and (2.60)
one has to calculate all possible steps originating from the obtained states,
continuous time algorithms can be used for free.

Other flat histogram methods

Beside the Wang-Landau algorithm described in detail in Sec. 2.2.2, there
are other algorithms that calculate the density of states (DOS) using the
flat histogram acceptance probability (2.49).
The first algorithm is called entropic sampling and was proposed in

Ref. [274]. As in the Wang-Landau algorithm one starts with an initial
estimation of DOS and records the incidence histogram H(E) of visited
macrostates, but one does not alter the DOS during these steps. After a
number of steps (that is normally increased during the simulation), the
estimation of the density of states is updated as

g′(E) = g(E) ·H(E) where H(E) 6= 0,

and the incidence histogram is reset. In contrast to the Wang-Landau
algorithm, entropic sampling fulfills detailed balance except the one step
before and after the adoption of the DOS.

Despite the fact that in entropic the DOS is not updated after every step
and there is no decreasing modification factor, the main difference is that in
entropic sampling the DOS the logarithm of the incidence counter is added
to the microcanonical entropy, whereas in the Wang-Landau algorithm
basically the actual incidence counter times the modification factor is added.
The second algorithm is optimal ensemble sampling proposed in Refs.

[392, 393]. The idea is to iteratively adopt the weights p(E) = p(E(ω))
of the macrostates so that the number of times the system traverses the
energy range (travels from the highest to the lowest possible energy and
vice versa) is optimized (so strictly speaking optimal ensemble sampling is
no flat histogram algorithm, but it can be used for calculating the DOS).

2.2.4 Error analysis of Monte Carlo simulations

Markov chain Monte Carlo simulations are a probabilistic method for
calculating expectation values, so naturally the results of the simulations
are afflicted with statistical errors, sometimes even with systematic ones. In
this section we shortly describe how to quantify the error obtained in Monte
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Carlo simulations. For simplicity we assume that Markov chain Monte Carlo
simulation produce results that are Gaussian distributed.
The error analysis of Monte Carlo simulations is a very large topic, in

this section we will feature only two elements that are used within this
thesis. The first aspect we cover is the problem of bias in the estimation of
errorbars, the second aspect is the Markov chain autocorrelation time. For
further information about the error analysis in Monte Carlo simulations, we
refer to Ref. [85], which we also follow for the presentation of the considered
two aspects.

Biased and unbiased estimators of the errorbar

The result of a Markov chain Monte Carlo simulation should be given in
the form

result = value± error,

where the value and the error have to be estimated from a set of samples
of the Markov chain. If the result is denoted by y, we denote by µ̂y an
estimator for the expectation value of y and by σ̂y an estimator for the
standard deviation of y. An estimator ŝ of a quantity s is called unbiased,
if its expectation value 〈ŝ〉 = s coincides with the exact value s, otherwise
the estimator is called biased.
In this section we use the following notation: Denote by xi, i = 1, . . . N

the different measurements taken in a Markov chain Monte Carlo simulation.
This measurements can be numbers, e.g., the energy or another observable
(magnetization in the Ising model), or more complicated objects, e.g., the
logarithm of the density of states from a Wang-Landau simulation or the
transition matrix from transition matrix Monte Carlo. We want to calculate
estimators for the value and the error of a quantity y = f(x) that can be
calculated from the taken measurements by using some arbitrary function
f , e.g., (2.11) for calculating the average energy in terms of the density of
states at a certain temperature.

We first consider the situation that y = f(x) = a ·x+c is a linear function,
which includes the identity f(x) = y = x by a = 1 and c = 0, implying that
we want to calculate the average value and the error of a direct observable.
Suppose that the samples xi are drawn from a distribution with expectation
value µx and standard deviation σx. If we use the sample mean

µ̂y := 1
N

N∑
i=1

f(xi) = a
1
N

N∑
i=1

xi + c = aµ̂x + c→ µy (2.61)
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as estimator for µy, this estimator is unbiased due to the law of large
numbers. Since this law predicts that the standard deviation of the sample
mean is σx/

√
N , one could suppose that one can use

σ̂′y := 1√
N

√√√√ 1
N

N∑
i=1

(f(xi)− µ̂y)2

as an unbiased estimator for the standard deviation σy of y, but this naive
estimator is in fact biased, because one would have to use µy instead of µ̂y,
which is in general unknown. But one can show that

σ̂y := 1√
N − 1

√√√√ 1
N

N∑
i=1

(f(xi)− µ̂y)2 → σx√
N

(2.62)

is an unbiased estimator for the standard error.
The situation is more complicated if the function f is a non-linear function,

because the naive estimator

µ̂′y := 1
N

N∑
i=1

f(xi) (2.63)

has a bias 〈µ̂′y〉 − µy ∝ O(1), so even for large sample size N the estimator
does not converge towards the correct value. The correct estimator to use
in this case is

µ̂y := f (µx) = f

(
1
N

N∑
i=1

xi

)
, (2.64)

which coincides with the estimator (2.61) for the linear case and has a bias
of O(N−1). Similarly one cannot use the estimator (2.62) for the standard
deviation, because f(xi) is still a bad estimator for yi. To find a correct
estimator of the standard deviation, one mainly uses so-called resampling
methods as the Jackknife or the Bootstrap resampling, which are described
in more details in the following sections.

The Jackknife algorithm was originally presented in Refs. [333,396], for a
review see Ref. [153]. The idea is to create N estimators x̂(J)

i by calculating
the mean of the results xj , leaving out xi

x̂
(J)
i := 1

N − 1

N∑
j=1
j 6=i

xj .
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ments. The analytically calcu-
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〈f〉 (2.65) ( )
and the bootstrap estimator σ̂(J)

〈f〉
(2.66) ( ) agree with the actual
error.

These can then be used for creating estimators of the mean and the error of
the mean

µ̂
(J)
〈f〉 := 1

N

N∑
i=1

f
(
x

(J)
i

)

σ̂
(J)
〈f〉 :=

√√√√N − 1
N

N∑
i=1

(
f
(
x

(J)
i

)
− µ̂(J)

y

)2
,

(2.65)

where the estimator for the mean is the arithmetic average of the function
evaluated at the N estimators x̂(J)

i , and the error of the mean is related
to the standard deviation of this quantity. One sees that this calculations
becomes slow if the number N of samples increases, because N averages of
N − 1 quantities each have to be calculated.
The idea of the bootstrap approach, which was originally presented in

Ref. [152], is to create an arbitrary number of b estimators x̂(B)
i by

x̂
(B)
i := 1

N

N∑
j∈φN

xj ,

where φN is a tuple with N elements, each element chosen uniformly
distributed between 1 and N . This means that one draws N elements from
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the N samples with replacement, so that every sample can be drawn several
times. These estimators can again be used for creating estimators of the
mean and for the error of the mean by

µ̂(B)
y := 1

b

b∑
i=1

f
(
x

(B)
i

)

σ̂(B)
y :=

√√√√1
b

b∑
i=1

(
f
(
x

(B)
i

)
− µ̂(B)

y

)2
.

(2.66)

In general the bootstrap method is better suited for large samples, because
one can use a number b that is significantly smaller than N and calculate
only b averages of N quantities.
In Fig. 2.6 we consider the naive estimator, the Jackknife estimator and

the bootstrap estimator for the error of the mean of the function f(x) = x2

if drawing N samples from a uniform distribution between 0 and 1. Clearly
µ〈x〉 = 0.5 and σ〈x〉 = (12N)−1, which implies that µ〈f〉 = f(µ〈x〉) = 0.25,
and using the usual error propagation one finds that

σ〈f〉 =
∣∣∣∣∂f∂x

∣∣∣∣
x=µ〈x〉

= 1√
12N

(2.67)

One can see that the naive estimator (2.63) clearly overestimates the actual
error, whereas the Jackknife and the bootstrap estimators (2.65) and (2.66)
estimate the error of the mean correctly.

Mixing and autocorrelation time

Another important source of errors for Markov chain Monte Carlo simula-
tions is the mixing time into equilibrium and the autocorrelation between
successive measurements. In order to get correct results from the simulation,
one must know on the one hand how many steps one has to perform at the
beginning of the simulation until the Markov chain can be considered to
be in equilibrium (mixing time), and how many steps one has to perform
between to successive measurements so that these measurements can be
treated as independent (autocorrelation time). In Fig. 2.7 we show a sample
simulation run for a one-dimensional Ising model at βJ = 1.0 to demonstrate
the two timescales.
Intuitively speaking, the mixing time is the number of steps that are

needed until the Markov chain can be considered in equilibrium, or equiv-
alently as the number of steps that has to be done in order to loose all
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Figure 2.7: Mixing and autocorrelation time in Markov chains.
We consider a Metropolis Monte Carlo simulation for a one-dimensional ferromag-
netic Ising model with N = 128 spins at temperature βJ = 1.0 in terms of the
number of sweeps n, which is the number of elementary spin flips divided by the
system size N . In all cases we use only one independent simulation run starting
from a random spin configuration. (a) Energy of the system in terms of the number
of sweeps n. One sees that for n < 102 the energy of the system approaches the
actual expectation value (mixing), and fluctuates around the expectation value
only for n > 102. (b) Relative autocorrelation function (2.68) in terms of the
number of sweeps n after relaxation. The dashed line is an exponential fit with
autocorrelation time τ = 1.955± 0.003.

information of the initial state in the Markov chain. Taking measurements
only makes sense after this mixing time, because otherwise the (arbitrary)
initial state would influence the results of the simulations. Mathematically
the mixing time is defined as the time after which the maximal deviation
of the actual distribution from the stationary one is smaller than a certain
threshold [279, Chap. 4]. Because the mixing time is difficult to measure
within simulations, and because analytical calculations of the mixing times
for general systems are rare, we restrict ourselves to inspecting plots like
Fig. 2.7a to be sure to relax our systems longer than the mixing time.
The second possible source of problems is the autocorrelation, which is

numerically much easier to calculate compared with the mixing time. For
the rest of this section we follow Ref. [85, Sec. 4.1]. Suppose that we measure
the observable xi at times i. The autocorrelation function of the observable
is then defined as

Cx(t) := (〈xixj〉 − 〈xi〉〈xj〉)j−i=t = 〈x0xt〉 − 〈x〉2, (2.68)

one often uses the relative autocorrelation function cx(t) = Cx(t)/Cx(0),
where Cx(0) = Var(x). For large t the autocorrelation function shows an
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exponential decay
Cx(t) ∝ exp

(
− t
τ

)
, (2.69)

which defines the autocorrelation time τ . Note that in general the autocor-
relation function Cx(t) as well as the autocorrelation time τ does depend on
the considered observable x (e.g., the relaxation time τ|m| for the absolute
value of magnetization in the 2d Ising model is much longer than the time
τE for the energy).

In general one should take measurements in intervals that are much larger
than the autocorrelation time. There can be situations where this is not
possible within a reasonable simulation time, especially if the autocorrelation
time is very large. In these situations one has to take the autocorrelation
function into account for the calculation of the simulation errors. It can be
shown that the autocorrelation time relates the error of correlated xi and
the error of totally uncorrelated measurements by

σ2
〈x〉 = σ2

N

[
1 + 2

N−1∑
t=1

(
1− t

N

)
cx(t)

]
, (2.70)

where the fraction σ/
√
N is the error if one assumes uncorrelated outcomes.

The quantity

τint := 1 + 2
N−1∑
t=1

(
1− t

N

)
Cx(t)
Cx(0)

N→∞−−−−→ 1 + 2
∞∑
t=1

cx(t) (2.71)

is also called integrated autocorrelation time and relates the uncorrelated
error with the actual error taking into account the correlations. The
measurement of the integrated autocorrelation time τint is difficult, because
cx(t)→ 0 for large t, but with non-vanishing error or noise. So one considers
the cut integrated autocorrelation time τint(t′) by introducing t′ as upper
bound for the summation in (2.71) and looks for a plateau at some t′, which
is then used as integrated autocorrelation time.

2.2.5 Phase transitions in Monte Carlo simulations

Phase transitions are one of the most important and interesting topics in
statistical physics, as already described in Sec. 2.1.6. Naturally one is also
interested in phase transitions within systems that cannot be solved analyti-
cally, which are then often examined numerically using Markov chain Monte
Carlo simulations. These examinations are restricted to finite system sizes,
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(2.73) for the ferromagnetic 2d
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towards the intersection point of
the curves.

less because of the finite memory of the computer, but because of the limited
computation time. This is a fundamental problem for locating and examin-
ing phase transitions, because they only occur in the thermodynamic limit,
i.e., for infinite system sizes, because for finite systems the thermodynamic
potentials are always smooth functions of the relevant parameters.
In this section we describe several possibilities how to overcome these

problems and how to find and analyse phase transitions using Monte Carlo
simulations. One of the most important tasks is to discriminate between a
continuous and a discontinuous phase transition, and how to calculate the
critical exponents of the transition.
As an example system we use the two-dimensional ferromagnetic Ising

model on an integer lattice. This system is known to exhibit a (temperature
driven) continuous phase transition for βcJ ≈ 0.441 and H = 0 and a
discontinuous phase transition driven by the external field H for β >
βc (compare Sec. 2.1.7). The calculations were done by first using the
Wang-Landau algorithm for determining the density of states g(E) and
then perform a multicanonical sampling to calculate the microcanonical
expectation values 〈mk〉mc(E) of the moments of the specific magnetization
m (compare Sec. 2.2.2).

Critical temperature and binder cumulant

Due to Monte Carlo simulations on a computer restricted to finite system
sizes, the determination of the (inverse) critical temperature βc is difficult
because of the transition being smeared out. The simplest possibility is to
define the location of the maxima of certain derivatives of thermodynamic
observables as the quasi-critical temperature βc(L) for the considered linear
system size L. For discontinuous phase transitions and for continuous
phase transitions with divergences one considers the second derivatives of
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the associated thermodynamic potential (e.g., the magnetic susceptibility
or the heat capacity), for other continuous phase transitions one has to
use the third derivatives of the potential. Empirically one finds that the
quasi-critical temperatures calculated using this method scale like [269, Eq.
(4.13b)]

βc(L) = βc + λL−1/ν(1 + b · L−w), (2.72)

where βc is the true critical temperature, ν is the critical exponent of the
correlation length, λ and b are parameters that depend on the observable
used to determine the critical temperature and w is a parameter that
depends only on the system [269, Sec. 4.2.3.2]. All these five parameters
can be determined using a least-square fit in order to calculate βc.
Another way to determine the critical temperature is using the Binder

cumulant [95]

UL := 1− 〈O4〉
3〈O2〉2 , (2.73)

which measures the deviation of the probability distribution of the observable
O from a Gaussian shape. If the observable O is an order parameter (e.g., the
magnetization m in the usual Ising setup), the Binder cumulant vanishes
for β → 0, because here the order parameter is Gaussian distributed, so
that 〈m4〉 = 3〈m2〉2. For β → ∞ the order parameter takes the value
m = 0, so 〈m4〉 = 〈m2〉2 and UL → 2/3. For L→∞ these values are valid
for all β < βc and β > βc, respectively [95]. In Fig. 2.8 the temperature
dependence of the Binder cumulant is displayed for different lattice sizes in
a two-dimensional Ising system.

The advantage of using the Binder cumulant compared with the maxima
of some susceptibilities is that for different L the Binder cumulants UL(β)
intersect at the common point U(βc) which does not depend on L up to minor
corrections, which are much smaller than the finite size corrections (2.72)
of the observable maxima [269, Sec. 4.2.3.2]. In practice one calculates the
Binder cumulant for different linear system sizes L and uses their intersection
for neighboring L to get different values of βc that can be extrapolated to
the actual value.

The Binder cumulant can also be used for calculating the critical exponent
ν of the correlation length in Eq. (2.22e) by [269, Eq. (4.14)]

∂UL
∂β
∝ L1/ν (1 + bL−w

)
, (2.74)

which is essential for calculating other critical exponents using finite size
scaling.
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Figure 2.9: Probability density of observables for discontinuous and con-
tinuous phase transitions.
Probability density p(m) for the occurrence of a relative magnetization m for
different system sizes (4× 4, 8× 8, 16× 16 and 32× 32) for two different inverse
temperatures, for vanishing external field in a 2d Ising model. (a) Probability
distribution p(m) of the magnetization m at a discontinuous phase transition
(β > βc), there is a two-peak structure where the probability for states inbetween
vanishes for increasing system size. (b) Probability distribution p(m) of the
magnetization m at a continuous phase transition (β = βc), there is a two-peak
structure where the probability for states inbetween is approximately constant for
increasing system size.

Probability distributions of observables

In the previous section we saw that the Binder cumulant (2.73) of the
order parameter can be used for locating the quasi-critical temperature of
continuous phase transitions for finite linear system size L. For discontinuous
transitions this cumulant cannot be used, because there is usually no order
parameter present. The method of choice for determining the quasi-critical
temperature is to examine the distributions of the first derivatives of the
thermodynamic potential that show a discontinuity at the critical point.
Consider e.g., the discontinuous transition in the two-dimensional Ising

system with β > βc at H = 0. The probability distribution of the specific
magnetization m at this transition point shows two peaks with equal height
at m = ±m0, where m0 depends on the actual inverse temperature β
(compare Fig. 2.9a). For an external H < 0, the height of the peak at
m ≈ −m0 increases, whereas the height of the peak at m ≈ +m0 decreases,
and vice versa for H > 0.
If in contrast to the Ising model, where due to the invariance of the

Hamiltonian (2.24) with respect to the transformation H → −H and
σi → −σi the transition point can be located at H = 0, the critical value of
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Figure 2.10: Finite size scaling and scaling functions.
(a) Order parameter m in terms of the relative temperature t in the two-dimensional
Ising model for different lattice sizes (4 × 4, 8 × 8, 16 × 16 and 32 × 32), both
quantities scaled according to Eq. (2.76b). (b) Magnetic susceptibility χ scaled
according to (2.76c). In both cases the functions agree near t ≈ 0, as predicted by
the finite size scaling hypothesis. (c) Magnetic susceptibility χ at the quasi-critical
point t = 0 in terms of the linear lattice size L, together with the prediction
χ(t = 0) ∝ Lγ/ν from Eq. (2.76c).

the external parameter is unknown, the observable distribution can be used
for its determination. The quasi-critical value at the corresponding system
size can be found by tuning the two peaks to equal weight [98, Remark
(vii)].

The distribution of the relevant observable can also be used for discrimi-
nating between discontinuous and continuous phase transitions. In fact one
can find similar two-peak structures also at continuous transitions (compare
Fig. 2.9b), but the probability density for the value between the two peaks is
constant if increasing the system size for continuous transitions. In contrast,
the probability decreases if increasing the system size for discontinuous
phase transitions. Note that this is also the reason why Metropolis(-like)
algorithms are difficult to use near discontinuous transitions, because the
probability for intermediate states between the peaks effectively vanishes,
which pins the simulation to one of the peaks.

Finite size scaling and critical exponents

It was already derived in Sec. 2.1.6, Eq. (2.22e) that the correlation length
diverges as ξ(t) = ξ0t−ν near the critical point for continuous transitions,
where t is the reduced temperature and ν is the associated critical exponent.
Let L be the linear length scale of the system, then it is obvious that
ξ(t) = L or equivalently tL := (L/ξ0)−1/ν is an important point for the
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behavior of the system. For reduced temperatures t � tL or χ(t) � L
the finite system size does not influence the behavior of the system much,
whereas for t� tL or χ(t)� L the finite system size becomes important,
because the correlation length and therewith long-range correlations are
bounded by the linear system size L.
This result, together with the observation that near for β ≈ βc the

correlation length is the only relevant length scale of the system, one can
conclude that near the critical point the free energy F (T, L) of the system
should behave as [269, Eq. (4.9)]

F (T, L) ∝ L−(2−α)/νf

(
L

ξ(t)

)
= L−(2−α)/νf

(
tL1/ν

)
, (2.75)

for vanishing external field, where f(x) a scaling function, and α is the
critical exponent of the heat capacity defined in (2.22a). Eq. (2.2.5) is also
denoted as finite size scaling hypothesis. This implies for the other quantities
(2.22) [269, Eq. (4.10)]

CH = Lα/νC
(0)
H

(
tL1/ν

)
(2.76a)

M = L−β/νM (0)
(
tL1/ν

)
(2.76b)

χ = Lγ/νχ(0)
(
tL1/ν

)
, (2.76c)

where C(0)
H , M (0) and χ(0) denote the scaling functions of the respective

quantities Intuitively this means that if plotting M · Lβ/ν in terms of tL1/ν

the near t = 0 the curves collapse for all (sufficiently large) L, which is
displayed in Fig. 2.10.
The finite size scaling approach can be used for determining the (rela-

tive) critical exponents α/ν, β/ν and γ/ν by plotting the maxima of the
observables (2.76) in terms of L and fitting a power-law behavior (compare
Fig. 2.10c), because at t = 0 Eqs. (2.76) become

CH(t = 0) ∝ Lα/ν M(t = 0) ∝ L−β/ν χ(t = 0) ∝ Lγ/ν . (2.77)

So for calculating the actual critical exponents, the exponent ν has to be
calculated otherwise, e.g., using (2.74).

It is also possible to use finite size scaling for discontinuous phase transi-
tions. In these cases not the linear length L of the system, but the volume
Ld of the system is the relevant scaling parameter. For a more detailed
discussion see Ref. [269, Sec. 4.2.3.3].
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2.3 Details about Wang-Landau simulations
In this section we list the work done about the Wang-Landau algorithm in
general. We first examine the optimal choice of the flatness criterion f and
the modification factor multiplier δm in order to minimize the statistical
error of the results and the simulation time needed. Second we derive an
analytical approximation of the number of steps that are necessary within
the Wang-Landau algorithm for the incidence histogram H(E) to become
flat, in terms of the number of bins b and the flatness criterion f . The
last part of this section is the presentation of the approximate counting
method that is based on the Wang-Landau algorithm and that one can use
to estimate the number of states in arbitrary systems.

2.3.1 Optimal choice of parameters

In this subsection we examine the influence of the choice of the flatness
criterion f and the modification factor multiplier δm on the statistical and
the systematic error of Wang-Landau sampling as well as its influence on the
simulation time. Therefor we consider a one-dimensional Ising chain with
L = 32 spins and periodic boundary conditions without external magnetic
field. The possible energy levels of such a system are E = −L,−L+ 4, . . . L,
and the density of states is given by

g(E = −L+ 4m) =
(
L

2m

)
=
(

L
(E + L)/2

)
with m ∈ N0. (2.78)

e performed 400 independent Wang-Landau simulations starting with modi-
fication factor mi = exp(1) until the modification factor mf = exp

(
10−8)

was reached. The calculated DOS were normalized with the known value
g(E = −L) = 2 for the ground state.
As a measure for the statistical error we use

εstat :=
〈
σS(E)
µS(E)

〉
E

, (2.79)

where σS(E) is the standard deviation of the distribution of the microcanon-
ical entropy S(E) = log g(E) that was obtained from 400 independent runs,
and µS(E) is its expectation value. The ratio is then averaged over all energy
values E. Note that we explicitly used the standard deviation σS(E) of the
distribution, and not the standard error σ〈S(E)〉 = σS(E)/

√
N − 1, where N

is the number of independent simulation runs, because the relevant factor is
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Figure 2.11: Parameter-dependence of the statistical error in WL simu-
lations.
Statistical error εstat (2.79) of the Wang-Landau algorithm with respect to the
flatness criterion f and the multiplier δm of the modification factor for a one-
dimensional Ising chain with 32 spins. (a) Colorplot of the statistical error with
respect to both f and δm, the dashed lines are (smoothed) isolines for the depicted
values of the relative standard deviation. (b,c) Statistical error for different constant
f (b) and constant δm (c), the constant values are in each plot from top to bottom
f, δm = 0.5, 0.6, 0.7, 0.8 and 0.9. The dashed lines are the fitted function (2.81).

the width of the result distribution, and not the error of the obtained mean
(which furthermore would also depend on N).

The results of the calculations are depicted in Fig. 2.11 as a colorplot in
terms of both f and δm and separately for both variables with the other
quantity fixed. As expected, the statistical error grows for both smaller f
and smaller δm, and the expected limits

lim
f→1

εstat(f, δm) = lim
δm→1

εstat.(f, δm) = 0

can be found. To quantify the results we construct a functional dependency
that matches the expected limits and fit the free parameters. We have to
choose a function that is 0 for f = 1, δm = 1 or both, so the most simple
choice is

εstat(f, δm) = a · (1− f)b · (1− δm)c. (2.80)

Fitting this function with respect to the calculated data gives

εstat(f, δm) ≈ 0.0836(2) · (1− f)0.949(2) · (1− δm)0.634(2), (2.81)

comparing this result to the numerical data in Fig. 2.11 shows that this fit
produces the correct qualitative behavior both for f = const. and δm =
const.
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Beside the statistical error an important question is whether the systematic
error of Wang-Landau sampling does alter the results significantly. As
measure for the systematical error εsys. we use

εsys :=
〈
|µS(E) − Sexact(E)|

σS(E)

〉
E

, (2.82)

which is the absolute difference of the calculated expectation and the exact
value of the microcanonical entropy in units of the calculated standard
deviation, averaged over all energy bins. The result in terms of the flat-
ness condition f and the modification factor multiplier δm are depicted in
Fig. 2.12. For high enough f and δm the systematic error is approximately
0.1, which the actual value lies within a 0.1σS(E) interval around the cal-
culated value. On the first look this seems to be a very low systematic
error, but remember that we measured the systematic error in units of the
standard deviation σS(E) and not in units of the standard error σ〈S(E)〉 of
the mean. Since for these result 400 calculations were performed, the exact
value lies only in the 2σ〈S(E)〉 interval around the calculated value.

One can also measure the systematic error in units of the exact value

ε′sys :=
〈
|µS(E) − Sexact(E)|

Sexact(E)

〉
E

, (2.83)

so that it measures the relative error of the calculations. For f = 0.8 and
δm = 0.9, a choice of parameters often used throughout this thesis, the
relative error lies at approximately 10−4, which is very good value. In
contrast, for the choice δm = 0.5 as suggested in Refs. [406,407] the relative
error is around 8 times higher.

A fit of the systematic error measured in units of the standard deviation
was not possible because of the noise in the data.

The other relevant factor in choosing the simulation parameters f and δm
is the simulation time: the higher both parameters, the longer the simulation.
The simulation time is measured in the number of sweeps, where one sweep
consists of L proposed (not necessarily accepted) steps. There are two
possibilities for measuring the simulation time t: On the one hand one can
count the necessary sweeps for reaching the final modification factor mf ,
resulting in the simulation time tf . On the other hand one measure tsat,
which is the number of sweeps until the saturation of errors is reached. The
former possibility is accessible rather simply, for the other one needs to
determine when the saturation of error is reached. We define this as the
point of time after which the statistical error is below 1.05 the statistical
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Figure 2.12: Parameter-dependence of the systematical error in WL
simulations.
Systematic error εsys (2.82) of the Wang-Landau algorithm with respect to the
flatness criterion f and the multiplier δm of the modification factor for a one-
dimensional Ising chain with 32 spins. (a) Colorplot of the systematic error with
respect to both f and δm. (b,c) Systematic error for different constant f (b)
and constant δm (c), the constant values are in each plot from top to bottom
f, δm = 0.5, 0.7 and 0.9.

error at the final modification factor mf . The results for both tf and tsat
are displayed in Fig. 2.13.

As for the statistical error it is also possible to use a fit for describing the
simulation time in terms of f and δm. In contrast to the error, one expects
that t→∞ for f → 1 or δm→ 1, because in the first case one would need
a totally flat incidence histogram, which is almost impossible to get because
of statistical fluctuation, and in the second case the modification factor
will not be decreased. In principle one can imagine two simple functional
dependencies

t(f, δm) = a · (1− f)b · (1− δm)c (2.84a)

t(f, δm) = a
[
(1− f)b + (1− δm)c

]
(2.84b)

(with b < 0 and c < 0) that match these limits, but comparing the respective
fits with the obtained data shows that Eq. (2.84b) describes the data way
better. Our fit results for both times are

tf(f, δm) = 4.993(6)
[
(1− f)−0.2272(9) + (1− δm)−0.116(1)

]
(2.85a)

tsat(f, δm) = 4.435(4)
[
(1− f)−0.2660(6) + (1− δm)−0.1695(8)

]
. (2.85b)

Until know we identified the dependence of the statistical and the sys-
tematic error as well as of the necessary simulation sweeps on the flatness
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Figure 2.13: Parameter-dependence of the simulation time in Wang-
Landau simulations.
Simulation time measured in units of system sweeps for Wang-Landau simulation of
a 32 spin Ising chain in terms of the flatness and the modification factor multiplier.
The upper row of plots (a-c) shows the simulation time necessary for reaching a
final modification factor of logmf = 10−8, the lower row of plots (d-f) shows the
simulation time necessary to reach the saturation of error. (a,d) Colorplot of the
simulation time in unit of system sweeps with respect to both f and δm. (b,c,e,f)
Simulation time for different constant f (b,e) and constant δm (c,f), the constant
values are in each plot from top to bottom f, δm = 0.5, 0.6, 0.7, 0.8 and 0.9..
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Figure 2.14: Optimal choice of parameters in WL simulations.
Minimal number of sweeps to reach a statistical standard error of s < 10−3 for
Wang-Landau sampling of a 32 spin Ising chain in terms of the flatness f and
the modification factor modifier δm. For each pair of f and δm we already chose
the optimal final modification factor mf . (a) Colorplot of the number of minimal
sweeps with respect to both f and δm. (b,c) Minimal number of sweeps for different
constant f (b) and constant δm (c), the constant values are in each plot from top
to bottom f, δm = 0.5, 0.6, 0.7, 0.8 and 0.9. Here the curves are smoothed using
Bezier curves to suppress the noise.

criterion f and the modification factor modifier δm. For efficient simulations,
one wants both small errors and low simulation time, but these are two
contrary goals. So one needs to introduce a measure for the efficiency of
the simulation and search for combinations of the parameters f , δm and
mf so that this measure is optimal. We propose the quantity

T (s, f, δm,mf) := t(f, δm,mf) ·
[
1 +

(
σstat.(f, δm,mf)

s

)2]

as measure for (in)efficiency. It is the number of independent runs Ns that
has to be performed to get a statistical error less than s, multiplied with
the average number of sweeps t(f, δm,mf) necessary for one simulation. In
Fig. 2.14 one can find T (10−3, f, δm), where for each pair of parameters the
optimal final modification factor mf was already chosen. For the considered
system of a 32 spin Ising chain one can conclude that one should use a
flatness 0.85 ≤ f ≤ 0.9 for optimal performance, whereas the modification
factor modifier has less influence on the performance of the simulation, its
optimal value at the considered flatness is 0.6 ≤ δm ≤ 0.85. Note that this
choice of parameters is only a hint, and the optimal parameters can change
if one considers other systems. If it is not possible to do a similar pretest
for small system sizes as in this section, one should in general choose the
parameters more conservative.
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2.3. Details about Wang-Landau simulations

2.3.2 Dependence of the runtime on bin-number and
flatness criterion

In the Wang-Landau simulations done within this thesis it was observed that
the number of steps that is necessary until the histogram H(E) becomes flat
does depend strongly on the number b of energy bins used and the flatness
criterion f applied. Unfortunately in the literature there is no estimation of
the influence of the number of bins on the runtime of the algorithm. So in
this section we want to give an estimation for this quantity.

In our considerations we neglect that the Wang-Landau simulation modi-
fies the density of states (DOS) and therewith the acceptance probabilities.
This approximation is valid especially in the last stages of the simulation
with small modification factor. Consider now a simulation with b energy
levels E1, . . . Eb. The probability to find the energy level Ei in the simulation
is given by

pi ∝
gexact(Ei)
gWL(Ei)

, with
∑
i

pi = 1

where gexact(Ei) is the exact value of the DOS at energy bin Ei, and
gWL(Ei) is the current value of the DOS in the Wang-Landau simulation.
The histogram H(E) of visited energies is considered as flat, if minH(E) >
f · avgH(E), with 0 < f < 1. This means that after N steps the condition
H(Ei) > fN/b has to be fulfilled for every bin. In the following we estimate
analytically the average number 〈N〉 of steps that are necessary to fulfill
the flatness criterion, furthermore we present numerical data that supports
our estimation.
We consider two different situations: First we examine the dependence

of 〈N〉 for pi = p = 1/b, i.e. that the algorithm samples with respect to
the exact DOS. Later we consider sampling to a DOS with errors, which
is similar to an actual DOS obtained in a simulation, so that we obtain a
probability pi = (1 + δpi)/b.
The considered problem is related with the coupon collector problem or

the double dixie cup problem. One can proof [313] that the waiting time
for having visited every bin m times is

〈N〉 = b log b+ (m− 1) · b log log b+ Cm +O(1)

But this cannot be applied to our problem directly, because m has to be
a fixed number here, but in our case we have that m does depend on N
because we choose m = f ·N/b.
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2. Markov chain Monte Carlo simulations

Calculations for exact DOS

Denote by pf(N) the probability that the histogram of the Wang-Landau
simulation is flat after doing N steps (that will be calculated in different
ways later), and by pnf(N) = 1− pf(N) the probability that the histogram
is not flat after doing N steps. Then the probability

Pff(N) :=
N−1∏
n=1

pnf(n)pf(N) (2.86)

is the probability that the histogram is flat after N times for the first time
(i.e. the histogram is flat after N steps, but is not flat at all other steps
before). In this section we want to calculate the average number of steps
that is necessary to make the histogram flat, which is defined as

〈N〉 =
∞∑
N=1

NPff(N) =
∞∑
N=1

N
N−1∏
n=1

pnf(n)pf(N) (2.87)

Depending on the actual form of pf(N), calculating the average 〈N〉 can
be difficult. In these situations it can be more easy to calculate the location
Nmax of the maximum of the probability distribution Pff(N) and use it
as an estimate for 〈N〉. Note that N is a discrete variable, so one cannot
simply derive the distribution Pff(N) with respect to N and calculate the
roots to locate the maximum.

An alternative for locating the maximum of the distribution is to find the
root of the discrete differential

∆Pff(N) := Pff(N + 1)− Pff(N) != 0

and use them as approximative values for Nmax. The discrete differential
can be calculated as

∆Pff(N) =
N∏
n=1

pnf(n)pf(N + 1)−
N−1∏
n=1

pnf(n)pf(N)

=
N−1∏
n=1

pnf(n) [pnf(N)pf(N + 1)− pf(N)]

The first terms of the product do not have a root (because pnf(n) 6= 0), so
we have to find the solution to the equation

pnf(N)pf(N + 1) = pf(N) (2.88)
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2.3. Details about Wang-Landau simulations

This equation can be written also only in terms of the probabilities pf as

1
pf(N) −

1
pf(N + 1) = 1 (2.89)

In the following we describe different approaches for actually calculating
the probability pf(N) for the histogram to be flat after N steps:

• The multinomial probability distribution, which gives the exact de-
scription of the considered process

• The multivariate Gaussian distribution, which approximates the multi-
nomial distribution with continuous, dependent random variables

• The Gaussian distribution, which neglects the covariance between the
random variables of the multivariate distribution, so it approximates
the multinomial distribution with continuous, independent random
variables

Afterwards we compare these analytical estimations with numerically ob-
tained data.

Multinomial flatness probability The multinomial distribution with
probability density

Pmn(n1, n2, . . . nk) :=
(

N

n1, . . . , nk

)
· p1 · p2 · · · · · pk,

describes the probability that after N = ∑
i ni executions of a random exper-

iments, that has k possible outcomes with probability pi each (normalization∑
i pi = 1), ni executions resulted in the i-th outcome [174, Chap. 30]. Here

the multinomial is the generalization of the binomial and defined as(
N

n1, . . . , nk

)
:= N !

n1! · · · · · nk!
δN,
∑

i
ni
.

The probability that the histogram is flat after N steps is then given by

pf,mn(N) =
∑

n1≥f ·p·N
· · ·

∑
nb≥f ·p·N

Pmn(n1, . . . , nb)

= Pmn(n1 ≤ f · p ·N, . . . , nb ≤ f · p ·N)
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2. Markov chain Monte Carlo simulations

This probability is not a cumulative distribution function (CDF)

Fmn(n1, . . . , nk) :=
∑

m1≤n1

· · ·
∑

mk≤nk

Pmn(m1, . . . ,mk)

of the multinomial distribution, but it can be written in terms of the CDF.
Using some basic formulas from statistic one can calculate

Pmn(m1 ≥ n1, . . .mk ≥ nk) = Pmn(m1 ≥ n1 ∩ · · · ∩mk ≥ nk)
= 1− Pmn (m1 ≤ n1 ∪ · · · ∪mk ≤ nk) =
= 1−

∑
i1

Pmn(mi1 ≤ ni1) +
∑
i1

∑
i2>i1

Pmn(mi1 ≤ ni1 ∪mi2 ≤ ni2)−

· · · ±
∑
i1

· · ·
∑

ik>i1,...ik−1

Pmn (mi1 ≤ ni1 ∪ · · · ∪mik ≤ nik)

Note that all the probabilities in the last step can be written in terms of the
CDF, because the arguments that are not present can also be denoted as
mj < N . In our case (all ni and all p are the same) this can be expressed
in the following way:

Pmn(m1 ≥ fNp, . . .mb ≥ fNp) =
b∑
i=0

(
b

i

)
(−1)iFmn (n1, . . . , nk, N, . . . , N)

Calculating the CDFs of the multinomial distribution directly is possible,
but does not lead to an analytical approximation of Nmax. Furthermore
even calculating the CDF numerically consumes to much computation time
for large b. There is a representation of the multinomial CDF in terms of
several CDFs of the (truncated) Poisson distribution [278], but also this
representation does not lead to suitable analytical approximations of Nmax,
additionally it is numerically unstable.

Multivariate Gaussian flatness probability The exact form of the
multinomial distribution is not suitable for an analytical estimation of the
dependence of the runtime on the number of bins. One possibility is to
approximate the multinomial distribution with the multivariate normal
distribution, which describes a distribution of several normal distributed
variables with covariance. As in the binomial distribution, the expectation
value of Hi is E(Hi) = Np, the variance is Var(Hi) = Np(1− p), and the
covariance between two bins is Cov(Hi, Hj) = −Np2 for i 6= j [174, Chap. 30].
So let

Σij :=
{
Np(1− p) i = j

−Np2 i 6= j
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2.3. Details about Wang-Landau simulations

the b× b covariance matrix of the Hi with inverse matrix5

Σ−1
ij =


(b−1)p−1
Np(bp−1) i = j

− 1
N(bp−1) i 6= j

for p 6= 1/b. Note that we actually have the case p = 1/b, so our covariance
matrix is not invertible, and we cannot use the standard formula

Pmv(x1, . . . , xb) = 1√
(2π)bdet(Σ)

exp

−1
2

b∑
i,j=1

(xi −Np)Σ−1
ij (xj −Np)


(2.90)

for the probability density function of the multivariate distribution.
To cure this problem, we need all eigenvalues and eigenvectors of the

covariance matrix. The eigenvectors are6 v1,i = 1 for the eigenvalue λ1 =

5 Proof: One has to verify that ∑
j

ΣijΣ−1
jk = δik

For the case i 6= k it is∑
j

ΣijΣ−1
jk = Np(1− p) · −1

N(bp− 1) −Np
2 · (b− 1)p− 1

Np(bp− 1) + (b− 2)Np2 · 1
N(bp− 1)

= −p
2 + p3 − p3(b− 1) + p2 + (b− 2)p3

p(bp− 1) = 0,

for te case i = k it is∑
j

ΣijΣ−1
jk = Np(1− p) · (b− 1)p− 1

Np(bp− 1) + (b− 1) ·Np2 · 1
N(bp− 1)

= bp− 1 + p2(1− b)− p2(1− b)
bp− 1 = 1.

6 Proof: One has to show that
∑

k
Σikva,k = λava,i. Consider first the case a = 1, there

one has∑
k

Σikv1,k =
∑
k

Σik = Np(1− p)− (b− 1)Np2 = (1− bp) ·Np = λ1v1,i.

For the case a 6= 1 one performs a case by case analysis for i. Let first i = 1, then∑
k

Σ1kva,k = Σ11va,1 + Σ1ava,a = −Np(1− p)−Np2 = −Np = Np · va,1

Let second i = a, then∑
k

Σakva,k = Σa1va,1 + Σaava,a = Np2 +Np(1− p) = Np = Np · va,a
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2. Markov chain Monte Carlo simulations

(1− bp) ·Np and

va,i =


1 i = −1
1 i = a

0 otherwise

with a 6= 1 for the eigenvalues λa = Np. We now calculate within the
eigensystem of the covariance matrix and use only the linear independent
degrees of freedom. This means that we only consider the space spanned by
the eigenvectors ~va with a 6= 1. One can understand this also intuitively:
The first eigenvalue corresponds to the sum of all random variables Hi,
which are constrained to be N . Outside of this hyperplane the probability
density vanishes.
Let S be the orthonormal matrix of the eigenvectors of Σ−1, so that

Σ−1 = SDS−1 with D being the diagonal matrix of the eigenvalues. The
matrix and its inverse are given by

S = 1√
b

(
1 −~1t
~1 1b−1

)
S = 1√

b

(
1 ~1t
−~1 1b−1

)
,

where 1b−1 is the (b−1)-dimensional unit matrix and ~1 is a vector consisting
of b−1 entries 1. Using the Gram-Schmidt algorithm leads to the orthogonal
eigenbasis

w1,i = 1 wa,i =


− 1
a−1 i < a

1 i = a

0 i > a

,

and normalizing yields

w1,i = 1/
√
b wa,i =


− 1√

a·(a−1)
i < a√

a−1
a i = a

0 i > a

.

We denote by R the orthonormal matrix of this eigenbasis.

Let third i 6= 1 and i 6= a, then∑
k

Σikva,k = Σi1va,1 + Σiava,a = Np2 −Np2 = 0 = Np · va,i
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2.3. Details about Wang-Landau simulations

Now we can calculate the desired cumulative density function in the
constrained subspace
Pmv(x1 ≥ fNp, . . . , xb ≥ fNp) =

= 1
(
√

2πNp)b−1

∫ N(1−p)

−(1−f)Np
dx1 . . .

∫ N(1−p)

−(1−f)Np
dxb exp

[
−1

2(Rt~x)tDRt~x
]

The next step is to substitute the integration variable ~y = Rt~x, which leads
to

y2 = 1√
2
x2

y3 = − 1√
6
x2 +

√
2
3x3

...

ya = − 1√
a(a− 1)

a−1∑
i=2

xi +
√

a

a− 1xa

in the single components. So the cumulative distribution function results in
the following integral:

Pmv(H1 ≥ fNp, . . . ,Hb ≥ fNp)

= 1
√

2πNpb−1

∫
dy2 . . .

∫
dya exp

[
−1

2(~ytD~y)
]

The solution of this multiple integral cannot be given in a closed form,
because the integral boundaries of the integration variable ya depend on the
other integration variables yi with i < a, resulting in integrals mixing error
functions and exponentials, which cannot be solved analytically. However,
a numerical solution of this integral is possible, but we do not follow this
direction because we want to give simple analytical approximations.

Gaussian flatness probability Suppose that we can approximate the
multinomial distribution by the distribution of b independently distributed
Gaussian random variables. This neglects the covariances between the
variables, which is reasonable for a large number of bins: The variance of
the multinomial distribution is Np(1 − p) ≈ N/b, and the covariance is
−Np2 = −N/b2. The probability pf,G(N) for the histogram to be flat after
N steps with bin sampling probability p and flatness criterion f is then

pf,g(N) =
(∫ ∞

fNp
dx 1√

2πp(1− p) exp
[
−1

2
(x−Np)2

Np(1− p)

])b
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2. Markov chain Monte Carlo simulations

Switching the integration variable to y = x − Np the integral can be
calculated in terms of the error function

pf,g(N) =
[

1
2 −

1
2 erf

(
(f − 1)

√
Np

2(1− p)

)]b

= 1
2b erfcb

(
(f − 1)

√
Np

2(1− p)

)
,

where erfc(x) = 1 − erf(x) is the conjugated error function. Use the
asymptotic expansion

erfc(−x) x→∞= 2 + exp
(
−x2

)
·
[
− 1√

πx
+O

( 1
x3

)]
which is in our case valid for big

√
N , to get

pf,g(N) ≈
[
1− 1

1− f

√
1− p
2πNp exp

(
−Np(f − 1)2

2(1− p)

)]b
.

Approximating (1− x)b ≈ 1− b · x for x� 1 gives then

pf,g(N) ≈ 1− b

1− f

√
1− p
2πNp exp

(
−Np(f − 1)2

2(1− p)

)

Replace now the probability p for sampling one energy bin with the inverse
number 1/b of bins, (so that (1− p)/p = b− 1) and assume that b� 1 so
that b− 1 ≈ b. This leads to the final version of the probability for being
flat after N steps in the independent Gaussian approximation

pf,g(N) ≈ 1− b3/2√
2πN(1− f)

exp
(
−N(f − 1)2

2b

)
(2.91)

Even with this simple Gaussian approximation the direct calculation
of 〈N〉 using Eq. (2.87) and the calculation of asymptotics is not possible.
Instead we use Eq. (2.88) to calculate the location Nmax of the maximum of
the probability distribution Pff(N). This results in

1− 2 b3/2√
2πNmax(1− f)

exp
(
−Nmax(f − 1)2

2b

)

+
(

b3/2√
2π(1− f)

)
1√

Nmax(Nmax + 1)
exp

(
−(2Nmax + 1)(f − 1)2

2b

)
= 0.
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2.3. Details about Wang-Landau simulations

For large Nmax we can approximate
√
Nmax(Nmax + 1) ≈ Nmax and 2Nmax +

1 ≈ 2Nmax, so one has to solve[
1− b3/2√

2πNmax(1− f)
exp

(
−Nmax(f − 1)2

2b

)]2

= 0.

Using the Lambert-W function W(x), which is defined as the inverse of
W−1(x) = x exp(x), the solution of this equation is

Nmax = 2b
(1− f)2 W

(
b2

2π

)
≈ 2b(log(b)− log(2π))

(1− f)2 . (2.92)

This means that for an exact known DOS the time for the incidence his-
togram becoming flat in one stage of a Wang-Landau simulation grows
approximately as b log(b) with the number b of bins and as (1− f)−2 in the
flatness criterion f .

Numerical results To verify the approximation (2.92) for the average
number 〈N〉 of steps that need to be done until the histogram gets flat,
we used a small simulation of one stage of the Wang-Landau algorithm.
Therefor consider a histogram with b bins and increment the bins randomly
by 1, where every bin is chosen with probability 1/b. After each increment
one checks whether the flatness criterion (2.51) is fulfilled, if this is the
case, record the number N of increments done in this simulation run. For
each considered value of b and f we performed more than 104 independent
simulations to calculate 〈N〉flat. The results of these simulations can be
found in Fig. 2.15.
As predicted by the analytical estimation (2.92), for a constant flatness

criterion f one finds in Fig. 2.15a that

〈N〉flat ∝ b ·W
(
b2

2π

)
for a large enough number of bins b ' 20. For a constant number of bins
Fig. 2.15b verifies that

〈N〉flat ∝ (1− f)−2.

In Fig. 2.15c one can see that the functional dependencies found lead to a
collapse of the data points for large b.
In Tab. 2.1 the fitted proportionality constants c in

〈N〉flat = c · 2b
(1− f)2 ·W

(
b2

2π

)
(2.93)
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Figure 2.15: Average time 〈N〉flat until a Wang-Landau simulation becomes flat
in terms of the number of bins b and the flatness criterion f . (a) 〈N〉flat in terms
of the number of bins b for f = 0.75 ( ), f = 0.8 ( ), f = 0.85 ( ), f = 0.9 ( )
and f = 0.95 ( ). The red, dashed line corresponds to the functional relation
b ·W(b2/2π). (b) 〈N〉flat in terms of the flatness criterion f for b = 5 ( ), b = 10
( ), b = 20 ( ), b = 50 ( ) and b = 100 ( ). The red, solid line corresponds to a
power law (1− f)−2. (c) Collapse of data points if using the analytical determined
scaling behavior (2.92). The colorscale of the points corresponds to the logarithm
log(b) of the number of used bins.

flatness f fit parameter c
0.75 0.434± 0.003
0.8 0.440± 0.003
0.85 0.446± 0.004
0.9 0.452± 0.004
0.95 0.450± 0.005

Table 2.1: Fit parameters for
the dependence of the Wang-
Landau runtime on the number
of bins and the flatness. The left
column shows the flatness crite-
rion f , the right column lists the
fit parameter c in Eq. (2.93).

can be found for different values of the flatness f . Taking into account all
obtained values of the simulation, a fit reveals the dependence

〈N〉flat = (0.4236± 0.0006) · 2b
(1− f)2 ·W

(
b2

2π

)
. (2.94)

Errors in the DOS

Until know we estimated the average number 〈N〉 that is necessary to reach
a flat histogram using the assumption that we sample with respect to the
exact density of states (DOS), so that the probability p = 1/b to sample
one of the b energy bins is independent of the bin. Of course, if doing actual
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2.3. Details about Wang-Landau simulations

Wang-Landau simulations, the DOS is not known a prior, but gradually
improved from an initial estimation.
In this section we calculate the influence of errors in the DOS on the

average runtime 〈N〉 of one stage of a Wang-Landau algorithm. We assume
that the probability for sampling the i-th energy bin is no longer given by
p = 1/b (independent of the energy bin), but by

qi := p · (1 + δpi) = 1 + δpi
b

We consider first a global shift in the probabilities, second we take into
account that the errors in each bins follow certain distributions. Note that
we only use the Gaussian approximation here, and omit the respective index.

Global shift in the probability We first consider a global shift in the
probabilities, i.e. that δpi = δp 6= 0 is independent of the energy bin. This
is of course only an approximation, because in this case the normalization
of the probabilities of the single bins fails. However, the results can valuable
hints for the behavior of the runtime for δp < 0, because the bins with to
small probability determine the runtime of the algorithm. The probability
that the algorithm is flat after N bins is then given by

pf(N, q) =
(∫ ∞

fNp
dx 1√

2πq(1− q) exp
[
−1

2
(x−Nq)2

Nq(1− q)

])b
Switching the integration variable to y = x−Nq and evaluation the integral
using the error function results in

pf(N, q) =
[

1
2 −

1
2 erf

(√
N(fp− q)√
2q(1− q)

)]b

= 1
2b erfcb

(√
N(fp− q)√
2q(1− q)

)
.

Note that we have to choose q > fp, otherwise we would obtain a negative
probability in this approximation. Intuitively this means that for q ≤ fp
the flatness would on average never be reached. Using again the asymptotic
expansion of the conjugated error function leads to

pf(N, q) =
[
1−

√
2
πN

√
q(1− q)
q − fp exp

(
−N(fp− q)2

2q(1− q)

)]b

= 1− b
√

2
πN

√
q(1− q)
q − fp exp

(
−N(fp− q)2

2q(1− q)

)
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We now formulate the probability in terms of the deviation δp. This
means we have to replace√

q(1− q)
q − fp =

√
1− p+ δp(1− 2p)√
p(1− f + δp) =

√
b− 1 + δp(b− 2)

1− f + δp
≈
√
b(1 + δp)

1− f + δp

Inserting into the flatness probability yields

pf(N, δp) = 1− b
√

2
πN

√
b(1 + δp)

1− f + δp
exp

(
−N2 ·

(1− f + δp)2

b(1 + δp)

)
,

and using Eq. (2.88) for Nmax can be used analogous to the case without
error, resulting in[

1− b3/2
√

1 + δp√
2πNmax(1− f + δp)

exp
(
−Nmax(1− f + δp)2

2b(1 + δp)

)]2

= 0,

which has the solution

Nmax(δp) = 2b(1 + δp)
(1− f + δp)2 W

(
b2

2π

)
(2.95)

The relevant range of parameters is δp < 0, which means that the probability
to reach the bins is smaller than the inverse of the actual density of states.
These states are suppressed in the simulation, which means that the flatness
criterion will probably fail there.

Distributed probability shifts Until now we only considered global
shifts in the probability. It was already mentioned that this is not a good
assumption, because the normalization of the probabilities is not fulfilled.
In this section we suppose that the errors in the probabilities come from a
probability distribution Perror(δp, σδp) with mean 0 and standard deviation
σδp. The convenient choice motivated by the law of large number is a
Gaussian distribution

Perror(δp, σδp) = 1√
2πσδp

exp
(
−(δp)2

2σδp

)
.

There are now two possibilities one can calculate Nmax(σδp), the first is to
average the result Eq. (2.95) for Nmax(δp) over the probability distribution
Perror(δp, σδp) by

Nmax(σδp) =
∫ ∞
−∞

d(δp)Perror(δp, σδp)Nmax(δp),
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the second possibility is to use Perror(δp, σδp) already in the calculation of
pf by

pf(N, σδp) =
b∏
i=1

∫ ∞
−∞

d(δpi)Perror(δpi, σδp)

∫ ∞
fNp

dx e
− 1

2
(x−Nqi)

2
Nqi(1−qi)√

2πqi(1− qi)


=

b∏
i=1

∫ ∞
−∞

d(δpi)Perror(δpi, σδp)

·
[
1−

√
2
πN

√
qi(1− qi)
qi − fp

exp
(
−N(fp− qi)2

2qi(1− qi)

)]

where qi = p(1 + δpi).
In both cases there is a problem if Perror(δpi, σδp) 6= 0 for δi in a small

neighborhood of 1− f , because there is a pole of order 2 in the integrand,
which makes the whole term not integrable. So instead of using a Gaussian
Perror(δpi, σδp), we use a uniform distribution

Perror(δpi, σδp) = 1
2
√

3σδp
1]−
√

3σδp ,
√

3σδp [

which has the same standard deviation as the Gaussian distribution. This
implies that non-integrability only occurs for 1− f ≥

√
3σδp.

For the first case, averaging directly over Nmax(δp), we get

Nmax(σδp) =
∫ √3σδp

−
√

3σδp

d(δp)
2
√

3σδp
2b(1 + δp)

(1− f + δp)2 W
(
b2

2π

)

=
b ·W

(
b2

2π

)
√

3σδp

[
log

(
1− f +

√
3σδp

1− f −
√

3σδp

)
+ 2

√
3fσδp

(1− f)2 − 3σ2
δp

]
(2.96)

For small σδp this can be expanded as

Nmax(σδp) =
2bW

(
b2

2π

)
(1− f)2

[
1 + 2f + 1

(1− f)2σ
2
δp + 9(4f + 1)

5(1− f)4 σ
2
δp +O(σ6

δp)
]

The same result can be obtained by expanding Eq. (2.95) up to second or
fourth order in δp (which then cancels the divergence) and integrating over
a full Gaussian distributed δp.
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The second case is more complicated. It is not possible to give a closed
solution of the integral over δp because of the integration variable occurring
in a rational function. A possible approximation is to replace

erf
(√

N(fp− qi)√
2qi(1− qi)

)
→ erf

( √
N(fp− qi)√
2fp(1− fp)

)

which is a good approximation, because for N →∞ the error function is
almost a step function around its root qi = fp, where qi(1 − qi) does not
change much and can be approximated by its value at qi = fp. This leaves
us with calculating

pf(N, σδp)

=
b∏
i=1

√
3σδp∫

−
√

3σδp

d(δpi)
2
√

3σδp

[
1−

√
2
πN

√
fp(1− fp)
qi − fp

exp
(
−N(fp− qi)2

2fp(1− fp)

)]

=
b∏
i=1

√
3σδp∫

−
√

3σδp

d(δpi)
2
√

3σδp

[
1−

√
2
πN

√
fb

1− f + δpi
exp

(
−N(1− f + δpi)2

fb

)]

With Ei denoting the exponential integral, the integral can be executed and
yields

pf(N, σδp) =
b∏
i=1

1− 1
2
√

3σδp

√
fb

2πN

[
Ei
(
−N(1− f +

√
3σδp)2

fb

)

−Ei
(
−N(1− f −

√
3σδp)2

fb

)]]
(2.97)

Using the exact form or the expansion Ei(−x) = −x−1 exp(−x) for x→∞
leads to an equation for Nmax that cannot be solved analytically in terms
of common functions if inserting the flatness probability into Eq. (2.88).
However, a numerical solution of this equation is possible, but will not be
used in the comparison with the data.

Numerical results Numerical simulations to check the analytical approx-
imations were also done for the case of errors in the DOS. Therefor we chose
the probability for choosing energy bin Ei not as p = 1/b independent of i,
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Figure 2.16: Average time 〈N〉flat until a Wang-Landau simulation becomes flat
in terms of the standard deviation σδp of the distribution of the errors for different
flatness criteria f (a) and number of bins b (b). The black solid line corresponds
to the analytical approximation (2.96).

but as (1 + δpi)/cb with δpi being a Gaussian distributed random variable
with mean 0 and standard deviation σδp, and c the normalization constant
c := ∑

i(1 + δpi)/b. As before we then calculated the average number 〈N〉
of steps that are necessary to obtain a flat distribution, in terms of the
standard deviation σδp of the errors, the flatness condition f and the number
of bins b. The results of the numerical calculations are presented in Fig. 2.16

One can see that the analytical approximation describes the influence of
the error almost perfectly for small σδp. Also the existence of a divergence can
be explained, but the its location is approximated wrong with

√
3σδp = 1−f ,

the actual divergence occurs for smaller σδp than predicted. This is because
the bin with the smallest probability qi = p(1 + δpi) (and therewith the
smallest δpi) does strongly dominate the number of necessary steps to reach
flatness. The smallest number δp of b variables is not distributed with mean
0 and standard deviation σδp, but with mean µ < 0. So the divergence
occurs already at

√
3σδp = 1− f + µ.

So both the numerical data and the analytical approximation shows a
divergence of the number of steps necessary to obtain a flat distribution.
This does not imply that the Wang-Landau sampling gets stuck if the error
of an intermediate estimation of the DOS is to high. Remember that the
modification of the DOS by Wang-Landau sampling was neglected for both
the analytical and the numerical calculations. These modifications are
self-healing, i.e. they drive the DOS towards its actual value, i.e. if the error
of the DOS is to large for the incidence histogram to become flat, the DOS
will be gradually modified in such a way that the error becomes smaller.
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2. Markov chain Monte Carlo simulations

2.3.3 Approximative counting with multicanonical Monte
Carlo simulations

The result of a Wang-Landau simulation as described in Sec. 2.2.2 or other
Markov chain Monte Carlo algorithms as entropic sampling or the transfer
matrix method is the density of states (DOS) g(E) of the system. The
DOS g(E) is the number of microstates ω ∈ Ω with energy E, but can
b calculated only up to a multiplicative normalization factor, which is
irrelevant for calculating thermodynamic expectation values, with theses
numerical algorithms. The knowledge of the normalization factor would it
make possible to numerically estimate the actual number of states with a
certain energy, or even the total number of states within the system.

Markov chain Monte Carlo methods in general can be used for an approxi-
mate counting of states [230,240,242], and also the Wang-Landau algorithm
was used in computer science to estimate number of solutions of certain
problems [161, 162]. In this section we propose a method for estimating the
number of states of an arbitrary system by using Wang-Landau simulations
(or other flat histogram algorithms) that does not rely on any additional
information about the system. In this thesis, this method will be used for
estimating the number of triangulations, but it can have valuable applica-
tions in other fields of physics. It could be used for calculating the residual
entropy of ice [87, 325], which is the degeneracy of the ground state and
important for the low-temperature behavior of the system. Another possible
field of application could be the calculation of the residual entropy of frus-
trated Ising anti-ferromagnets, or q-sate Potts anti-ferromagnets without
frustration [70,116,426].
There are three possibilities for determining the normalization factor of

the calculated DOS. The first possibility is that from other considerations
or calculations the degeneracy of a certain energy level (in most cases the
ground state energy) is known. The DOS obtained from the Wang-Landau
simulation can then be rescaled by the ratio of the known degeneracy and
the calculated value of the DOS at this energy level. The second possibility
is quite similar, if the total number of states is known (e.g., in almost all
lattice systems), the DOS can be rescaled with the ratio of the known total
number of states and the sum of the calculated DOS over all energy bins.
The third possibility that neither the degeneracy of a single energy level
nor the total number of states is known requires a slight alternation of the
simulation setup. This situation can occur in complicated systems, e.g., the
triangulations we consider in the course of this thesis, or if one artificially
cuts the range of accessible energies to accelerate the simulations.
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2.3. Details about Wang-Landau simulations

The idea of the generic counting algorithm is to extend the energy function
of the system so that the degeneracy of a certain energy bin is known.
Suppose that there is an energy function E : Ω→ R that maps a state to
its energy. We choose a reference state ωr ∈ Ω with reference energy E(ωr)
and define the extended energy

Ẽ [ωr] : Ω→ R× {0, 1}

ω 7→
{

(E(ω), 0) ω 6= ωr

(E(ω), 1)) ω = ωr

(2.98)

which is a pair consisting of the original energy E(ω) and an integer which
is 1 if the state ω and the reference state ωr are equal, otherwise it is 0.

So if we calculate the density of states with respect to the new extended
energy function, the degeneracy of the extended energy bin (E(ωr), 1) is
known to be 1 and can be used for the normalization of the whole density
of states.
The defined counting algorithm can be applied for each system where

one is able to compare two states for equality and non-equality (to test
whether the actual states match the reference state) and where the reference
state does not have measure 0 in the set of all states (so there is only a
finite number of states Ω). The second condition is no real restriction since
counting states itself is restricted to problems with N 3 |Ω| <∞.
For doing flat histogram Markov chain Monte Carlo simulations, the

energy difference ∆Ẽ[ωr](ω1 → ω2) induced by a step ω1 → ω2 must be
calculated:

∆Ẽ[ωr](ω1 → ω2) =


(∆E(ω1 → ω2), 0) ω1 6= ωr ∧ ω2 6= ωr

(∆E(ω1 → ω2), 1) ω1 6= ωr ∧ ω2 = ωr

(∆E(ω1 → ω2),−1) ω1 = ωr ∧ ω2 6= ωr

(0, 0) ω1 = ωr ∧ ω2 = ωr

(2.99)

Using this convention one can use the usual formula

Ẽ[ωr](ω2) = Ẽ[ωr](ω1) + ∆Ẽ[ωr](ω1 → ω2)

with an addition that is defined component-wise for each element of the
extended energy pair.

One can also think about not choosing one single reference state ωr, but
a (small) set Ωr ⊂ Ω of reference states. The extended energy function can
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2. Markov chain Monte Carlo simulations

then be defined as

Ẽ[Ωr] : Ω→ E× {−1, 0, 1}

ω 7→
{

(E(ω), 0) ω /∈ Ωr

(E(ω), 1)) ω ∈ Ωr

(2.100)

The energy difference can also be calculated analogous to Eq. (2.99) as

∆Ẽ[Ωr](ω1 → ω2) =


(∆E(ω1 → ω2), 0) ω1 /∈ Ωr ∧ ω2 /∈ Ωr

(∆E(ω1 → ω2), 1) ω1 /∈ Ωr ∧ ω2 ∈ Ωr

(∆E(ω1 → ω2),−1) ω1 ∈ Ωr ∧ ω2 /∈ Ωr

(∆E(ω1 → ω2), 0) ω1 ∈ Ωr ∧ ω2 ∈ Ωr

(2.101)

If the reference states Ωr have different original energies, one can either
consider extended energies of reference states with different energy as equal

(E1, r1) =: Ẽ1[Ωr]
!= Ẽ2[Ωr] := (E2, r2)

⇔r1 = r2 = 1 ∨ (r1 = r2 ∧ E1 = E2)

so that the incidence histogram and the density of states only have one bin
for the reference state, or as unequal

(E1, r1) =: Ẽ1
!= Ẽ2 := (E2, r2) ⇔ r1 = r2 ∧ E1 = E2

so that the incidence histogram and the density of states have one reference
bin for each possible energy of a reference state.

In general the performance of the algorithm compared with other counting
methods depends on the ratio of the calculation time necessary for comparing
to states and for calculating the energy difference of and possibly executing
a step. Another important factor is the number of chosen reference states.
If the number is too small, the entropy differences between the reference bin
and bins that are connected via steps is large, which make the Wang-Landau
simulation stay for a long time in the reference state. While this problem
can be solved by using a continuous time version of the Wang-Landau
algorithm only for the reference bin, for very large entropy differences it can
be a problem to even reach the reference bin from a connected bin, because
the probability for selecting such a step is small. On the other hand, if one
chooses the number of reference states too high, one has to perform a lot of
comparisons for steps towards the energy of the reference bin, which are
expensive in computational time.
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2.3. Details about Wang-Landau simulations

As a conclusion, note that the term energy function is motivated by the
notions of statistical physics, which most of the Markov chain Monte Carlo
simulations have been developed for. The proposed counting algorithm can
be applied to a whole range of systems an objects, e.g., triangulations within
this thesis. The energy function there is generalized to any function that
quantifies the system, e.g., the number of maximal simplices in triangulations,
and that can be calculated fast, especially its difference with respect to
elementary steps.
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Embedded triangulations, which are tessellations of certain convex subspaces
of Rd using simplicial building blocks, are relevant for a broad range of
physical phenomena. They serve as discretisation of all kinds of surfaces,
hypersurfaces and volumes [132], yielding applications of computational
geometry in physics, material science, medical image processing or even in
computer graphics and visualization [151,228,257,258,261]. Many physical
systems can be described by random surface models [178] – based on random
triangulations. For instance, biological membranes and vesicles can be
modeled using triangulated surfaces with curvature-dependent Hamiltonians
[190,191,255,256,263,289].
Triangulations are also used as a random graph model for real world

networks: Random Apollonian networks [47, 372, 433] are basically trian-
gulations and show both small-world and scale-free behavior, as many real
world networks. Since each graph is a subgraph of a triangulation of a closed
surface with certain topology, the properties of such triangulations arouse
much interest [52,259].
The (Causal) Dynamical Triangulation approach even tries to describe

quantum gravity from scratch with an ensemble of random spacetime tri-
angulations as their central entity [38]. Based on a discrete version of
general relativity, where spacetime is approximated by triangles or higher-
dimensional analogues, the curvatures become determined purely by the
topological structure of the underlying triangulation, e.g. the number of
triangles. The resulting action of the theory can be used to extract a
phase diagram and observables - in a path-integral like sum over histories
approach [26].

In this chapter we consider triangulations of embedded point sets, where
the coordinates of the points are fixed and relevant. We mainly use the
important subclass of lattice triangulations, so that the underlying point set
can be controlled with only few integer parameters (the size of the lattice
in every dimension), and different system sizes can be compared easily.
Furthermore, lattice triangulations are widely studied in the mathematical
literature [6, 109,238,374]. The considerations within these chapter can be
easily transfered to non-lattice point sets.
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3. Embedded triangulations

Sec. 3.1 of this chapter contains the definition of triangulations of point
sets in arbitrary dimensions. A general method for generating triangulations
of point sets by lifting function is introduced, and the pulling, the pushing
and the Delaunay liftings are defined. Furthermore elementary moves
(denoted as flips) between different triangulations of the same point set are
defined, that can be used to apply Markov chain Monte Carlo simulations
on ensembles of triangulations. An important result is Eq. (3.11), which
calculates the ratio of selection probabilities for a flip selected by a wall and
its inverse flip, an important quantity that is necessary for ensuring detailed
balance in Monte Carlo simulations.
Sec. 3.2 considers triangulations of two-dimensional integer lattices, the

main goal is to estimate the number of possible triangulations using an
approximative counting scheme based on the Wang Landau algorithm. As
a basis for this algorithm an energy function on triangulations is defined
in Eq. (3.13), and the scaling of the density of states with respect to these
energies is calculated and presented in Fig. 3.17. To be able to simulate
large system sizes, cuts on the density of states are introduced and rectified
by inspecting the cumulative sum. Finally the entropy density (denoted
sometimes as capacity in the mathematical literature) is calculated for
lattices up to size 24 × 24, and their limited is extrapolated for infinite
system sizes in Fig. 3.19. These results replace the analytically known
bounds on the entropy density by an estimation that is more accurate in
several orders of magnitude. This Sec. 3.2 is based on the publication

[253] J. F. Knauf, B. Krüger, and K. Mecke, Entropy of unimodular lattice
triangulations, EPL 109(4), 40011 (2015)

The design and the implementation of the numerical simulation, recording
the necessary data sets and first drafts of the text were done by the first
author Johannes F. Knauf. I worked on the visual presentation of the
figures, some of the placement of the work in the existent literature, and
the final version of the text.

The following Sec. 3.3 applies the methods of Sec. 3.2 to three-dimensional
lattices of different geometries (sticks, planes and cubes). We first consider
the set on triangulations of the smallest three-dimensional integer lattice
(unitcube consisting of eight vertices). Mainly for pedagogical reasons,
the six different non-isomorphic triangulations of the unitcube are derived
and displayed, and the number of different triangulations of the unitcube
is then calculated to be 74 by symmetry arguments. Using the number
and the geometry of the unitcell triangulations, bounds for the entropy
density for triangulations of lattices with different geometry were derived in
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3. Embedded triangulations

Subsec. 3.3.3. The main result of this section, the scaling and the infinite
system size limit of the entropy density, is displayed in Fig. 3.34.

Sec. 3.4 interprets two-dimensional lattice triangulations as maximal pla-
nar graphs, and calculates typical graph properties like clustering coefficient,
average shortest path length and spectral properties of the adjacency and
the Laplacian matrix. For the maximal ordered state of the lattice trian-
gulations analytical calculations lead to the spectrum of the adjacency in
Eq. (3.62) and the Laplacian matrix in Eq. (3.64). Considering expectation
values in a random ensemble of triangulations in terms of the system size,
a similar behavior to usual models of random graphs can be found. Mi-
crocanonical and canonical calculations showed that for certain choices of
energy or inverse temperature triangulations show small-world and scale-free
behavior as many real world networks. In the canonical ensemble a negative
quasi-critical temperature can be found that coincides for all considered
observables (displayed in Fig. 3.57), but an actual phase transition is not
present, because the regime of negative temperatures is only well-defined
for finite system sizes. This section is based on the two papers

[265] B. Krüger, E. M. Schmidt, and K. Mecke, Unimodular lattice trian-
gulations as small-world and scale-free random graphs, New J. Phys.
17(2), 023013 (2015)

[266] , Sepectral properties of unimodular lattice triangulations, J.
Stat. Phys. 163(3), 514–543 (2016)

and on the project report

[360] E. M. Schmidt, Spectrum of the discrete Laplace operator on two-
dimensional lattice triangulations, (2013), short term research project

of a short-term project of Ella Schmidt supervised by me, where she did
simulational work on the Laplacian spectral properties of random and
microcanonical triangulations.
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3. Embedded triangulations

3.1 Embedded triangulations and flips

In this section we will introduce the basic notations necessary to deal
with embedded triangulations (also called triangulations of point sets)
and flips between these triangulations. We give a method for constructing
triangulations of arbitrary point sets and describe some special triangulations.
Additionally we list some results about the ergodicity of the flips in the
space of all triangulations.
For the presentation we follow mainly the nice book [132], but restrict

to the very basic concepts that are necessary for understanding the work
about embedded triangulations in this thesis. Readers that are interested in
more details and some proofs of theorems we only give here without proof
should refer to [132].

3.1.1 Simplex, complex and triangulation

First we need some very basic geometrical definitions to work with and
to build our later considerations upon. We start with defining a point
configuration:

Definition 3.1 (point configuration, index set [132, p. 47]):
A point configuration X in d dimensions is a countable set of coordinate
d-tuples that is not necessarily unique, i.e. there can be two points
with the same coordinates. A set J together with a map φ : J →
X; J 3 j 7→ xj so that the inverse map φ−1 : A → J ;A 3 xj 7→ j
exists, is called the index set of the point configuration X.

The allowance for duplicated points can simplify some propositions and
proofs, but for our purposes we deal only with distinct points. So for our
purposes a d-dimensional point configuration is always a set of points, which
is a subset of the Rd. For this reason we denote point configurations with
curly brackets, as normal sets.
Triangulations are tessellation of space into elementary building objects,

whose corners are defined by the points of the point configurations. So one
needs to define the space spanned by points, this is done with the help of
the convex hull:

Definition 3.2 (convex hull [132, p. 50]):
Let X = {~xj : j ∈ J} be a point configuration with index set J . The
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Figure 3.1: Convex hull.
Two-dimensional point set (left)
and its convex hull (right), which
is the intersection of all convex
sets that contain all of the points
(compare Def. 3.1). 0
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convex hull conv(X) of X is the following set:

conv(X) :=

~y =
∑
j∈J

λj~xj : (λj ≥ 0∀j ∈ J) ∧
∑
j∈J

λj = 1

 (3.1)

For two points the convex hull is the line segment between this points,
for three points it is the triangle spanned by these points, for four
points (in three dimensions) it is the tetrahedron spanned by this
points.

The convex hull can alternatively be defined as the minimal convex set
containing all points of the point set [132, p. 43]. In Fig. 3.1 an example for
the convex hull of a point set is depicted.
The convex hull can be used to define whether a given set of points

is dependent or independent, which is strongly connected with the linear
(in)dependency of vectors.

Definition 3.3 (independence and dependence, general position [132,
p.5̇1]):
Let X be a point configuration with k := |X| points. If dim(convX) =
k−1 the point configuration is called independent, otherwise the point
configuration is called dependent. A d-dimensional point set X is
called in general position, if every subset Y ⊂ X with |Y| ≤ d+ 1 is
independent.

A point configuration is independent, if and only if the vectors connecting
a certain point with all other points of the point configuration are linear
independent.

Using the definitions of convex hull and independence of point configura-
tions one can define simplices, which will be the elementary building blocks
of triangulations:

Definition 3.4 (simplex [132, p.4̇4]):
Let X be an independent point configuration with k := |X| points
and index set J . The convex hull conv(X) of X is then called (k− 1)-
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Figure 3.2: Different types of simplices.
(Left to right) 0-simplex consisting of 1 point, 1-simplex (line) spanned by two points,
2-simplex (triangle) spanned by 3 points and 3-simplex (tetrahedron) spanned by 4
points.

simplex. As an abbreviation a simplex is often identified with the
underlying point configuration or its index set.

Examples for simplices are depicted in Fig. 3.2. For each k-simplex with
k ≥ 1 one can consider the simplices defined by proper subsets of the original
simplex.

Definition 3.5 (subsimplex, supersimplex):
Let σ = {~x1, . . . , ~xk} be a k-simplex spanned by k + 1 points. A
simplex σ ⊂ σ with (k + 1) points that are a proper subset of the
points of the original simplex is called k̃-subsimplex of σ. The original
simplex σ is called supersimplex of σ.

Using simplices we can define a simplicial complex, which can be seen as
pre-triangulation, and finally a triangulation:

Definition 3.6 (simplicial complex of a point configuration [132,
p.4̇5f]):
Let X be a point configuration with n points in d dimensions with
index set J . A simplicial complex S ⊂ 2J is a subset of the power set
2J of J (a set of subsets σ ⊂ J), or equivalently a set of simplices σ
spanned by the points of X. fulfilling the following two properties:

1. Closure: For every simplex contained in the simplicial complex,
all its subsimplices are also contained in the simplicial complex.

σ ∈ S, σ ⊂ σ ⇒ σ ∈ S

2. Intersection-freeness: The intersection of two simplices of the
simplicial complex is either empty or a face/subsimplex of both
simplices.

σ1, σ2 ∈ S ⇒ σ1 ∩ σ2 ⊂ σ1 ∧ σ1 ∩ σ2 ⊂ σ2
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Figure 3.3: Simplicial complex and triangulation.
Point set (left), a simplicial complex of this point set (middle) and a triangulation
of the point set (right). Note that the simplicial complex does not need to be
connected, and that the triangulation does not need to include every point as
underlying point of a simplex.

So a simplicial complex is a collection of simplices that do not overlap, even
not necessarily connected, an example can be found in Fig. 3.3 But one
wants to have additional structure that ensures that the whole space formed
by the points is tessellated, which means that every point of the convex hull
is part of at least one simplex.

Definition 3.7 (triangulation of a point configuration [132, p.5̇4]):
Let X be a point configuration and T be a simplicial complex of
X. The simplicial complex T is called triangulation, if it fulfils the
following property:

3. Union: The union of all simplices of T is the convex hull conv(X)
of the point configuration X.

Note that it is not demanded by the definition of a triangulation that
every point of a point set underlying a simplex of the triangulation. A
triangulation where this property is fulfilled is called full. An example for
a (non-full) triangulation can be found in Fig. 3.3. In the following we
often denote only the maximal simplices of a triangulation, because the
low-dimensional simplices can be easily deduced from the maximal ones.

3.1.2 Special triangulations

As a next step we present a method for constructing some special triangula-
tions of a points set. Therefor we lift the point configuration to a higher
dimension and look at the boundary of the higher dimensional hull.

Definition 3.8 (lifted point configuration [132, p.5̇4f]):
Let X = (~x1, ~x2, . . . , ~xk) a point configuration in d dimensions and
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3. Embedded triangulations

ω : Rd → R an arbitrary function. The point configuration

Xω =
{(

~x1
ω(~x1)

)
,

(
~x2

ω(~x2)

)
, . . . ,

(
~xk

ω(~xk)

)}
(3.2)

is called lifted point configuration with respect to the height function
ω.

A lifting of a point configuration can induce a triangulation as described
in the following definition:

Definition 3.9 (lifting-induced triangulation [132, p.5̇4f]):
Let X = (~x1, ~x2, . . . , ~xk) a point configuration in d dimensions and ω :
Rd → R a lifting function. Let P = conv(Xω) the convex hull polytope
of the lifted triangulation. A face of P is called visible from below if for
every point (~x, y)t of the face (~x, y+ε)t ∈ P and (~x, y−ε)t /∈ P . If each
face of P visible from below is a d-simplex, there is a bijection from this
faces to simplices in conv(X) that form the triangulations of X lifting
induced triangulation. More precisely, a face that is visible from below
and spanned by the points (~xπ(1), ω(~xπ(1)))t, . . . (~xπ(d+1), ω(~xπ(d+1)))t
(with π being an arbitrary permutation) is mapped to the simplex
σ = {~xπ(1) . . . (~xπ(d+1)}.

Note that not every triangulation of a point configuration can be obtained
by lifting the point configuration using a height function ω. A counterex-
ample is the so-called mother of all examples [132, p. 56]. This gives rise to
the following definition:

Definition 3.10 (regular triangulation [132, p. 55]):
A triangulation T of a point configuration X is called regular, if there
exists a height function ω so that T is the lifting-induced triangulation
of the height function ω.

In the following we present three important lifting functions and de-
scribe the triangulations they lead to. Let X = (~x1, ~x2, . . . , ~xk) be a point
configuration. The height function

ωpush : Rd → R, ~xi 7→ c · i (3.3)

with a sufficiently large constant c induces the pushing triangulation [132,
p. 178ff], the height function

ωpull : Rd → R, ~xi 7→ −i (3.4)
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Figure 3.4: Pushing triangulation.
Construction of the (full) pushing triangulation of a point set. After starting with
the first simplex {1, 2, 3} the vertices are connected step by step to the faces or
(d− 1)-simplices of the already present triangulation that are visible to them. If
choosing to create the full pushing triangulations, the additional edges (dashed
lines) are inserted by connecting the vertices that are inside of the already obtained
triangulation with the vertices of the maximal simplices they are contained in.

with a sufficiently large constant c induces the pulling triangulation [132,
p. 181ff], and the height function

ωDelaunay : Rd → R, ~xi 7→ ~xti · ~xi (3.5)

induces the Delaunay triangulation [132, p. 57]. Note that the pushing
and the pulling triangulation depend on the order of the points in the
point configuration, where the Delaunay triangulation is independent of the
order. If using the opposite ordering of the points, the pushing triangulation
becomes the pulling triangulation and vice versa.

Pushing triangulation

Instead of directly considering the lifted point configuration, a pushing
triangulation can also be constructed with the following algorithm (in two-
dimensions, that can easily be generalized for higher dimensions) [132,
p. 178ff]: Start with the vertices ~x1, ~x2 and ~x3 and insert the triangle
constituted by these vertices into the triangulation. The consider the next
vertex ~xi in the ordered list of points. If ~xi ∈ conv(~x1, . . . , ~xi−1) (which
means that the vertex is inside the convex hull of the vertices that were
included before), then do not include the point into the triangulation.
Otherwise (the vertex is outside of the convex hull) insert for each face of
the convex hull which is visible from ~xi (each line from ~xi to a point of the
face does not intersect the interior of the convex hull) the maximal simplex
consisting of the visible face and ~xi. This algorithm is depicted in Fig. 3.4.
If one wants to construct a full triangulation, in the case where the new

vertex is already contained in the convex hull of the previous vertices, the
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Figure 3.5: Pulling triangulation.
Construction of the pulling (middle) and full pulling (right) triangulation of a point
set (left). The vertex with the lowest index not located on the boundary of the
convex hull is connected with all (d− 1)-simplices on the convex hull.

maximal simplex where ~xi is located cab be divided into d + 1 smaller
maximal simplices, each of them containing the vertex ~xi and a (d − 1)-
subsimplex.

Pulling triangulation

As for the pushing triangulations, there is also an algorithm for constructing
the pulling triangulation without considering the actual lifting function [132,
p. 181f]. Given a point configuration X, choose the point ~xi ∈ X that
is not located on the boundary of the convex hull ∂conv(X) of the point
configuration X, so that i is minimal. For every (d − 1)-simplex that is
completely contained in the boundary of the convex hull, insert into the
triangulation the d-simplex that is spanned by the (d− 1)-simplex and the
interior point ~xi.
To obtain a full pulling triangulations, all the other interior vertices can

be included step by step by subdividing the maximal simplices they are
located in. In Fig. 3.5 the construction of the (full) pulling triangulation is
depicted.

Delaunay triangulation

The Delaunay triangulation is a very important triangulation in physics,
because it has some important properties [132, p. 97f]. The dual graph of
the Delaunay triangulation is the Voronoi tessellation, which consists of
polygons that are the parts of the space which are nearest to vertices of
the point configuration. Another property is that if two triangles share a
common edge, the angles of the triangles which are located at the opposite
of the common edge sum up to π or less. This means that the Delaunay
triangulation is the most regular triangulation in the sense that it does not
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Figure 3.6: Delaunay triangulation.
From left to right: Planar point configuration with its convex hull, Delaunay
triangulation of this point set, Voronoi tessellation of the point set and combined
image with Voronoi tessellation and Delaunay triangulation.

posses very narrow or wide angles. This property is equivalent to saying
that the circumspheres of every maximal simplex do not contain any other
points of the given point set. An example for the Delaunay triangulation
and the Voronoi tessellation of a point set is given in Fig. 3.6.
In two dimensions there is an easy way to obtain the Delaunay triangu-

lation which will be presented in Sec. 3.1.3. This algorithm modifies the
triangulation locally using the so-called flips and converges towards the
Delaunay triangulation.

3.1.3 Flips between triangulations

Our goal is to learn something about all possible triangulations of a point
set, e.g. the number of triangulations or other statistical properties using
Markov chain Monte Carlo simulations. Therefor one needs a possibility to
move from one triangulation of a given point set to another triangulation of
the same point set. Such an elementary move will be called flip.

Definition - Minimal dependent sets, circuits and flips

Definition 3.11 (minimal dependent set [132, p. 72f]):
A set of points X = {~x1, . . . ~xk} in d dimensions is called a minimal
dependent set, if it is a dependent set and each proper subset is an
independent set.

Lemma 3.12. If a set of points X = {~x1, . . . ~xk} is a minimal dependent
set, there is a unique affine dependency relation

k∑
i=1

λi~xi = 0
k∑
i=1

λi = 0
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3. Embedded triangulations

Uniqueness means here up to a common multiplicative factor for each λ.
Note that in d dimensions a minimal dependent set does not always consist
of (d + 2) points, this is only true if all points are in general position. If
the points are restricted to an affine subspace, a minimal dependent set can
consist of less points (consider e.g. three collinear points in two dimensions).

Definition 3.13 (oriented circuit [132, p. 72f]):
Let X = {~x1, . . . ~xk} be a minimal dependent set and λi as in the
previous lemma. The pair (J+, J−) defined by the sets

J+ := {~xi ∈ X | λi > 0}
J− := {~xi ∈ X | λi < 0} (3.6)

is denoted as oriented or signed circuit of the minimal dependent set
X.

Note that |J+|, |J−| ≥ 1, otherwise the sum of all λi could not be 0 as
demanded in the definition of a minimal dependent set. Of course also the
definition of a circuit depends on the choice of the sign of the λi, so that
one has to identify the circuits

(J+, J−) ≡ (J−, J+)

A circuit of the minimal dependent set X can also equivalently be defined
in the following way [132, p. 73]: A circuit is a partition of X into parts J+
and J− such that

conv(J+) ∩ conv(J−) 6= ∅
Consider for example the following minimal dependent set in two dimen-

sion:
X =

{
~x1 =

(
0
0

)
, ~x2 =

(
0
1

)
, ~x3 =

(
1
0

)
, ~x4 =

(
1
1

)}
(3.7)

To calculate its oriented circuit, we have to find λ1, λ2, λ3 and λ4 so that

λ1~x1 + λ2~x2 + λ3~x3 + λ4~x4 = 0
λ1 + λ2 + λ3 + λ4 = 0

This can be translated into the following matrix equation:

0 0 1 1
0 1 0 1
1 1 1 1

 ·

λ1
λ2
λ3
λ4

 = ~0
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3.1. Embedded triangulations and flips

Figure 3.7: Minimal dependent
point set (3.7) in two-dimensions,
its oriented circuit (denoted by
plus and minus) and its two pos-
sible triangulations T+ (left) and
T+ (right). +

+-

- +

+-

-

The solutions of this equation are the vectors of the kernel of the leading
matrix:

kern

0 0 1 1
0 1 0 1
1 1 1 1

 = kern

1 0 0 −1
0 1 0 1
0 0 1 1

 =
〈

λ
−λ
−λ
λ


〉

So we find that J+ = {~x1, ~x4} and J− = {~x2, ~x3}. The circuit points are
sketched in Fig. 3.7.

One can show that there are exactly two triangulations for every oriented
circuit. An interchange between these two triangulations will define our
local flip.

Theorem 3.14 (triangulations of circuits [132, p. 73]). Let X = {~x1, . . . ~xk}
be a minimal dependent set and (J+, J−) its circuit. Then there are the
following two triangulations of X:

T+ := {Y ⊂ X : J+ * Y}
T− := {Y ⊂ X : J− * Y} (3.8)

This is equivalent to saying that the triangulations are defined by the maximal
simplices {X \ {j+} | j+ ∈ J+} and {X \ {j−} | j− ∈ J−} and their faces.

We consider again the oriented circuit of the minimal dependent set given
in Eq. (3.7) and Fig. 3.7. The two triangulation are given by:

T+ = {{x1, x2, x3}, {x2, x3, x4}, {x1, x2}, {x1, x3}, {x2, x3},
{x2, x4}, {x3, x4}, {x1}, {x2}, {x3}, {x4}}

T− = {{x1, x2, x4}, {x1, x3, x4}, {x1, x2}, {x1, x3}, {x1, x4},
{x2, x4}, {x3, x4}, {x1}, {x2}, {x3}, {x4}}

Principally we have everything that we need to define a flip. But we
have to keep in mind that there are cases where the points of a minimal
dependent set are not in general position, and the triangulations T+ and
T− do not have full dimension.
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3. Embedded triangulations

Definition 3.15 (flip [132, p. 74f; p. 186f]):
Let X a point set with triangulation T . Let Y ⊂ X be a minimal
dependent set with circuit (J+, J−) so that (without lost of generality)
T+ ⊂ T . Let d̃ := |J+| + |J−| − 2 be the effective dimension of the
minimal dependent set.
If d̃ = d, T+ is full-dimensional (the dimension of its maximal sim-

plices equals the dimension of the triangulation T ) and the following
operation is called a (|J+| → |J−|)-flip:

T → (T \ T+) ∪ T−

If d̃ < d, T+ is not full-dimensional (the dimension of its maximal
simplices is less than the dimension of the triangulation T ) and we use
the following procedure: Let Σ = {σ ∈ T | |σ| = d+1} be the maximal
simplices of the triangulation and let S+ = {σ ∈ T+ | |σ| = d̃+ 1} be
the maximal simplices of T+. Denote by

Σ+ :=
{
σ ∈ Σ | ∃σ′ ∈ S+ with σ′ ⊂ σ}

the maximal simplices of the triangulation to which the maximal
simplices of S+ are subsets and by

Σreduced,+ := {σ \ (J+ ∪ J−) | σ ∈ Σ+}

the subsimplices of Σ+ that consists of points not contained in the
circuit. The following operation is called a (|J+|, |J−|)-flip:

T → [T \ (T+ × (Σreduced,+))] ∪ [T− × (Σreduced,+)]

The degenerate formulation of flip intuitively means, that there is a non-
degenerate flip in some lower dimension, and all the maximal simplices
of the triangulations have to be adapted to the changes induced by the
lower-dimensional flip. The notion (|J+| → |J−|)-flip indicates that |J+|
d̃-simplices will be replaced by |J−| d̃-simplices by the flip.
Fig. 3.7 showed an example of a non-degenerate flip, in the following

example (depicted in Fig. 3.8) we will consider a degenerate flip. Consider a
triangulation T of the following point set

X =
{
~x1 =

(
0
0

)
, ~x2 =

(
0
1

)
, ~x3 =

(
1
0

)
, ~x4 =

(
1
1

)
, ~x5 =

(
1
21
2

)}
(3.9)
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3.1. Embedded triangulations and flips

Figure 3.8: Degenerated mini-
mal dependent point set (3.9) in
two-dimensions, its oriented cir-
cuit (denoted by plus and mi-
nus) and its two possible triangu-
lations T+ (left) and T+ (right).
Because the point set is degen-
erated, the maximal simplices of
the triangulations the minimal de-
pendent point set is embedded in
must be updated, too.

-

-

-

-

+

given by the maximal simplices {~x1, ~x2, ~x4} and {~x1, ~x3, ~x4}. Consider the
minimal dependent set {~x1, ~x4, ~x5} and calculate its circuit using the matrix
equation 0 1

2 1
0 1

2 0
1 1 1

 ·
λ1
λ2
λ3

 = ~0

with solution 〈(−λ, 2λ,−λ)t〉. So we find that J+ = {~x5} and J− = {~x1, ~x4}
and the triangulations T+ and T− are:

T+ = {{x1, x4}, {x1}, {x4}}
T− = {{x1, x5}, {x4, x5}, {x1}, {x4}, {x5}}

We can than calculate the sets Σ+ and Σreduced,+:

Σ+ = {{~x1, ~x2, ~x4}, {~x1, ~x3, ~x4}}
Σreduced,+ = {{~x2}, {~x3}}

The flip is then the following replacement of maximal simplices (and the
respective subsimplices):

{{~x1, ~x2, ~x4}, {~x1, ~x3, ~x4}}
→{{~x1, ~x2, ~x5}, {~x1, ~x3, ~x5}, {~x2, ~x4, ~x5}, {~x3, ~x4, ~x5}}

Note that it is not sufficient to have a minimal dependent set of points
to define and execute a step, one of the two possible triangulations of the
minimal dependent set must be contained in actual triangulation of the
whole point set. If none of the two triangulations is contained, no flip is
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3. Embedded triangulations

associated with the chosen minimal dependent point set, or equivalently,
one has to consider the flip as non-executable.

As the last part of this section we explicitly give a list of possible flips in d
dimensions in general and present the possible flips up to three dimensions
in detail. The largest minimal dependent set in d dimensions has d + 2
points, so that for the oriented circuit (J+, J−) the number of points is
|J+|+ |J−| = d+ 2. So there are the (1→ d+ 1)-flip, the (2→ d) flip and
so forth, and the (bd/2c+ 1→ dd/2e+ 1)-flip, as well as there inverse flips.
A minimal dependent set that has less than d + 2 points behaves like a
lower-dimensional flip in the affine subspace, and the d-dimensional simplex
structure has to be adapted to the lower-dimensional flip.

For d = 1 dimensions, the minimal dependent set of points have 3 points
maximally. The only possible flips are the (2→ 1)-flip, which is the insertion
of a vertex into an edge, and its inverse, the (2→ 1)-flip, which is the deletion
of a vertex from an edge.

For d = 2 dimensions, minimal dependent set of points have 4 points
maximally. So there are the (1→ 3)-flip and its inverse, the (3→ 1)-flip,
which are the insertion/removal of a vertex into/from a triangle. Additionally
there is the (2→ 2)-flip, denoted also as diagonal-edge flip, which replaces
one diagonal of a quadrilateral with the other one. Supplementary to these
non-degenerate flips there is the degenerate (1→ 2)-flip inherited from the
one-dimensional case, where an edge is subdivided by inserting a vertex,
and the two triangles incident with the edge are replaced with four triangles,
two at a time incident with one of the new edges. In Fig. 3.9 these possible
flips in two dimensions are displayed.

For d = 3 dimensions, minimal dependent set of points have 5 points
maximally. So there are four non-degenerate flips, the (1 → 4)- and
the (4 → 1)-flip, which are the insertion/removal of a vertex into/from a
tetrahedron, and the (2→ 3)- and the (3→ 2)-flip, which flips to neighboring
tetrahedra with common triangles into three neighboring tetrahedra with
common edge and vice versa. Additionally there are the (1→ 3)-flip, the
(2→ 2)-flip and the (3→ 1)-flip induced by the respective two-dimensional
flips, and the (1 → 2)-flip as well as the (2 → 1)-flip induced by the one-
dimensional flips. In Fig. 3.9 these possible flips in three dimensions are
displayed. Note that degenerate flips look different if the circuit points are
located at the boundary of the convex hull. In these cases there are maximal
simplices present only on one side of the convex hull boundary.
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3.1. Embedded triangulations and flips

Figure 3.9: Possible flips in two dimensions.
If considering the flip from left to right, red points are the positive circuit points,
blue points are the red points are the negative circuit points, and grey points and
lines correspond to the two-dimensional extension of lower-dimensional flips. (First
row, left) (1→ 3)-flip that divides a triangle into three triangles by inserting a point
into the triangle. (First row, right) (2→ 3)-flip that interchanges the diagonals of
a quadrilateral. (Second row) (1→ 2)-flip induced by the one-dimensional flip that
subdivides an edge into two by inserting a vertex.

Selecting possible flips

In order to do Markov chain Monte Carlo simulations one needs a way
to propose one of all possible steps with a known probability distribution.
Finding all possible flips of a given embedded triangulation by the direct
usage of Def. 3.15 can be very difficult, because one has to examine all subsets
of 3, 4, . . . , d+ 2 points, check if their are minimal dependent, calculate the
circuit and check whether one of the circuit triangulations is a subset of
the triangulation. There is a way that allow us to propose the possible
vertex-conserving steps more efficiently [132, p. 188f]:

Consider the walls of the triangulations, i.e. (d− 1)-simplices that are
subsimplices of two d-simplices. In fact every (d − 1)-simplex that is not
located at the boundary of the convex hull of the point configuration is a
wall. The find the affine dependence relation as defined in Lemma 3.12 of
the wall points and the two points that are not part of the wall, but of the
two maximal simplices that are supersimplices of the wall. If these d+ 2
points are more than minimal dependent, there will be factors λi = 0, the
associated points do then not belong to the minimal dependent set and
have to be removed from the considerations. With the obtained minimal
dependent set one can then use the procedure as described before.
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3. Embedded triangulations

Figure 3.10: Possible flips in three dimensions.
If considering the flip from left to right, red points are the positive circuit points,
blue points are the red points are the negative circuit points, and grey points
and lines correspond to the three-dimensional extension of lower-dimensional flips.
(First row, left) (1 → 4)-flip that divides a tetrahedron into four tetrahedra by
inserting a point into the tetrahedron. (First row, right) (2→ 3)-flip that replaces
a triangle shared by two tetrahedra by the edge joining the non-common points
of the tetrahedra, effectively making three tetrahedra out of two. (Second row,
left) (1→ 3)-flip induced by the two-dimensional flip that divides a triangle into
three. (Second row, right) (2→ 2)-flip induced by the two-dimensional flip that
interchanges the diagonal of a quadrilateral. (Third row) (1→ 1)-flip induced by
the one-dimensional flip that divides one edge into two edges.
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3.1. Embedded triangulations and flips

Inspecting the walls of the triangulation one can find all possible steps
except the insertion steps. These can easily be included by considering
all points that are not yet vertices of the triangulation and proposing the
insertion step into the simplex the point is contained in (in fact one has
to choose the smallest dimensional simplex the point is contained in). In
this chapter we only consider fine triangulations and flips that conserve the
number of vertices, so we do not need to look at these insertion and removal
flips in detail.

For doing Markov chain Monte Carlo simulations it is important to know
the probability to select a certain step, in order to calculate the ratio of
this probability and the selection probability of the inverse step. This ratio
is needed to correct the acceptance probability given by the Monte Carlo
algorithm in order to fulfill the detailed balance condition, as mentioned
in Eq. (2.42). Let W (T ) be the number of walls in triangulation T . For
calculating the ratio of the selection probabilities for a flip T1 → T2, we need
to calculate the change δW (T1 → T2) := W (T2) −W (T2) in the number
of walls by executing the flip and the number of walls W (T1 → T2) and
W (T2 → T1) that induce the certain flip and its inverse flip. The ratio of
selection probabilities is then

S(T1 → T2)
S(T2 → T1) = W (T1 → T2)

W (T2 → T1) ·
W (T1) + ∆W (T1 → T2)

W (T1)

Let the flip T+ → T− be induced by the oriented circuit (J+, J−) with
|J+| positive and |J−| negative circuit points, and let Σreduced be the set
of subsimplices of the maximal simplices containing T+, that do not have
J+ or J− as points. Let J0 be the set of points in Σreduced. The number of
walls that induce the flips and its inverse is then given by

W (T1 → T2) = |Σreduced|
(
|J+|
|J+| − 2

)

W (T2 → T1) = |Σreduced|
(
|J−|
|J−| − 2

) (3.10)

This relation holds because all walls that induce the flip T+ → T− are in the
interior conv(J+ ∪ J− ∪ J0) \ ∂conv(J+ ∪ J− ∪ J0). To be in this interior,
a wall must either contain all points in J+ and other points or contain all
points in J− and other points, and of course the wall must be part of T+
for the flip T1 → T2 and vice versa, so only the second possibility can apply.
So a wall consists of all points of J−, one of the simplices of Σreduced and
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for dimensional reasons all but two points of J+, which leads to the given
number of walls inducing a flip.
So we have the following selection probability ratio for a flip:

S(T1 → T2)
S(T2 → T1) =

(
|J+|
|J+| − 2

)
(
|J−|
|J−| − 2

) · W (T1) +
(
|J+|
|J+| − 2

)
W (T1) (3.11)

Note that the wall formulation does not apply to insertion steps, so Eq. (3.11)
does only apply to vertex-conserving steps. For non-conserving steps the
selection probability depends on the choice how often to try an insertion step.
Since we do only use vertex-conserving steps in this thesis, this selection
probability ratio does need not to be calculated.

Ergodicity of flips

The elementary moves of triangulations, the flips defined in the previous
section, will be used in Markov chain Monte Carlo simulations. In order
to get correct results, these flips have to be ergodic, i.e. starting from an
arbitrary triangulation, every other triangulation of the point set must be
reachable by a finite number of these flips.

In two dimensions, it is proven for arbitrary point configurations that the
flips are ergodic, even if one uses only diagonal-edge flips [272] (in this case
one is of course restricted to fine triangulations of the point set).
In three and in four dimensions, the situation is a bit more difficult.

Until now there is no proof for the ergodicity of the presented flips, but
there are also no known counterexamples for a point set that possesses two
triangulation which are not connected by a finite number of steps [132]. In
this thesis we use the working hypothesis that at least in three dimensions
the flips are ergodic.

In higher dimensions the situation becomes worse, because explicit coun-
terexamples were found. For d = 5 it was shown that there exists a point
configuration that has two triangulations that are not connected by a finite
number of flips [358]. Earlier it was proven that for d = 6 there exists a point
configuration and a triangulation which does not admit a single flip [357].
It is important to note that these two counterexamples are constructed
in order to show that there are point configurations that are not ergodic.
This does not exclude the existence of other point configurations which
are ergodic, and it does of course not make a statement about whether
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Figure 3.11: Flipping towards the Delaunay triangulation.
Find an interior edge so that the quadrilateral consisting of the two neighboring
triangles is not locally Delaunay (the circumcircles of one of the triangles contains
other points of the point set). Flipping this edge makes the quadrilateral locally
Delaunay, if no non-locally Delaunay quadrilateral is present in the triangulation
anymore, the whole triangulation is the Delaunay triangulation.

non-ergodic point configurations are many or few in the set of all possible
point configurations.
The presented counterexamples disproving ergodicity are non-regular

triangulations. One can show in arbitrary dimensions that the considered
flips are ergodic if one restricts to regular triangulations (triangulations
that are obtained using a height function) [132, p. 236f]. So we can apply
our methods that will be presented in the next sections to arbitrary high
triangulations, but have to restrict ourselves to regular triangulations to
ensure ergodicity.

Flipping towards the Delaunay triangulation

In this small section we present an interesting application for flips in two
dimensions: Diagonal edge flips can be used for creating the Delaunay
triangulation of a point set X step by step (denoted as flipping towards the
Delaunay triangulation) [132, p. 238].

The algorithm is as follows: Start with an arbitrary triangulation T of
the point set X. Now check every wall (edge that is subsimplex to two
different triangles) of the triangulations. The quadrilateral consisting of the
two incident triangles is called locally Delauney if the two angles opposite to
the common wall add up to π or less, or equivalently, if both circumcircles
of the two triangles do not contain other points of the triangulation. If for
all walls of the triangulation the quadrilateral is locally Delaunay, the whole
triangulation is a Delaunay triangulation and the algorithm stops. Else,
there is an edge with a non-locally-Delaunay quadrilateral, flip this edge
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using a diagonal edge flip into the other diagonal of the quadrilateral, so
that it becomes locally Delaunay. Continue with checking the edges until
every edge is locally Delaunay.

One can think about extending this algorithm to higher dimensions, but
examples can be constructed where a higher-dimensional analog would get
stuck in local minima. The algorithm is depicted in Fig. 3.11.
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3.2. Entropy of two-dimensional unimodular lattice triangulations

3.2 Entropy of two-dimensional unimodular
lattice triangulations

In the last section we presented the definition of a triangulation of a point
set and flips between these triangulations. In this section we consider
triangulations of special two-dimensional point sets, namely of integer
lattices.

For an exact evaluation of quantum gravity models based on triangulations,
an enumeration of all possible triangulations would be necessary. However,
efficient enumeration of triangulations is an open problem in combinatorics
[5, 6, 335]. There is a comparably efficient enumeration algorithm for the
special case of planar lattice triangulations at least for small system sizes
[238]. Together with the known upper and lower bounds on the number of
lattice triangulations this yields a perfect test case for the evaluation of new
approximation methods.
In this section we demonstrate, that the Wang-Landau algorithm [407]

that was described in detail in Sec. 2.2.2 can also be used for counting
two-dimensional lattice triangulations approximately but accurately. Those
flat histogram Monte Carlo methods [274,407] have gained broad attention
in statistical physics during the last years. As well as other Markov chain
Monte Carlo methods they have already been applied also for approximate
counting state spaces for problems in physics and informatics [162,230,242].

Using this approximate counting scheme we are able for the first time to
calculate for large systems the entropy density of lattice triangulations and
compare its scaling with analytical bounds obtained in [238]. The presented
enumeration scheme can also be applied on other physical problems where
the number of states of states with certain properties is important, e.g.
calculating the degeneracy of the ground state (and thereby the residual
entropy) plays an important role for checking the third law of thermody-
namics [87,116].

3.2.1 Two-dimensional Lattice Triangulations

Following the definitions of Sec. 3.1, our object of study are fine triangulations
of the point set Pm,n = {0, . . . ,m}×{0, . . . , n}, which is a (m+ 1)× (n+ 1)
integer grid. Note that according to this definition m and n do not count
the number of vertices in each dimension, but the number of unitcells.
These triangulations are unimodular, i. e. all triangles have constant area
A = 1/2 [108, 238]. The number of vertices is Npoints = (m + 1)(n + 1),
the number of triangles is Ntriangles = 2mn and the number of edges is
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3. Embedded triangulations

Figure 3.12: Examples for 10 × 10 lattice triangulations. From left to right:
ordered, regular ground state of the lattice triangulations; random lattice triangu-
lation; immobile lattice triangulation; lattice triangulation with high vertex degree
E. The images are taken from Ref. [253].

Nedges = 3mn + m + n [108, 238]. Fig. 3.12 show examples for 10 × 10
triangulation.
Due to the results presented in [272], we can restrict ourselves to the

ergodic diagonal-edge flips between the different fine lattice triangulations.
As noted in Sec. 3.1.3, one can find all possible flips by inspecting the walls
(which are in two dimensions the edges) and the points of their two adjacent
maximal simplices (which are triangles in two dimensions) as possible
minimal dependent sets, and that for associated flip to be executable either
T+ or T− has to be contained in the triangulation. One can show that for
two-dimensional lattice triangulations this is equivalent to the two triangles
sharing the common edge forming a parallelogram, or the quadrangle formed
by the four points having diagonals intersecting in their respective mids,
which reduces the calculation effort for flippability checks. Note that the
case of a degenerate flip cannot occur if one considers only full triangulations,
because a degenerate flip is induced by 3 circuit points on a common line,
which would lead to an insertion or removal step. Several examples of (valid
and invalid) flips are displayed in Fig. 3.13.
There are several possible choices of boundary conditions (BC), for in-

stance free, periodic and fixed BC as shown in Fig. 3.14. For the latter case
the different triangulations are embedded into a bigger lattice equipped with
a fixed triangulation. For the numerical approximation we rely on a well
behaved ground state degeneracy as depicted later, so for all simulations
fixed boundary conditions are chosen. With periodic BC the ground state
is highly degenerated, whereas with fixed BC the degeneracy of the ordered
ground state is exactly 1. For free BC the ground state is not the maximum
ordered state of a triangular lattice.
It was proven that the number Ω(m,n) of different unimodular lattice
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3.2. Entropy of two-dimensional unimodular lattice triangulations

Figure 3.13: Diagonal edge flips in two-dimensional lattice triangulations. Solid
edges correspond to valid flips, which for two-dimensional lattices mean that
the adjacent lattices form a parallelogram. Dashed edges correspond to invalid
flips. The three displayed triangulations differ by the flips that involve the gray
parallelograms.

Figure 3.14: Different types of boundary conditions for lattice triangulations: open
boundary conditions, fixed boundary conditions and periodic boundary conditions.
The images are taken from Ref. [253].
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triangulations on a grid Pm,n grows exponentially with system size mn [238],
hence, the entropy S ∝ log Ω is an extensive quantity. To compare with the
exact results and the bounds given in Ref. [238], we use the entropy density
(denoted by capacity in Ref. [238])

C(m,n) := log2 Ω(m,n)
mn

, (3.12)

which is the entropy of the system divided by the system size1

3.2.2 Approximate enumeration of triangulations

In this section we describe how the approximative counting procedure of
Sec. 2.3.3 is applied for calculating the entropy density of two-dimensional
lattice triangulations, and how the occurring problems were solved.

Topological Energy

We use the Wang-Landau algorithm [406, 407] to calculate the density
of states of unimodular lattice triangulations. This method is originally
designed to estimate densities of states in terms of the energy. To use
it for counting arbitrary geometric configurations, one has to divide the
configuration space into distinct classes by defining an energy functional
as discrimination criterion. In principle this definition is arbitrary for
this purpose, however, the choices differ in computational efficiency. A
natural choice should be discrete valued, illustrative and cheap to calculate.
Additionally the degeneracy of at least one energy class should be known
exactly for normalization purposes and it should be calculated solely from
topological parameters, so that the method can be easily generalized to
triangulations of general point sets. The energy functional used here is the
sum

E =
∑

vertices v
d2
v (3.13)

over the squared vertex degrees, which are the number of incident edges
at a vertex. The squaring is necessary as the sum over all vertex degrees
is constant. Similar energy functions were already used for calculating
mixing times of Glauber dynamic on lattice triangulations [108] and for
calculating graph properties closed surface triangulations [52, 259]. The

1 Note that we use the logarithm of basis 2 for the entropy density of lattice triangulations
to agree with the conventions of Ref. [238]. For the entropy density of topological and
causal triangulations later in this thesis we will use the natural logarithm.
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3.2. Entropy of two-dimensional unimodular lattice triangulations

Figure 3.15: Microcanonical en-
tropy S(E) = log Ω(E) of lattice
triangulations, calculated using
Wang-Landau sampling with the
vertex-degree-energy (3.13): 6×6
(dash-dotted), 8× 8 (dashed) and
10× 10 (solid). The plot is taken
from Ref. [253].
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energy difference induced by flipping the diagonal x1x2 of a parallelogram
x1x2x3x4 into the other diagonal x3x4 using the energy functional (3.13) is
given by

∆E = (d3 + d4 − d1 − d2 + 2)2,

where di is the number of incident edges at point xi before the flip. Using
the energy functional (3.13) and this energy difference the microcanonical
entropy can be calculated using the Wang-Landau algorithm as displayed
in Fig. 3.15.

Limits on system size

The entropy landscape shows a steep rise for small energies. Then, it
reaches a maximum and declines smoothly towards high energies, as can
be seen in Fig. 3.15. For the dense configuration space regions around the
peak the common Wang-Landau approach is perfectly unproblematic, but
difficulties for large systems arise in the low and high energy regions, where
the simulation can get stuck for different reasons.
In the low energy regions there are huge entropy differences between

neighboring states. The degeneracy of the first excited state Ω(E′ =
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E − Egs = 4) for m× n lattice triangulations can be calculated to be

Ω(E′ = 4) =
m∑
i=1

n∑
j=1

(m− i+ 1)(n− j + 1)+

+
n∑
j=1

m−j∑
i=1

(m− (i+ j) + 1)(n− j + 1)+

+
m∑
i=1

n−i∑
j=1

(n− (i+ j) + 1)(m− i+ 1) m=n≈ n4/2

(3.14)

So for example in a 10 × 10 system the number of first excited states is
Ω(E′ = 4) = 5665 compared to Ω(E = 0) = 1 for the single ground state.
Now, imagine a simulation step where the system is in ground state. While
all edges are flippable, the corresponding acceptance probability of any
edge flip is then Pacc = 1/5665, the probability decreasing with system size
n× n like n−4. Certainly this limits the treatable system size severely – not
only by means of runtime, but also by exceeding the numerical precision of
common floating point arithmetics.
In high energy regions the immobility is caused by a lack of connection

between states in the same energy region, i. e. in general no short flip paths
exist between states with similar energy. Furthermore, most edges in high
energy states are unflippable. A typical immobile high energy state is
depicted in Fig. 3.12. As for the ground state the algorithm can get stuck
for long time in a high energy state due to high rejection rates caused by
huge entropy differences.
One common approach to fix high rejection rates in low temperature

Metropolis simulations is to use a rejection-free algorithm, known as “the
N -fold way” or continuous time algorithm [99], which can be combined with
the Wang-Landau method [364]. The basic idea of the N -fold way is to
accept every step and to correct for the average number of steps a normal
algorithm would perform before leaving the state. The N -fold way was
implemented for the lattice triangulations, but did not lead to improvements
of the simulation times or the accessible system sizes.
The problem with high energy states can be overcome by defining an

energy cut-off. Rejecting all steps beyond this energy leads to the correct
estimate, as long as after each step – even a rejected one – the current state
is correctly taken into account and added to the histogram of visits [365].
This cut-off leads to a systematic underestimation of the total number of
triangulations, yet, if the cut-off is chosen correctly the error is small, as can
be seen from the cumulative sum ΩΣ(E) = ∑

E′<E e
S(E′) and the relative
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Figure 3.16: Cumulative sum ΩΣ(Ec) =
∑
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Ω(E) of the number of lattice
triangulations Ω(E) in terms of the energy cutoff Ec for a 10× 10 lattice (black,
solid line). The relative error ΩΣ(Ec)/ΩΣ(∞)− 1 (dashed line) decreases rapidly
for Ec > Epeak, so that only the gray part of the energy range can be used for
calculating the number of lattice triangulations. The plot is taken from [253].

error εcut(E) = (Ω−ΩΣ(E)/Ω) in Fig. 3.16. Unfortunately the low energies
cannot be cut, as those are needed for normalization. Furthermore, it is
not known if ergodicity holds with a low energy cut-off. For high energy
cut-offs ergodicity holds until a certain energy Eerg < Ecut, as the longest
edge in a triangulations can always be shortened by a flip, and shorter edges
correspond to lower energies. The energy Eerg is big enough to leave the
results unchanged.

Energy cutoffs and initial estimates

The question of finding a reasonable cut-off Ecut remains. First the a-
priori unknown energy range has to be estimated; while the energy Emin of
the ground state can be calculated, we approximate the maximal energy
by constructing a star-shaped state of nearly maximum energy Ehigh (cf.
Fig. 3.12). As can be seen in Fig. 3.15, the entropy is peaked around an
energy value of Epeak, that is easily accessible by simulating an unbiased
random walk, i. e. a simulation where all proposed flips are accepted, and
averaging over the sampled energies. These 3 energies suffice to set a sensible
energy cut-off

Ecut = Emin + εhigh(Ehigh − Emin) or
Ecut = Emin + εpeak(Epeak − Emin)

(3.15)

where εhigh < 1 and εpeak > 1 are constants that have to be fixed empirically.
Typical values can be εhigh = 1/4 and εpeak = 6/5.
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Figure 3.17: Scaling of the 2d
lattice triangulation DOS.
(a) Rescaled densities of state for
quadratic lattices up to n = 25.
The densities converge, so that
their extrapolation can be used
as an initial estimation for simu-
lations of larger lattices. (b) The
peak and the minimal energy of
triangulations as well as the peak
energy entropy grow quadrati-
cally with the system width. The
high energies, which are a lower
bound for the maximal energy of
triangulations, grow with the sys-
tem width to the power of 4. The
plot is taken from Ref. [253].

Extrapolating S(Epeak) from the Wang-Landau results for smaller systems
an initial estimate for the entropy can be calculated for large systems. The
precision of this extrapolation is not crucial. Anyhow, the error is small, as
can be seen in Fig. 3.17. The 4 parameters Emin = 62 · (n+ 1)2, S(Emin) = 0
(by definition of boundary conditions), Epeak (measured or extrapolated)
and S(Epeak) (extrapolated) characterize the entropy curve for quadratic
lattices larger than 10× 10 sufficiently well (cf. Fig. 3.17).

Using an initial estimate can speed up the relaxation process. For 15× 15
triangulations the simulation with initial estimate extrapolated from 10×10
triangulations is by a factor of 3 faster than a simulation without one. For
larger systems the speedup is even more drastically.

3.2.3 Results

We use Wang-Landau sampling for an approximate enumeration of lattice
triangulations to calculate the entropy density for the different lattice sizes.
For all system sizes 5 independent runs are performed. Beginning with
modification factor m0 = exp

(
10−2), it is reduced with the exponentc = 0.9

whenever flatness f = 0.8 is reached in the histogram of visits. The
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simulation is stopped, when modification factormf = exp
(
10−12) is reached.

m entr. dens. C
1 0.00000
2 1.39657
3 1.66927
4 1.81445
5 1.90071
6 1.95728
7 1.99535
8 2.02433

m entr. dens. C
9 2.04615
10 2.06343
11 2.07745
12 2.08887
13 2.09819
14 2.10617
15 2.11281
16 2.11917

m entr. dens. C
17 2.12374
18 2.12857
19 2.13263
20 2.13628
21 2.13858
22 2.14168
23 2.14352
24 2.14492

Table 3.1: Entropy density C as defined in Eq. (3.12) measured by the Wang
Landau algorithm, taken from Ref. [253]

The validity of the method can be checked against the exact results
of Kaibel and Ziegler [238] for small lattice sizes. The entity of interest
is the entropy density defined by Eq. (3.12) which is equivalent to the
capacity used in [238]. As the entropies for different energies vary over large
ranges, summation is done using multiprecision arithmetics from Python
mpmath/gmp [232]. In Fig. 3.18 simulation data for narrow lattice stripes
are compared to the exact results. All measurements are averaged over 5
independent runs, for large lattices an energy cutoff (3.15) with the empirical
εhigh = 0.75 is used. While the accuracy of single Wang-Landau simulations
is limited and the density of states does not change after reaching a certain
modification factor (saturation of error) [72,306] for almost all considered
system sizes the relative error of the simulation data is below 10−3, so a
systematic error can be neglected.
The same is done for rectangular triangulations up to size 24× 10 and

quadratic triangulations up to size 24× 24, where the energy cutoff (3.15)
with the empirical εpeak = 1.2 is used and an average over 3 independent
runs was performed. The initial entropy estimations S0(E) for systems of
size m = n > 16 are step-wise extrapolated from the relaxed result for
smaller systems. Systems larger than including 20× 20 did not reach their
final modification factor m = 10−12 in time. However, the results did not
change any more during the last steps. This is an indication that saturation
of error was already reached.
The entropy densities for the quadratic lattices are listed in Tab. 3.1. In

Fig. 3.19 the capacity for the quadratic and rectangular triangulations is
displayed. Using a fit the limit of the entropy density for infinite lattices
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and the asymptotic behavior can be found to be

Cm=10 = (2.1472± 0.0004)− (0.852± 0.008) · n−1

Cm=n = (2.196± 0.003)− (1.20± 0.07) · n−1 .
(3.16)

3.2.4 Discussion

It has been shown that approximate counting of lattice triangulations is
possible and feasible up to an error of 10−3 by using a Wang-Landau Monte-
Carlo scheme. Our results for the entropy density for lattice sizes below
24 × 24 improve the analytical bounds found in [238]. As exact numbers
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are known for small systems, lattice triangulations provide a complement
to the commonly used variants of the Ising model and other spin models.
One approach for optimizing the measurement efficiency and possible

access bigger lattices could be a different choice of the energy functional.
Thereby, the challenge of high entropy differences between flip-connected
states could be tackled as well. As a different approach, optimized probability
weights other than the flat histogram probabilities could help to improve
the sampling of neuralgic configuration space areas. Different algorithmic
approaches like the transition matrix Monte Carlo algorithm [408] should
be tested against the problem as well.

A generalization of the estimation scheme could be interesting especially
for mathematicians dealing with combinatorics. Scanning the energy land-
scape of a problem yields insight, it helps in winnowing dead ends from
promising questions and generates a first estimate of what results to expect
and quickly leads to interesting conjectures. Furthermore it can be applied
to interesting counting problems in mathematics, informatics and physics.
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3.3 Counting three-dimensional lattice
triangulations

In the last section we counted triangulations of rectangular and quadratic
two-dimensional lattices. In this section we increase the dimension by one
and consider triangulations of three-dimensional lattices.
In comparison with the two-dimensional case, only few is known about

three-dimensional lattice triangulations from the mathematical point of
view. There are no proven exponential bounds as in [238] for the two-
dimensional case, also the ergodicity of the flips is not proven yet, as
explained in Sec. 3.1.3. Using the program TOPCOM [335] one can obtain
some exact enumeration results, but only for the unitcube (where there
are 74 triangulations, as depicted in Sec. 3.3.1) and for a 2× 1× 1 lattice,
where there are 10748 triangulations. For larger lattice sizes the program
does not terminate in any reasonable time. So in this section we use the
Wang-Landau algorithm to count the number of three-dimensional lattice
triangulations with the same method as presented in Sec. 3.3.

We restrict ourselves to three special cases, which are displayed in Fig. 3.20:
Triangulations of sticks, which are lattices with a linear size of n unitcubes
in the x-direction and a linear size of 1 unitcube in the other two directions;
triangulations of planes, which are lattices with a linear size of n unitcubes
in the x-direction and the y-direction and a linear size of 1 unitcube in the
third direction; and triangulations of cubes, which are lattices with a linear
size of n unitcubes in all three directions. In all three cases we define the
system size to be the number of unit cubes in the lattice.
Before using the Wang-Landau algorithm for counting the number of

three-dimensional lattice triangulations, we present the 74 triangulations of
the smallest possible lattice, the unitcube. On the one hand this is done
for giving the reader an intuition about three-dimensional triangulations,
which are far more difficult to visualize than two-dimensional ones. On the
other hand this demonstrates that in three dimensions the structure of the
triangulations can be more complicated than in two-dimensions (where there
are only two triangulations of the unitcell and only one type of triangle used
in these triangulations). Furthermore, the number and the structure of the
unitcube triangulations can be used for calculating some rough estimates of
the entropy density for three-dimensional lattice triangulations.
As for two-dimensional lattices we introduce a simple energy functional

in order to calculate the density of states using a Wang-Landau simulation,
and compare it to other energy functionals. Cuts on this energy have to be
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Figure 3.20: Different lattice shapes for counting three-dimensional lattice trian-
gulations: (left, red) Stick consisting of n × 1 × 1 unitcells, (center, blue) plane
consisting of n × n × 1 unitcells and (right, green) cube consisting of n × n × n
unitcells.

applied for large system sizes in order to get a convergence of the simulation
in appropriate time.

3.3.1 Small three-dimensional lattice triangulations

In this section we present the six different types of triangulations of the
unitcell, count the isomorphic realizations of each type and present the
possible flips of each type. The six different types were already presented
in [132, p. 21; p. 319ff]. The following points are used as the unitcube
defining point set:

A =


x0 x1 x2 x3 x4 x5 x6 x7
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


In order to characterize the different triangulations we define different

categories for the simplexes by looking at the length of the edges of the tetra-
hedrons (which can have edges with edge length a, an area-diagonal

√
2a and

a room-diagonal
√

3a), that can be seen in Fig. 3.21. The characterization
and the names were introduced in [132, p. 319f].

• Corner tetrahedron: Tetrahedron with 3 edges and 3 area-diagonals.
The points defining the tetrahedron are three points of a face of the
cube (giving a rectangular triangle) and the counterpart of the point
at the right angle in the opposite face.
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Figure 3.21: The four different simplices in the triangulation of one 3D unit cell:
(red) core tetrahedron, (blue) corner tetrahedron, (orange) staircase tetrahedron
and (green) slanted tetrahedron.

• Staircase tetrahedron: Tetrahedron with 3 edges, 2 area-diagonals and
1 room-diagonal. The points of this tetrahedron are three points of a
face of the unit cell (giving a rectangular triangle) and the counterpart
of one of the points not at the right angle in the opposite.

• Slanted tetrahedron: Tetrahedron with 2 edges, 3 area-diagonals and
1 room-diagonal. Build by three points of a face of the cell and the
counterpart of the point being in the triangular plane, but not in the
triangle.

• Core tetrahedron: Tetrahedron with 6 area diagonals. Defining points
of the tetrahedron are two points of a diagonal of a face and the two
points of the diagonal of the opposite face that is not parallel to the
first one.

For determining the number of isomorphic triangulations of a certain type
considering the permutation symmetry can be helpful:

Definition 3.16 (permutation of index set):
Let A be a point configuration with index set J and with |J | = n
points. A bijective map π : J → J is called a permutation of the index
set. We will use the notation π = [j1j2 . . . jn] for the permutation that
maps point i into point ji, π(i) = ji.

The points of the unitcube have a rich group of symmetries, all of them can
be composed out of these three elementary ones:

1. A π/2-rotation around an axis connecting the face centers of two
opposite faces of the cube (4-axis)

2. A 2π/3-rotation around an axis on a volume-diagonal (3-axis)
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3. A reflection symmetry with respect to the plane in the middle between
the two faces defining the 4-axis (m-plane)

Because of this the cube symmetry is often referred to as 43m-symmetry-
group (e.g. in crystallography). The index set permutations that correspond
to these three symmetries are for example:

π4 := [1, 2, 3, 0, 5, 6, 7, 4]
π3 := [0, 3, 7, 4, 1, 2, 6, 5]
πm := [4, 5, 6, 7, 0, 1, 2, 3]

(3.17)

Composite symmetries can be displayed as a concatenation of these three
permutations.
Until now we only considered the symmetry of the eight points that

constitute the unit cube. As a next step one has to define the symmetries
of the triangulation.

Definition 3.17 (permutation symmetry of triangulation):
A triangulation T of a point configuration A (index set J , number
of points n) is said to be symmetric under the permutation π, if the
image of every simplex of T is element of the triangulation:

π(σ) ∈ T ∀σ ∈ T

In the following subsections we present the six different triangulations
of the unit cube that cannot be mapped into each other by rotations
and reflections, and list the possible flips in these triangulations. These
six triangulations can be characterized mainly by the number of corner
tetrahedra in the triangulation.

Corner-4-Triangulation (C4T)

We will start with a triangulation that has four corner tetrahedra and one
core tetrahedron, this triangulation is denoted by Corner-4-Triangulation
(short C4T). It can be obtained by connecting two area diagonals of two
opposite faces of the cube that are not parallel. One example is the following
triangulation:

τC4T = {{0275}, {0125}, {0237}, {0457}, {2567}} (3.18)

There are two triangulations of this type, because choosing one diagonal
in one face fixes all the diagonals in the other faces; and there are two
possibilities for choosing this diagonal.
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Figure 3.22: Corner-4-Triangulation (3.18) of the 3D unitcell with one core
tetrahedron (red) and four corner tetrahedra (blue).

For each of the four corner tetrahedra there is a 2→ 3 flip together with
the core tetrahedron, each of them flipping the triangulation to one of the
Corner-3-Triangulations examined in the next section. For our example
triangulation these flips are

{{0257}, {0125}} → {{0127}, {0157}, {1257}}
{{0257}, {0237}} → {{0235}, {0357}, {2357}}
{{0257}, {0457}} → {{0245}, {0247}, {2457}}
{{0257}, {2567}} → {{0256}, {0267}, {0567}}

(3.19)

Corner-3-Triangulation (C3T)

Flipping one corner and the core tetrahedron of a C4T as in Eq. (3.19) to
three slanted tetrahedra leads to a Corner-3-Triangulation (C3T) consisting
of three corner and three slanted tetrahedra, for instance to the following
one:

τC3T = {{0256}, {0267}, {0567}, {0125}, {0237}, {0457}} (3.20)

There are 8 triangulations of this type, for each of the two C4Ts one
can choose one of the corner tetrahedra to flip with the core tetrahedron.
This can also be seen due to the fact that the triangulation is permutation
symmetric with respect to 3-rotations around the {06}-axis, so the remaining
two symmetries generate 4 · 2 isomorphic C3-Triangulations.
In a C3-triangulation the following flips are possible:

• Each of the three slanted tetrahedra can be flipped with the neighbor-
ing corner tetrahedron using a 2→ 2 flip into two staircase tetrahedra.
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Figure 3.23: Corner-3-Triangulation (3.20) of the 3D unitcell with three slanted
tetrahedron (green) and three corner tetrahedra (blue).

The three possible flips in our example (3.20) are:

{{0256}, {0125}} → {{0126}, {0156}}
{{0267}, {0237}} → {{0236}, {0367}}
{{0567}, {0457}} → {{0456}, {0467}}

(3.21)

This results in a triangulation with two corner tetrahedra that are
neighbors that will be examined in the next section. There are three
of these flips.

• One 3→ 2 flip involving the three slanted tetrahedra that inverts the
flip that led to the C3T.

Corner-2-Neighbor-Triangulation (C2NT)

Doing the flip (3.21) described in the section above for C3T leads to a
triangulation with two slanted tetrahedra, two staircase tetrahedra and two
corner tetrahedra that have a common edge, called the Corner-2-Neighbor-
Triangulation (C2NT). The additional neighbor in the name will become
clear later, because there is another triangulation with two corner tetrahedra
that cannot be obtained by a flip out of a C3T. One example for such a
C2N-triangulation is:

τC2NT = {{0126}, {0267}, {0567}, {0156}, {0237}, {0457}} (3.22)

There are 24 triangulations of this type: One can choose 8 edges for the first
corner and then 3 edges for the second corner polytope, overcounting the
number by a factor of 2 (because the order of choosing the corner tetrahedra
does not matter), so there are 12 possibilities for choosing the two corner
polytopes. For each of this one has two possibilities for choosing the room
diagonal. This can also be checked by noticing that this triangulations is
not symmetric under any symmetry transformation.
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Figure 3.24: Corner-2-Neighbor-Triangulation (3.22) of the 3D unitcell with
two slanted tetrahedra (green), two staircase tetrahedra (orange) and two corner
tetrahedra (blue).

For the C2N-triangulation there are the following flips in our example
(3.22):

• Each of the two remaining slanted tetrahedra can be flipped together
with the neighboring corner tetrahedron in a 2 → 2 flip into two
staircase tetrahedra, for our case:

{{0267}, {0237}} → {{0236}, {0367}}
{{0567}, {0457}} → {{0456}, {0467}} (3.23)

• There is a double 2→ 2 flip consisting of two 2→ 2 flips, each involving
a staircase and a slanted tetrahedron. In our example triangulation
this is the following flip:

{{0156}, {0567}}
{{0126}, {0267}}

}
→
{
{{1567}, {0157}}
{{1267}, {0127}} (3.24)

Each of the subflips produces again a staircase and a slanted tetra-
hedron. So this flip produces another C2N-Triangulation with an-
other diagonal. One can see that this flip is equivalent with the
π = [6, 7, 2, 3, 4, 5, 0, 1] permutation, which is a reflection at the {2345}-
plane:

• There is one 2 → 2 flip involving the two staircase tetrahedra that
produces one corner and one slanted tetrahedron and inverts the flip
that we used to arrive at the C2NT.

Corner-1-Triangulation (C1T)

If one executes the flip (3.23) described in the section before, one arrives
at a triangulation with four staircase tetrahedra, one slanted tetrahedron
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and one corner tetrahedron, called the Corner-1-Triangulation (C1T). One
example for this triangulation is:

τC1T = {{0126}, {0267}, {0456}, {0156}, {0237}, {0467}} (3.25)

There are also 24 triangulations of this type: There are 8 possibilities to
choose one corner, and for each of this there are 3 possibilities for choosing
the diagonal. One can obtain this result also by considering that this
triangulation is not symmetric under one of the symmetry transformations.
There are the following flips for a C1-Triangulation:

• One can do a flip with the remaining corner and slanted tetrahedron,
in the example triangulation this is the flip

{{0267}, {0237}} → {{0236}, {0367}} (3.26)

This leads to a triangulation consisting only of staircase tetrahedra
considered in Sec. 3.3.1.

• There are two possibilities to flip two staircase tetrahedra to one corner
and one slanted tetrahedron, so that the new corner tetrahedron and
one that is already contained in the triangulation have a common
edge. These two flips invert the flips that led us from the C2NT to
the C1T:

{{0126}, {0156}} → {{0256}, {0125}}
{{0456}, {0467}} → {{0567}, {0457}} (3.27)

• Another possible flip is a 2 → 2 flip of two staircase tetrahedra,
giving a triangulation with two opposite corner tetrahedra described
in Sec. 3.3.1:

{{0156}, {0456}} → {{0146}, {0467}} (3.28)

Corner-2-Opposite-Triangulation (C2OT)

Doing the one special flip of the C2NT described in the section before that
produces a triangulation with two corner tetrahedron at opposite edges one
arrives at the Corner-2-Opposite-Triangulation (C2OT). One example of
this triangulation is:

τC2OT = {{0126}, {0267}, {0146}, {1456}, {0237}, {0467}} (3.29)
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Figure 3.25: Corner-1-Triangulation (3.25) of the 3D unitcell with one slanted
tetrahedron (green), four staircase tetrahedra (orange) and one corner tetrahedron
(blue).

There are 12 of this triangulations, one has 3 possibilities to choose two
opposite corner tetrahedra and 3 possibilities to choose a room diagonal.
The triangulation is permutation symmetric with to the point reflection
at the centre of the cube, which can be constructed by doing two times a
4-rotation and the corresponding mirror reflections.

We have the following flips for the C2O-Triangulation:

• There are two flips that lead back to a C1-Triangulations, each involv-
ing one of the corner and one of the staircase tetrahedra:

{{0237}, {0276}} → {{0236}, {0367}}
{{1456}, {0146}} → {{0156}, {0456}} (3.30)

• There are two double 2 → 2 flips that map the C20-Triangulation
to another C2OT having the same opposite corner tetrahedra, but
different orientation of the diagonal:

{{0126}, {0267}}
{{0467}, {0146}}

}
→
{
{{1267}, {0127}}
{{0147}, {1467}}

{{0467}, {0267}}
{{0126}, {0146}}

}
→
{
{{2467}, {0247}}
{{0124}, {1246}}

(3.31)

Corner-0-Triangulation (C0T)

If one does the flip listed first in the C1T described in Sec. 3.3.1, one arrives
at a unitcell triangulation consisting only of staircase tetrahedra, for example
at the following:

τC0T = {{0126}, {0236}, {0456}, {0156}, {0367}, {0467}} (3.32)
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Figure 3.26: Corner-2-Opposite-Triangulation (3.29) of the 3D unitcell with two
slanted tetrahedron (green), two staircase tetrahedra (orange) and two corner
tetrahedra (blue) that are in opposite corners.
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Figure 3.27: Corner-0-Triangulation (3.32) of the 3D unitcell six staircase tetra-
hedra (orange).

There are 4 of this triangulation, because the triangulation is determined
already by the room diagonal where one has 4 possibilities to choose. It is
invariant under a 3-rotation with respect to the chosen diagonal and with
respect to point reflection at the body centre of the cube.
There are six 2→ 2 flips, each transforms two staircase tetrahedra into

one corner and one slanted tetrahedron, so one arrives at a C1T again. Each
of the flips can be interpreted as flipping one of the face diagonals:

{{0126}, {0156}} → {{0125}, {0256}}
{{0156}, {0456}} → {{1456}, {0146}}
{{0467}, {0367}} → {{3467}, {0346}}
{{0367}, {0236}} → {{0237}, {0267}}
{{0456}, {0467}} → {{0457}, {0567}}
{{0126}, {0236}} → {{1236}, {0136}}

(3.33)

3.3.2 Constructing three-dimensional lattice triangulations

The first step is to construct for a given size of the point lattice a triangulation
that can be used as an initial state. Under the conjecture of ergodicity
of the flips, all other lattice triangulations can then be constructed out of
this initial state. As for the two-dimensional case, we construct the initial
triangulation from triangulations of the elementary unitcube.
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Therefor there are, e.g., the following two possibilities: Firstly, one can
use the C4-triangulation presented in Sec. 3.3.1 in all unitcubes, which is
the triangulation of the unitcube with the minimal number of tetrahedra
and edges. One has to take in mind that we cannot use only one of the C4T,
but both, because the diagonals in opposite faces of the unitcube are not
parallel. So if one of the C4T is used in a unitcube, in all other unitcubes
that are direct neighbors the other C4T has to be used.
Secondly one can use unitcubes with one of the C0-triangulation pre-

sented in Sec. 3.3.1 in all unitcubes. This has the advantage that the same
triangulation can be used in all unitcubes, because the diagonals in opposite
faces of the unitcube are parallel. The disadvantage is that the C0T is not
the smallest triangulation of the unitcube.

3.3.3 A lower bound for the entropy density of
three-dimensional lattice triangulations

As a first estimation we approximate a lower boundary for the entropy
density by considering only triangulations that are composed of unitcell tri-
angulations. These triangulations will be called atomic. This approximation
will be very rough, because there are way more triangulations that mix the
different unitcells than atomic ones, but it provides valuable insight about
the influence of the lattice geometry (stick, plane, cube) on the entropy
density.
We first start with the analog calculation for two-dimensional triangula-

tions to present the method in a simplified way. For d = 2 there are two
possible triangulations for a unitcell (square with one of the two possible
diagonals). For each unitcell the triangulation can be chosen independently,
because the boundary of the unitcell triangulation (the square) is the same
for both possible triangulations. So the number of two-dimensional n×m
lattice triangulations composed by unitcells is bounded by

N(m,n) ≥ 2m·n ⇒ C(m,n) ≥ log2Natomic
m · n = 1. (3.34)

In three dimensions there are 74 triangulations of the unitcube, but the
boundaries of the triangulations are not equal. Therefore one has to take into
account that the diagonals of the square faces of neighboring unitcells have
to match. In the following we will estimate the lower boundary separately
for sticks, planes and cubes.

Lower bound for sticks For calculating the number of atomic triangula-
tions of n×1×1-lattices one has to calculate the number of triangulations of
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the unitcube with one diagonal fixed. In section Sec. 3.3.1 the triangulation
of the unitcubes were discussed in detail, one can see that if half of the
triangulations have one diagonal of a given face, the other half has the other
diagonal at the given face. So for a stick lattice with n unitcells there are

Nstick(n) ≥ 74 · 37n−1 = 2 · 37n (3.35)

triangulations that do not mix between the single unitcubes. This leads to
the lower bound

Cstick(n) = 1
n

log2Nstick(n) ≥ log2(37) + 1
n
≈ 5.21 + 1

n
(3.36)

for the entropy density of sticks.

Lower bound for planes Estimating the lower bound for the entropy
density of planes with the discussed method is much more difficult than for
sticks. The reason is that for most of the unitcubes two diagonals are fixed
and one has to inspect in detail the different unitcell triangulations to find
the number of triangulations that match with the given diagonals. Since
we are not interested in the actual numbers, but only in the qualitative
behavior of the entropy density, we relinquish this detailed considerations
and assume that only a quarter of the unitcube triangulations matches two
given diagonals.
The number of plane triangulations is then bounded by

Nplane(n2) ' (74 · 37n−1) ·
(

37 ·
(37

2

)n−1
)n−1

(3.37)

The first contribution is the same as for a stick, for the other sticks one has
to take into account that for the first unitcube one diagonal is fixed, for all
other unitcubes in the additional sticks two diagonals are fixed. This leads
to the lower bound

Cplane(n2) = 1
n2 log2Nplane(n2) ' 4.209 + 2

n
−O(n−2) (3.38)

for the entropy density of planes.

Lower bound for cubes For calculating the lower bound for the entropy
density of cubes we apply the same approximation as for the lower bound
of planes, we assume that a quarter of the 74 triangulations match three
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given diagonals. We find the following bound for the number of cube
triangulations:

Nplane(n2) ' 74 · 393(n−1) ·
(39

2

)3(n−1)2 (39
4

)(n−1)3

(3.39)

because the triangulation of the first cube can be chosen arbitrarily, for
the unitcubes at the three edges one diagonal is fixed, for the unitcubes at
three faces two diagonals are fixed and for the remaining unitcubes three
diagonals are fixed. This leads to the following lower bound

Ccube(n3) = 1
n3 log2Ncube(n3) ' 3.209 + 3

n
−O(n−2) (3.40)

for the entropy density of cubes.

3.3.4 Choosing the energy functional

There are several possibilities to choose an energy functional for a triangu-
lation. The flips that we are using in three dimensions are the (2→ 3)-flip
and its inverse flip, which changes the number of tetrahedra, triangles and
edges in the triangulation, but leaves the number of vertices invariant. So in
general it would be possible to use one of these overall topological quantities
as energy, but this would lead to technical difficulties in calculating the
density of states. Consider for example the 74 triangulations of the unitcube.
Only two of these triangulations consist of 5 tetrahedra, and 72 of these
consist of 6 tetrahedra, so there are only two energy bins. Also for bigger
triangulations the number of energy bins is small, and, which is much worse,
the entropy difference of (flip-)neighboring energy bins becomes large, which
drastically decreases the acceptance probability of the Wang-Landau algo-
rithm. Since the sum of the linear number of edges, triangles or tetrahedra
incident with a vertex is the overall number times an integer constant, the
same problems occur using such local linear energy functions.
Due to this disadvantages of linear energy functions, as in the two-

dimensional case we use local quadratic energy functions also for three-
dimensional lattice triangulations. The simplest energy function

Epoint(T ) =
∑
v∈T

dv(T )2, (3.41)

where dv(T ) is the degree of the vertex v in triangulation T (the number
of edges incident with v), has the disadvantage that the ground state and
its degeneracy cannot be determined a prior. Additionally in Fig. 3.28 the
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Figure 3.28: Ground state for the different energy functions on three-dimensional
lattice triangulations. (Left) Ground state of the difference energy function
Eq. (3.43) that is used throughout the counting, its point energy is Epoint = 374
and its edge energy is Eedge = 158. (middle) Ground state of the quadratic edges-
per-point energy function Eq. (3.41) with Epoint = 354. (right) Ground state of the
quadratic triangles-per-edge energy function Eq. (3.42) with Eedge = 134.

ground state of this energy function for a 2× 1× 1 lattice triangulation is
displayed, which is not composable by triangulations of the single unitcube.
Using a similar function in the number of triangles per edge

Eedge(T ) =
∑
e∈T

te(T )2 (3.42)

(where te(T ) is the numbers of triangles incident with the edge e in the
triangulation T ) leads to the same problems, the ground state of the 2×1×1
lattice triangulation, which is also displayed in Fig. 3.28, is not composable
into two triangulations of the unitcube.

So instead of using the simple energy Eq. (3.41), we use the energy function

E(T ) =
∑
v∈T

[dv(T )− dv(T0)]2 , (3.43)

which measures the local quadratic difference of the incident edges compared
to an arbitrary reference triangulation T0, which is then the ground state of
the energy function. In this section we always use one of the two ordered
states consisting of alternating C4T-triangulations as reference triangulation
for the energy function Eq. (3.43). An equivalent formulation in terms of
the number of triangles per edge is not possible, because in contrast to the
vertices the edges and even their number can change during the simulation,
so it is nit possible to identify the edges of an arbitrary triangulation with
the edges of a reference triangulation. In Tab. 3.2 the energies of the six
different triangulations of the unitcube are presented with respect to the
three possible energy functionals.
In principle there could exist triangulations which have for each vertex

the same number of incident edges as the reference state T0, but a different
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Table 3.2: Energy of the six different non-isomorphic triangulations of the unitcube
(1× 1× 1) for the energy functionals Epoint, Eedge and the actually used energy
functional E which measures the quadratic difference of the vertex incidences to a
given reference state. Here we use one of the C4-triangulations as ground state.
The six different triangulations are presented in Sec. 3.3.1.

triang. Epoint = ∑
v d

2
v Eedge = ∑

e t
2
e E = ∑

v (dv − dv(T0))2

C4T 180 66 0/72
C3T 200 90 2/74
C2NT 194 86 8/56
C2OT 190 84 28
C1T 192 86 18/42
C0T 194 90 32

topological structure (which vertex is connected with which other vertex),
so the ground state of Eq. (3.43) would be degenerated. In our numerical
simulations no such triangulation was found.

For applying Markov chain Monte Carlo algorithms to the triangulations
with the energy functional (3.43), one has to calculate the energy difference
induced by a flip. Therefor, consider a step T+ → T− that is induced by
an oriented circuit (J+, J−) with the maximal simplices Σ+ being involved
into the step (compare Def. 3.15 for the details of the notion). Remember
that the two possible (not necessarily full-dimensional) triangulations of the
circuit are

T+ := {Y ⊂ J+ ∪ J− : J+ * Y}
T− := {Y ⊂ J+ ∪ J− : J− * Y}

This means that the simplices in T± are constituted by the subsets of J+∪J−
that are not a proper superset of J±. If the circuit is degenerated (not full
dimensional), denote by Jo the set of points that constitute the simplices
in Σreduced,+ (remember these are the subsimplices of Σ+ without points
in J+ or J−). In order to calculate the energy difference induced by the
flip, one has to calculate for each point in J := J+ ∪ J− ∪ J0 the change in
the number of edges incident with the point, or equivalently, the number of
edges incident with this point in the triangulations T+ and T− before and
after the flip. In the following we denote by eo(p) the number of edges at
point p where none of the two points is contained in J \ J0 = J+ ∪ J−, and
by e±(p) the number of edges at point p in triangulation T± where at least
one of the two points is contained in J \ J0 = J+ ∪ J−.
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Consider for example a point p+ ∈ J+ that has e0(p+) edges to points
not contained in J , and e+(p+) edges to points contained in J in the
triangulation T+. Edges that are contained in T+ must not be a proper
superset of J+ (must not contain all points of J+). So if |J+| ≥ 3 every edge
to another point of the circuit is present in T− because the two-element set
of edge points cannot be a proper superset of a more than three-element
set J+. So the number of edges e+(p+) = |J | − 1, because there is no edge
from p+ to itself. For |J+| = 2 only edges between the positive point and a
non-positive point are admissible, and for |J+| = 1 no edge containing the
positive point p+ can be contained in T+. Due to symmetry the numbers
e−(p−) can be calculated in the same way just by exchanging every sign in
an index. So in triangulation T±, the number of additional edges e±(p±) is
given by

e±(p±) = 0 |J±| = 1
e±(p±) = |J∓|+ |J0| |J±| = 2
e±(p±) = |J±|+ |J∓|+ |J0| − 1 |J±| ≥ 3

Using some similar arguments one can calculate the number e∓(p±) of
additional edges at point p± in the triangulation T∓:

e∓(p±) = |J±|+ |J0| − 1 |J∓| = 1
e∓(p±) = |J±|+ |J∓|+ |J0| − 1 |J∓| ≥ 2

For a point po ∈ J0 we do not know alone from the circuit structure
whether there are edges to other points in the component J0. But we know
that the connections among points in J0 do not change due to the flip. Due
to our clever definition of e0(p) and e±(p), for po ∈ J0 the number of edges
can be calculated as

e±(p0) = |J∓| |J±| = 1
e±(p0) = |J±| |J±| ≥ 2

As a next step we can calculate the energy difference locally for each
point. Mind that one has to take into account the contributions of the
reference triangulations, let eref(p) be the number of edges incident with
point p in the reference triangulation T0. The local energy difference can
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then be calculated using

∆E(p) := (dp(T−)− dp(T0))2 − (dp(T+)− dp(T0))2

= (e−(p)− e+(p)) · (e+(p) + e−(p) + 2δe(p))
(3.44)

for each point p ∈ J , where δe(p) := e0(p)− eref(p) is the difference of the
number of edges at point p to points outside the circuit and the number
of edges in the reference triangulation T0. The total energy difference
∆E(T+ → T−) is then the sum over the energy differences for each point.
For a point p± the local energy difference is

∆e(p±) = ±(|J∓|+ |J0|+ 2δe(p±)) · (|J∓|+ |J0|) |J±| = 1 ∧ |J∓| ≥ 2

(3.45a)
∆e(p±) = 0 |J±| = 2 ∧ |J∓| = 1

(3.45b)
∆e(p±) = ±1∓ 2(|J∓|+ |J0|+ δe(p±)) |J±| = 2 ∧ |J∓| ≥ 2

(3.45c)
∆e(p±) = ±1± 2(|J±|+ |J0|+ δe(p±)) |J±| ≥ 3 ∧ |J∓| = 1

(3.45d)
∆e(p±) = 0 |J±| ≥ 3 ∧ |J∓| ≥ 2

(3.45e)

For a point p0 the local energy difference is

∆e(p0) = 1 + 2(|J−|+ δe(p0)) |J+| = 1 ∧ |J−| ≥ 2 (3.46a)
∆e(p0) = −1− 2(|J+|+ δe(p0)) |J+| ≥ 2 ∧ |J−| = 1 (3.46b)
∆e(p0) = 0 |J+| ≥ 2 ∧ |J−| ≥ 2 (3.46c)

3.3.5 Density of states and state space structure

We calculate the density of states (DOS) of three-dimensional lattice tri-
angulations with respect to the energy function (3.43) and a reference
triangulation composed by C4-triangulations using the Wang-Landau al-
gorithm. We use here the flatness criterion fl [H(E)] > 0.8 and alter the
modification factor according to mi+1 = m0.9

i . In Fig. 3.29 the simulation
time dependence of Wang-Landau simulations is displayed, precisely the
value of the DOS at selected energy bins, their distribution and standard
deviations of these values obtained in independent simulation runs in terms
of the final modification factor mf . One can see that the standard deviation
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Figure 3.29: Wang-Landau simulations for lattice triangulations.
Characteristic plot of Wang-Landau simulations for 10× 1× 1 sticks (left), 6× 6× 1
cubes (middle), and 3 × 3 × 3 cubes (right) for flatness f = 0.8 and δm = 0.9.
Plots (a-c) show the behavior of single energy bins (first excited state, bin at
0.1 · 〈E〉 and bin at 〈E〉) of the density of states normalized with the bin at 〈E〉
for decreasing final modification factor, the colorplot indicates the distribution
obtained by different independent Wang-Landau simulations. Plots (d-f) show the
standard deviation 〈σ〉E obtained for the DOS in terms of the modification factor,
averaged over all energy bins (solid, colored line), as well as the average number of
sweeps s to do to get to this modification factor (dashed, black line). Finally, plots
(g-i) show the number of necessary sweeps to obtain an average error sDOS = 0.01
in the average bins, which is the product of the number of sweeps s for one run
and the number of runs n = 1 + 〈σ〉2E/s2

DOS (obtained from sDOS = σ/
√
n− 1).
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Figure 3.30: Microcanonical entropy S(E) = log g(E) of three-dimensional
lattice triangulations, calculated using Wang-Landau sampling with the vertex-
degree-energy (3.43). The three different lattice shapes are (a, red) stick lattices
from 1× 1× 1 to 11× 1× 1 unitcubes, (b, blue) plane lattices 1× 1× 1 to 6× 6× 1
unitcubes and (c, green) cube lattices for 1× 1× 1 and 2× 2× 2 unitcubes.

decreases fast with decreasing modification factor, while the number of
sweeps increases exponentially for 10−1 ' mf ' 10−6. The saturation of
error sets in for all cases at mf ≈ 10−6. This leads to the observation
that for most efficient usage of the computer resources the Wang-Landau
simulations should be stopped at around 10−3 ' mf ' 10−4. Despite
possible inefficiencies we run every simulation beneath the saturation of
error threshold in order to be very carefully about possible errors.
In Fig. 3.30 the microcanonical entropy S(E), which is the logarithm

log g(E) of the density of states and which was calculated using the Wang
Landau algorithm with the described parameters., is displayed for the
different geometries of the underlying lattice. The microcanonical entropy
has the same qualitative behavior as in the two-dimensional case, with a step
ascent for low energies, a peak that is not symmetric in the range of possible
energies, but shifted towards the ground state, and some complicated
structure for high energies. There is no qualitative difference between stick,
plane or cube geometries of the underlying lattice, but S(E) for planes and
even more pronounced S(E) has a stronger curvature in the growth from
the ground state to the peak energy, and a peak that is flatter.

As in the two-dimensional case one can also determine the scaling behavior
of certain special points of the density of states, e.g. the average energy
〈E〉 of a random triangulation, the energy with the highest microcanonical
entropy Epeak and the actual peak entropy S(Epeak), as well as the maximal
energy Emax of the system. This can be useful for a general understanding
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Figure 3.31: Density of states of three-dimensional lattice triangulations.
(a) Scaling of the density of states for sticks (red), planes (blue) and cubes (green).
The small plots show (b) the peak energy Epeak ≈ 〈E〉, (c) the entropy at the
peak energy S(Epeak) and (d) the maximal possible energy Epeak) in terms of the
system size.

of the structure of triangulation, for providing extrapolated initial estimates
for the density of states of Wang Landau simulation for large systems and
for determining cuts for the calculation of the total numbers. For sticks, one
finds the following linear scaling behavior of the peak energy and the peak
microcanonical entropy, where n is the system size (number of unitcubes):

〈E〉(n) = (63.6± 0.3) · n− 54.2± 3.7 (3.47a)
Epeak(n) = (62.8± 0.1) · n− 69.7± 2.1 (3.47b)

[g(Epeak)] (n) = (5.508± 0.007) · n− 7.05± 0.10 (3.47c)

For planes, there is the following quadratic scaling behavior in terms of the
system size n2 = nx · ny:

〈E〉(n) = (0.41± 0.05) · n2 − 59.3± 1.2 (3.48a)
Epeak(n2) = (0.36± 0.05) · n2 + (58.9± 1.6) · n (3.48b)

[g(Epeak)] (n2) = (0.058± 0.006) · n2 + (3.6± 0.1) · n (3.48c)

For cubes no scaling behavior can be given, because the system sizes that
can be calculated using our Wang-Landau algorithm are to small. In all
cases our assumption that 〈E〉 ≈ Epeak (the average energy of random
triangulations is approximately equal to the peak of the DOS) holds quite
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Figure 3.32: Typical ∆E for three-dimensional lattice triangulations.
Energy-resolved distribution of the energy differences induced by steps for sticks,
planes and cubes. (a-c) Microcanonical entropy log g(E) normalized to its peak
value for 9 × 1 × 1sticks (a), 4 × 4 × 1 planes (b) and 2 × 2 × 2 cubes (c) for
comparison. (d-f) The colorplot displays the distribution of the energy difference
∆E induced by steps in terms of the energy of the lattice triangulation. The solid
line is the (smoothed) mean of the distribution, the dashed lines are the (smoothed)
boundaries of the distribution.

well, so we can use 〈E〉 instead of Epeak for determining cutting values. This
has the advantage that 〈E〉 can be calculated using a simple Metropolis
Monte Carlo simulation at β = 0, whereas for the peak energy the DOS
must be known.
Additional information about the structure of the state space of three-

dimensional lattice triangulations can be obtained by inspecting the dis-
tribution of energy differences that can be induced by steps in terms of
the energy of the triangulation. In Fig. 3.32 this distribution is displayed
for sticks, planes and cubes of one system size each. The distribution was
obtained by performing a flat sampling with respect to the density of states
obtained by Wang Landau simulations. Between two measurements that
recorded the current energy of the triangulation and the energy difference of
a randomly selected step a certain number of steps were executed without
measurements to avoid autocorrelation effects. After the simulation it was
simply counted how often a certain energy difference ∆E was obtained at a
certain triangulation energy E to obtain the distribution.

As expected the mean of this distribution is positive for energies E < 〈E〉
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Figure 3.33: Relative cumulative sum N |<E/N (where N is the total number
of triangulations and N |<E is the number of triangulations with energy E(T ) < E)
for sticks (a, red), planes (b, blue) and cubes (c, green) for different system sizes in
terms of the relative energy E/〈E〉, where 〈E〉 is the average energy of the random
triangulations. For larger system sizes the step function gets sharper. Considering
the biggest system sizes where the full density of states is known, one can estimate
that one can use Ecut = 1.6〈E〉 for sticks, Ecut = 1.3〈E〉 for planes and Ecut =?〈E〉
for cubes as cuts in the density of states resulting in an error of less than 0.01.

and negative for energies E > 〈E〉, driving the system to states with
high microcanonical entropy. For small energies the distribution of energy
differences is narrower than for higher energies, this can be understand
because the energy function is quadratic in the number of incident edges,
and for high energies there are vertices with high incidence number so
that an insertion or a removal of only one edge at a vertex can lead to
a high energy difference. Another observation is that for all energies the
maximal energy difference |∆E|max < 0.05Emax is small compared to the
actual range of possible energies. So the flips which are local changes in the
triangulations lead to only small changes in the energy, which means that
in that sense our energy function is a good choice.

3.3.6 Entropy density of three-dimensional lattice
triangulations

In this section we calculate the limit of the entropy density (or capacity)
for three-dimensional lattice triangulations of sticks, planes and cubes. We
use the same definition

C(V ) := log2(Ω(V ))
V

(3.49)
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as Eq. (3.12) in the two-dimensional case, where V is the system size (V =
x · y · z for lattices with x × y × z unitcubes) and Ω(V ) is the number of
states at this system size. In order to get a sensitive limit, the entropy
density has to be calculated for large system sizes, which cannot be accessed
by the Wang-Landau algorithm if considering the whole density of states
(DOS) of the system. So instead of calculating the whole DOS, we introduce
a cutoff energy Ecut so that Ω(E < Ecut) / Ω with an error less than 0.01.
This cutoff can be found in terms of the average energy 〈E〉 of random
three-dimensional lattice triangulations by inspecting the relative cumulative
sum ω(Ecut) := Ω(E < Ecut)/Ω in terms of 〈E〉E as in Fig. 3.33. We finds
that the cumulative sum ω approaches a step function centered at 〈E〉 with
growing system size. So choosing a cutoff energy Ecut = c · 〈E〉 with c > 1
that produces a relative cumulative sum ω > 0.99 for a certain system
size V , the error even gets smaller for increasing system sizes. Considering
Fig. 3.33 we choose the following cutoff energies for the different lattice
shapes:

Ecut,sticks = 1.6 · 〈E〉
Ecut,planes = 1.3 · 〈E〉
Ecut,cubes = 1.6 · 〈E〉

In Fig. 3.34 the entropy density for the different shapes of the lattices are
plotted. Using least-square fits, one can find the following relations:

Csticks(V )→ (8.048± 0.003)− 4.36± 0.05
V

(3.50a)

Cplanes(V )→ (6.961± 0.004)− 0.90± 0.06
V

(3.50b)
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Ccubes(V )→ (5.97± 0.05) + 4.3± 1.6
V

(3.50c)

One sees that the limit of the entropy densities is highest for sticks and
lowest for cubes, also the next-to-leading-order terms are strongest for sticks
and weakest for cubes. This means for example that there are way more
triangulations of V × 1× 1 sticks than of V 1/2 × V 1/2 × 1 planes, and way
more triangulations of these planes than of V 1/3 × V 1/3 × V 1/3 cubes.

These findings are different to the two-dimensional case, where the limit of
the entropy density decreases if one confines the geometry of the lattice (for
two-dimensional sticks C → 2, for squares C → 2.196, see Fig. 3.34). This
difference can be understood already by considering the non-mixing unitcell
triangulations. In the two-dimensional triangulations the one-dimensional
boundary of the unitcells does not alter with the triangulations inside, so
the number of non-mixing triangulations is given simply by Ω = 2A, where
A is the system size, independent of the actual shape of the triangulation,
so the limit of the entropy density would be 1 in all geometries of the lattice.
In the three-dimensional case the two-dimensional boundary triangulations
of the unitcube do depend on the triangulation within the unitcube, and one
cannot combine the 74 unitcube triangulations arbitrarily. If extending a
stick triangulation with another unitcube, only one side of the new unitcube
is fixed. If extending a plane or cube triangulation, for most of the added
unitcubes two or three sides are fixed, so there are much less triangulations
of the unitcube that can be combined, which results in the decrease of the
entropy density.

143



3. Embedded triangulations

3.4 Two-dimensional unimodular lattice
triangulations as graphs

Real world systems or networks that consist of many similar entities that
are interacting can be described by graph theory (see [122,314] for reviews).
Examples are the world-wide-web, where single websites are modeled as
vertices and links between websites are modeled as edges; the network of
social interactions, where vertices represent single humans and edges imply
an existing friendship between two humans and the scientific co-author
network, where authors of scientific papers are vertices and an edge between
two authors is existent if both are co-authors of a common paper.
Most of these real networks share three common properties [7, 122]:
1. The clustering coefficient, which is basically the probability that two

neighbors of a common node are connected by a graph edge, is high
and independent of the size of the network. In real networks this
means for example that there is a high probability that if two persons
know a common person, they know each other, too; if two scientific
authors are co-authors of a common third author, also these two are
very likely co-authors.

2. The length of the shortest path between two random vertices, measured
by the number of edges the path consists of, is small even for huge
graphs and scales like the logarithm of the system size for increasing
system size. This behavior is commonly known for the network of
social interactions, where every two random persons of the world
should know each other over less then 10 middlemen, or in the world
wide web, where each website can be reached from every other website
within a few clicks.

3. The distribution of the number of edges incident with a vertex (its
degree k) follows a power-law distribution (P (k) ∝ k−γ) with 2 <
γ < 3, which means that there are a lot of vertices with only a few
neighbors, and only a minority highly connected vertices. For example
in the co-author network there are few authors that worked together
with a lot of different people, and there are a lot of authors that
worked only with very few co-authors.

The appearance of the first two properties is often denoted as small-world
behavior, networks with the third property are denoted as scale-free.
Another major tool in studying the physical properties of graphs is

spectral graph theory, which examines the spectra of the adjacency and the
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Laplacian matrices associated with the graph and some special eigenvalues
of those, see e.g. [126]. The spectra of graphs are studied e.g. for quantum
percolation [165] and Anderson transition on Bethe lattices [166,167,297] in
terms of random matrices, as well as in biology [58] and chemistry [163,394],
for a review see [300] and the references therein. Special eigenvalues as the
algebraic connectivity, the smallest non-zero eigenvalue of the Laplacian
matrix, are important for characterizing the topology of graphs [235], for
transport and dynamics on networks [12] and for optimization problems
[302,402], see [127,301] for reviews. Additionally, spectral graph theory is
well-connected with the common mathematical theory of random matrices
used in quantum physics [199]. An important application of the spectrum
of the Laplacian matrix are (quantum) random walks on networks [102,305],
where the Laplacian matrix corresponds to the discretization of the operator
used in Poisson and Schrödinger equations. In both cases the spectrum can
be used for calculating return probabilities and participation ratios.

To understand the structure and behavior of real world networks different
random graphs are used as model systems [7]. Three widely used models are
the Erdös-Rényi random graph [158–160], the Watts-Strogatz random graph
[412] (and a slightly altered version denoted as Newman-Watts random graph
[316]) and the Barabási-Albert random graph [60]. While all three models
have a shortest path length scaling with the logarithm of the system size
[180,412], none exhibits both the other two properties of real-world networks:
The Erdös-Rényi random graph has vanishing clustering coefficient and
a binomial degree distribution; the Watts-Strogatz random graph exhibits
a non-vanishing clustering coefficient for a special choice of parameters
[412], but also a degree distribution that agrees quantitatively with the
Erdös-Rényi graph [64]; the Barabási-Albert model creates a scale-free
degree distribution with exponent γ = 3 [60, 140, 262], but leads also to
a vanishing clustering coefficient for increasing system size [179]. Several
more complicated models developed afterwards combine both small-world
and scale-free behavior [218,252,383], there are also models that use graphs
with vertices embedded in some geometric space that exhibit these two
properties [74,354,428].

We present here a novel type of (embedded) random graphs by identifying
triangulations of integer lattice point sets as graphs that shows a crossover
from ordered, large-world to unordered, small-world and possible scale free
behavior. Such triangulations are tessellations of the convex hull of the
point set into non-intersecting simplicial building blocks (triangles in two
dimensions, tetrahedrons in three dimensions) [132]. Triangulations are an

145



3. Embedded triangulations

important tool in physics for describing curved space(-times), in quantum
geometry (e.g. in the framework of Causal Dynamical Triangulations [38]
and in spin foams [352]); they are also a major object of study in topology
and geometry where one is for example interested in the number of distinct
triangulations of a given topological manifold [380]. Triangulations are
commonly used for describing foams [381], where often a special so-called
Delaunay triangulation, which is the dual to the Voronoi tessellation, is
used for foam construction. They can also be used for describing the
topological properties of foams in terms of the neighboring cells [53,143,319].
Additionally glass-like dynamics near regular configurations can be found in
dual graphs of topological triangulations [54]. The dual graphs of disordered
triangulations as described in this paper can be used for the construction
of poly-disperse foams, which exhibit a broad range of cell sizes, and for
considering e.g. their transport and diffusion problems.

Triangulations have been used as random graph models before: Random
Apollonian Networks [47,372,433] (randomized dual graphs of Apollonian
packed granular matter) are triangulations constructed using a procedure
similar to preferential attachment and show both small-world and scale-free
behavior. Since each graph can be embedded into a closed surface with high
enough genus, and triangulations are maximal planar graphs in the sense
that each insertion of another edge will break planarity, triangulations of
surfaces with arbitrary genus were studied in [52]. Canonical ensembles of
triangulations of the sphere were used in [259] to consider a quench from
the random triangulations to zero temperature.
In contrast to the triangulations considered in [47, 52, 259, 372, 433] be-

fore, which we denote as topological triangulations, we use embedded
triangulations with vertices having fixed coordinates, precisely unimodular
triangulations of two-dimensional integer point lattices. For topological
triangulations only the topological degrees of freedoms (the way how vertices
are connected) are important, contrary to embedded triangulations where
additionally the actual coordinates of the vertices are fixed and specified.
This causes complexities and numerical difficulties that do not have to be
addressed in topological triangulations, e.g. to determine whether a Pachner
flip leads to a valid triangulation.

In this section we measure the degree distribution, the clustering coefficient
and the shortest path length as well as spectral observables of random lattice
triangulation graphs using Metropolis Monte-Carlo simulations and find
a high clustering coefficient and similarities to common network models.
Introducing the notion of an energy of a triangulation that is well known
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in literature and corresponds to the variance of the degree distribution we
apply the usual notion of statistical physics and examine the canonical
ensemble averages of these observables for different values of the inverse
temperature. For the numerical calculation of the expectation values we
use the Wang-Landau algorithm for calculating the density of states. This
makes it possible to calculate equilibrium properties for all temperatures,
in contrast to Metropolis or Glauber dynamics used in [52,54,259], where it
is hard to access negative temperatures and low temperatures, but we loose
the ability to consider dynamical behavior like quenches or glass-transitions
studied in the literature before. In the canonical ensemble we find in all
considered observables a transition from an ordered large-world behavior
for positive temperatures to small-world and scale free behavior for negative
temperatures. For the maximal ordered triangulations, which are the ground
state of the energy functional used, analytical calculations are possible, as
well as approximations for triangulations with low energies near the ground
state. As an application of our results, we calculate the inverse participation
ratio of certain eigenstates and show that random lattice triangulations
on average exhibit stronger localization that comparable random graphs.
Furthermore we consider the standard Ising model defined on this type of
graph and calculate critical temperatures and phase transitions.

3.4.1 (Spectral) graph theory

An undirected simple graph G := (A, E) is a pair consisting of a set A
(called vertices) with n = |A| elements and a set E (called edges) of two-
element subsets of A. A triangulation can be interpreted as a graph using
the point set A as vertices and the 1-simplices of the triangulation as edges
E.
Important properties of graphs are related to global observables defined

on graphs. The degree distribution

P (k) = 1
n
|{v ∈ A|dv = k}| (3.51)

at incidence number k is the fraction of vertices that has k incident edges.
The clustering coefficient

C := 1
n

∑
v∈A

Cv with Cv := 2N(v)
dv(dv − 1) (3.52)

is the average over the local clustering coefficients Cv, where Cv is the ratio
of the number N(v) of edges between next neighbors of v in the graph and
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the maximal possible number dv(dv − 1)/2 of edges between next neighbors
of v. So a high clustering coefficient means a high probability that common
neighbors of a vertex in the graph are neighbors themselves. The shortest
path length `v,w between vertices v and w is the minimal number of edges
of a path that connects v with w, and the average shortest path length

` := 1
n(n− 1)

∑
v,w∈A,v 6=w

`v,w (3.53)

is the average of the shortest path length between all pairs of vertices. A
low average shortest path length means that the graph can be traversed in
a small number of steps.
Important properties of graphs can also be found be examining spectral

properties (the set of eigenvalues) of matrices associated with graphs. In
the literature mostly the following three n× n-matrices (with n being the
number of vertices) are considered for a graph G [117]:

• The adjacency matrix A(G) with

A(G)ij :=
{

1 {vi, vj} ∈ E
0 {vi, vj} /∈ E

is a traceless, symmetric matrix that indicates whether two different
vertices are connected. The matrix elements A(G)kij equal the number
of paths from vi to vj containing exactly k edges. We will denote its
sorted eigenvalues by α0 ≤ α1 ≤ · · · ≤ αn−1.

• The Laplacian matrix L(G) := D(G)−A(G) with degree matrix

D(G)ij := δijkvi

is a discretization of the usual Laplace operator ~∇2. The Laplacian
matrix is symmetric and positive-semidefinite, the smallest eigenvalue
is always 0. We denote the sorted eigenvalues of the Laplacian matrix
by λ0 ≤ λ1 ≤ · · · ≤ λn−1. The multiplicity of the eigenvalue 0 is the
number of connected components of the graph.

• The normalized Laplacian matrix

L(G) := 1−D(G)−1/2A(G)D(G)−1/2

is useful for describing random walks on arbitrary geometries. This
matrix is not considered in this paper, but our calculations can be
extended simply to the normalized Laplacian.
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The spectrum specM (x) of a n×n-matrixM with eigenvalues µ0, . . . , µn−1
is given by the distribution

specM (x) := 1
n

n−1∑
i=0

δ(x− µi)

For large graphs (n→∞) the spectrum can be approximated by a continu-
ous function.

A well known result is that the spectrum of the Laplacian matrix can be
used to calculate the number of spanning trees, which is λ1 ·λ2 · · · · ·λn−1/n
[249]. The second-smallest eigenvalues λ1 of the Laplacian spectrum is called
algebraic connectivity, the largest eigenvalue λMN−1 is called spectral radius.
The algebraic connectivity is 0 if and only if the graph is not connected,
it can be shown that it increases if one inserts additional vertices into a
graph, so it is in fact a good measure for the connectedness of a graph.
Additionally it can be used to bound other quantities of graphs that are more
difficult to calculated, e.g., the isoperimetric number [299]. Fiedler [170]
and Mohar [300] state that there are the following lower and upper bounds
for the algebraic connectivity λ1 of a graph G:

2η(G)
[
1− cos

(
π

n

)]
< λ1(G) < v(G) (3.54)

Here η(G) is the edge connectivity and v(G) is the vertex connectivity, the
smallest number of edges or vertices (with incident edges) that must be
removed from the graph to create at least two non-connected components.
For the spectral radius λMN−1 there are the following general bounds
( [300,430]) for a graph G:

n

n− 1 max {ki | vi ∈ A} ≤ λn−1(G) ≤ max {ki + kj | {vi, vj} ∈ G} (3.55)

where ki is the degree (number of incident edges) of vertex vi.
One can show that the algebraic connectivity is proportional to the

inverse of the synchronization time in consensus dynamics on networks
[12]. Additionally, for the return probability it governs the large-time in
classical and the small frequency behavior in quantum random walks on
networks, whereas the spectral radius governs short-time respectively the
large frequency behavior [307].
One can also find a bound for the sum of the j largest eigenvalues in

terms of the j largest degrees ka ≤ kbfora < b [198]
j∑
i=1

λn−j ≥ 1 +
j∑
i=1

kn−j
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The sum of the exponentiated eigenvalues of the adjacency and the Laplacian
matrix is known as the (Laplacian) Estrada index and has many applications
in the study of chemical molecules [142,163,164].
The eigenvectors of the Laplacian matrix can be used for examining

localization on graphs in terms of the inverse participation ration (IPR) χm
of the normalized eigenvector |m〉 corresponding to eigenvalue λm [96, 305],
which is given by

χm :=
∑
k

(|m〉k)4 , (3.56)

where |m〉k denotes the k-th component of the eigenvector. Since the normal
basis corresponds to the vertices of the graph, these components are the
overlap of the eigenvectors and the vertices, so large IPRs correspond to
strong localization, whereas small IPRs correspond to delocalization of the
corresponding eigenvector. To examine the localization properties for lattice
triangulations, we consider the IPR χ1 of the algebraic connectivity, the IPR
χMN−1 of the spectral radius and the average IPR χ := (∑m χm)/MN .

An important use of random graphs in statistical physics are their use as
underlying structures for Ising or other spin models. In the Ising case one
assigns to every node a spin σ ∈ {−1, 1} and defines the energy as

EIsing (~σ) := J
∑

{n1,n2}∈E
σn1σn2 −H

∑
n1

σn1 , (3.57)

where ~σ ∈ {−1, 1}n denotes the configuration of all n spins, and where
{n1, n2} ∈ E is an edge that connects the nodes n1 and n2. In the following
we consider only the case of vanishing external field H = 0.

The Ising model has been solved analytically on one- and two-dimensional
square lattices (see Sec. 2.1.7), for Cayley trees [154], which are generated
iteratively by inserting (q−1) nodes of the k-th generation connected to every
node of the (k − 1)-th generation, and for Bethe lattices, which are Cayley-
trees with k →∞ [70, Sec. 4.8]. Interestingly, in the thermodynamic limit
the free energy for Cayley trees is still an analytic function [154], while for
Bethe lattices there is a phase transition at coth(βc) = q−1 [70, Eq. (4.5.4)],
because the limit k →∞ does not commute with the calculation of the free
energy, and within a Cayley tree the surface lattice sites of the last generation
dominate [154]. Furthermore one can calculate the critical temperature
and critical exponents for uncorrelated graphs with a scale-free degree
distribution P (k) ∝ k−γ , the critical temperature βc depends on the average
number of nearest and next-to-nearest neighbors, the critical exponents fall
into different classes for 2 < τ < 3, 3 < τ < 5 and τ > 5 [139,277].
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3.4. Two-dimensional unimodular lattice triangulations as graphs

3.4.2 Triangulations as random graphs

We consider here full triangulations of the integer lattice

A =
{(

m
n

) ∣∣∣∣∣ m ∈ ZM := {0, 1, . . . ,M − 1}, n ∈ ZN

}

which are unimodular, that is that all triangles have equal area 1/2, and
diagonal edge flips transforming those triangulations into each other ergodi-
cally. Examples of such triangulations can be found in Fig. 3.12. Note that
we use a different convention to describe the lattice size than in Sec. 3.2,
where M × N lattice referred to M · N unitcells and (M + 1) · (N + 1)
vertices. Here an M ×N lattices refers to (M − 1) · (N − 1) unitcells and
M ·N vertices.

There are analytical bounds [238] and numerical calculations [253] (com-
pare Sec. 3.2) for the total number of triangulations on such integer lattices.
Both the bounds and the numerical calculations show that number of trian-
gulations scales exponentially with the system size of the underlying lattice,
this extensivity makes it possible to apply tools from statistical physics to
triangulations. A similar system was also considered in [108], where the
convergence of a Metropolis-like Monte Carlo algorithm applied to lattice
triangulations was analyzed for different parameter choices.
We interpret triangulations as graphs by identifying vertices as graph

nodes and the triangulation edges as graph edges. Neglecting the boundary
vertices triangulation graphs are maximal planar, i.e. no edge between an
internal and another vertex can be inserted without violating the planarity
of the graph.
To categorize triangulations of a point set according to their order and

disorder, we define for a triangulation T the energy function

E(T ) :=
∑
v∈A

(
k(T )
v − k(T0)

v

)2
(3.58)

taking low values for ordered triangulations and high values for unordered
triangulations. Here k(T )

v is the number of edges that are incident with
the vertex v in triangulation T and T0 is a reference triangulation that
will be the ground-state of the energy function (in this paper we choose
the maximal ordered triangulation displayed in Fig. 3.12 as the reference
triangulation). The additional term k

(T0)
v with T0 being the maximal ordered

triangulation can be seen as an implementation of fixed boundary conditions.
Periodic boundary conditions, which yield toroidal topology, cannot be used
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3. Embedded triangulations

for lattice triangulations, because on closed surfaces without boundaries
there are several possibilities to connect two vertices with an edge (e.g.
with different winding number) and therewith it depends on the choice
of the connection whether the considered object is a valid triangulation.
In contrast, for the considered topology, the edge between two vertices is
always the line segment.
Since the number of edges of full lattice triangulations is constant, sums

over linear vertex degrees vanish and the chosen energy function (3.58) is the
simplest possible polynomial energy function in the number of vertices, edges
and triangles. It can be related to the square of the local curvature usually
used in dynamical triangulations [38] (which is basically the deficit angle
given by the number of triangles around a vertex minus six). Similar energy
functions were already applied to graphs in [168]; in [108] the total length
of all edges was used as energy function in lattice triangulations, which
qualitatively agrees with our choice since high energy leads to long edges
in the triangulations; previous works [52, 54, 259] considering topological
triangulations as graphs also use the energy function (3.58) with the mean
vertex degree 〈k〉 instead of k(T0)

v .
Interpreting the triangulation vertices as graph nodes and the 1-simplices

as graph edges, we compare the graph properties of the triangulations with
Erdös-Rényi [158–160], Newman-Watts [316] and Barabási-Albert [60]
random graphs. In all three cases we choose the model parameters so that
the number n of the random graph nodes matches the number MN of the
lattice triangulation vertices and the average number of random graph edges
matches the number e = 3MN − 2(M +N) + 1 of the lattice triangulation
edges.
In the Erdös-Rényi random graph there are n vertices, each pair of

vertices is connected by an edge with probability p [158–160]. They have a
small world behavior for the shortest path length, but vanishing clustering
coefficient and a binomial degree distribution. To compare the Erdös-Rényi
random graph with triangulations we choose its parameters to be n = MN
and p = 2e/n(n− 1)→ 6/n.
The Newman-Watts random graph [316] is a modification of the Watts-

Strogatz graph [412]. Starting with a regular graph of n vertices and
connections to the next L neighbors, for each present edge an additional
edge is inserted between two random vertices with probability q. This model
can be seen as the periodic regular graph superimposed with a random
graph. The random rewiring leads to shortcuts and a short average path
length, the basic regular graph leads to a high clustering coefficient. To
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3.4. Two-dimensional unimodular lattice triangulations as graphs

obtain a comparable random graph we use the parameters n = MN , L = 4
and q = −1 + e/2MN

The Barabási-Albert random graph [60] is constructed as following: Start
with m isolated vertices and iteratively insert t vertices, each with m edges
to already present vertices, such that the probability for connecting to
a present vertex is proportional to its degree (preferential attachment).
This random graph has vanishing clustering coefficient, but a power-law
degree distribution and a small-world shortest path length. We choose the
model parameters m = 3 and t = MN − 3 to compare with M ×N lattice
triangulations.

3.4.3 Analytical solution

In this section we calculate analytical solutions for the clustering coefficient
of the maximal ordered ground state of a lattice triangulation, and the
effect of flips on the clustering coefficient. If one extends the ground state
to periodic boundaries (resulting in a periodic, triangular lattice), also
analytical solutions for the eigenvalues of the adjacency and the Laplacian
matrix can be found. It is even possible to use perturbation theory to
calculate the effect of flips on the spectrum and therewith to approximate
the spectral properties of low-energy triangulations.

Clustering coefficient

Since for the periodic extension of the ground state every vertex has di = 6
neighbors, the average clustering coefficient is C = 2/5 due to (3.52). For
calculating the clustering coefficient of the ground state with boundary on
a M ×N -lattice one has to take into account the deviating contribution of
the boundary vertices:

C = 1
MN

[2
5(M − 2)(N − 2) + 2

4 (2(M − 2) + 2(N − 2)) + 2
3 · 2 + 2

2 · 2
]

= 2
5 + 1

5 ·
M +N

MN
+ 14

15 ·
1

MN
(3.59)

A flip originating from the ground state that does not involve boundary
vertices increases the number of incident edges for two vertices from 6 to 7
and decreases it for two other vertices from 6 to 5. So the change in the
clustering coefficient is

∆C = 1
15 ·

1
MN

(3.60)
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Figure 3.35: Analytical solutions of the ground state spectra.
Analytical calculated eigenvalues of the Laplacian matrix (left, Eq. (3.64)) and of the
adjacency matrix (right, Eq. (3.62)) for the periodic ground state of a triangulation
in terms of m/M and n/N . The solid lines are the isocurves for the integer values,
the dashed lines are the isocurves for the half-integers and the dots represent the
realized values for M = N = 16. For larger triangulations the dots become denser.

Adjacency and Laplacian spectrum (ground state)

In this section we calculate the spectrum of the adjacency and the Lapla-
cian matrix for a triangular M ×N -lattice graph with periodic boundary
conditions. This is an approximation for the maximal ordered ground state
of a triangulation. The components A(i1j1)(i2j2) := Ai1·N+j1,i2·N+j2 (with
ik ∈ ZM , jk ∈ ZN ) of the adjacency matrix are given by

A(i1j1)(i2j2) = δ
(M)
i1i2 Bj1j2 + δ

(M)
i1(i2+1)Cj1j2 + δ

(M)
(i1+1)i2Cj2j1

Bj1j2 = δ
(N)
j1(j2+1) + δ

(N)
(j1+1)j2

Cj1j2 = δ
(N)
j1j2 + δ

(N)
(j1+1)j2

(3.61)

The matrix B describes the connections between vertices in a common row,
the matrix C describes the connections between the different rows. δ(M)

i1i2
is the M -periodic Kronecker delta (1 for i1 = i2 + k ·M with k ∈ Z, 0
otherwise). The Laplacian matrix L is then given by

L(i1j1)(i2j2) := 6δ(N)
j1j2δ

(M)
i1i2 −A(i1j1)(i2j2)

Using a decomposition into Fourier components one can show that αmn ∈
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3.4. Two-dimensional unimodular lattice triangulations as graphs

R and |m,n〉 ∈ CMN solve the eigenvalue equation

A |m,n〉 = αmn |m,n〉

with eigenvalues

αm,n = 2
[
cos

(
2π n
N

)
+ cos

(
2π m
M

)
+ cos

(
2π
(
m

M
+ n

N

))]
(3.62)

and the corresponding components of the eigenvectors

|m,n〉kl = 1√
MN

exp
(

2πik ·m
M

)
exp

(
2πil · n

N

)
. (3.63)

The eigenvalues and (up to a scaling factor) the eigenvalues depend only
on the relative indices m/M and n/N . So the spectrum as visualized in
Fig. 3.35 is independent of the system size in terms if the relative indices,
but the actual system size becomes important to determine which relative
indices m/M and n/N with m ∈ ZM , n ∈ ZN are possible. The two-fold
degenerated smallest eigenvalues of the adjacency matrix are

α0 = α1 = αM
3 ,

N
3

= αM
3 ,

N
3

= −3

the largest eigenvalue is αMN−1 = α0,0 = 6.
The eigenvectors of the adjacency matrix (3.62) also solve the eigenvalue

equation for the Laplacian matrix

L |m,n〉 = λmn |m,n〉

with eigenvalues

λm,n = 6− 2
[
cos

(
2π n
N

)
+ cos

(
2π m
M

)
+

+ cos
(

2π
(
m

M
− n

N

))] (3.64)

which are visualized in Fig. 3.35. These Laplacian eigenvalues of a periodic
triangular lattice were also found in [400]. The lowest eigenvector λ0 = λ00
is zero since the triangulation is connected. The algebraic connectivity λ1 is

λ1 =

λ1,0 = λN−1,0 = 6− 6 cos
(

2π
N

)
N ≥M

λ0,1 = λ0,M−1 = 6− 6 cos
(

2π
M

)
N < M

(3.65)

and for M,N ∈ 3 · N the spectral radius λMN−1 is

λMN−1 = λN
3 ,

2N
3

= λ 2N
3 ,N3

= 9 (3.66)
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Adjacency and Laplacian spectrum (low energy states)

As a next step we use the usual quantum mechanical perturbation theory
to calculate analytically the influence of a single and multiple flips on
the eigenvalues of the Laplacian operator. Consider a flip of the edge
{(a, b)(a− 1, b+ 1)} into the new edge {(a− 1, b)(a, b+ 1)}. The Laplacian
operator L′ = L + V of the flipped state can be calculated using the
Laplacian operator L of the ground state and a perturbation matrix V with
the following non-vanishing components:

Vab,ab = V(a−1)(b+1),(a−1)(b+1) = −1
V(a−1)b,(a−1)b = Va(b+1),a(b+1) = 1
Vab,(a−1)(b+1) = V(a−1)(b+1),ab = 1
V(a−1)b,a(b+1) = Va(b+1),(a−1)b = −1

The expectation value for the perturbation V is then :

〈m,n | V̂ | m′, n′〉 = 1
MN

e2πi (m′−m)µ
M e2πi (n′−n)ν

N

·
[
4eπi

m−m′
M eπi

n′−n
N sin

(
π
m−m′
M

)
sin
(
π
n′ − n′
N

)
+

+
(
e2πin

′
N − e−2πi n

N

)(
e−2πim

′
M − e2πim

M

)]
In the following we consider only quadratic lattices M = N , the rect-

angular case can be treated in an analogue fashion. For calculating the
first order correction for the spectral radius one has to take into account
that λN/3,2N/3 = λ2N/3,N/3 is two fold degenerate, so one has to calculate
the perturbation matrix and to diagonalize it. The relevant terms of the
perturbation matrix are the diagonal element〈

N

3 ,
2N
3

∣∣∣∣ V̂ ∣∣∣∣ N3 , 2N
3

〉
= 3
N2

and the complex off-diagonal element〈
N

3 ,
2N
3

∣∣∣∣ V̂ ∣∣∣∣ 2N
3 ,

N

3

〉
= 3
N2 e

2πi
3 (a−b−1)

The eigenvalues of the resulting hermitian 2× 2-matrix are 0 and 6/N2, so
in first order perturbation theory the spectral radius becomes

λN2−1 ≈ 9 + 6
N2 (3.67)
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Figure 3.36: Autocorrelation function 〈c〉(t) in units of steps per system size
of the (a) average mean energy, (b) the clustering coefficient and (c) the average
shortest path length for random triangulations of size 4×4 ( ), 8×8 ( ) and 16×16
( ).

with the second being the important contribution since the spectral radius
needs to be the biggest eigenvalue. This relation will be used later on to
estimate the energy dependence of the spectral radius for small energies.

The perturbation theory unfortunately fails if one considers the algebraic
connectivity. For the case M = N the corresponding eigenvalue is six-fold
degenerated and the perturbation matrix has to be diagonalized numerically.
This leads for all M,N to a decrease in the algebraic connectivity, which
is consistent with a direct diagonalization of the new Laplacian L+ V for
the periodic case. In contrast to that, if one diagonalizes L+ V directly for
the non-periodic case, the algebraic connectivity increases. So for the small
eigenvalues the difference between a regular and a periodic triangulation
leads to a qualitative change in the behavior of the algebraic connectivity,
which is quite comprehensible since the algebraic connectivity is dominated
by the vertices with low degree (two for non-periodic and six for periodic
triangulations), which can be seen already in the bounds (3.54)/ The spectral
radius is determined by the vertices with high degree, which is six for both
periodic and non-periodic triangulations, also apparent in the bounds (3.55).

3.4.4 Random triangulations

In this section we calculate the scaling behavior of the vertex degree distri-
bution, the mean energy, the average clustering coefficient and the average
shortest path length in terms of the system size of random triangulations
and compare it with random graphs. With random triangulations we denote
the ensemble with each possible triangulation having the same constant
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Figure 3.37: Graph observables of random lattice triangulations.
Scaling behavior of random lattice triangulations and comparable random graphs.
a) Degree distribution for random triangulations of 8 × 8 ( ) and 32 × 32 ( )
lattices compared to the average degree distribution of a Newman-Watts ( ) and a
Barabási-Albert ( ) random graph with n = 322 vertices. b) Specific mean energy,
variance of the degree distribution, c) clustering coefficient and d) shortest path
length for maximal ordered ( ) and random ( ) triangulations, the Erdös-Rényi
( ) and the other random graphs in terms of the number of vertices MN . For the
random triangulations and the Newman-Watts graph the lines were determined by
a power-law fit, all other lines are analytical results. The asymptotic behavior is
listed in Tab. 3.3.
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weight and contributes equally in the calculation of expectation values. The
results are especially interesting, because due to the constant ensemble
weights (that are in particular independent of the triangulation energies)
they do not depend on the actual choice of the energy function.
We calculate these observables in the random ensemble using the Me-

tropolis algorithm [291] taking into account at least 1000 different random
triangulations per considered system size. The behavior of the autocorrela-
tion for different observables is displayed in Fig. 3.36. The autocorrelation
time of all considered observables is smaller than 10MN Pachner moves, to
avoid errors due to the autocorrelation, we execute 1000MN flips before the
first and between two successive measurements to calculate the observable
averages.
Random triangulations were considered up to a system size of 64× 64,

which seems to be small if comparing with topological triangulations [52,259].
For lattice triangulations one has to check the convexity of quadrangles to
decide whether a step is permissible, which increases the computation time
needed for one Metropolis step and which decreases the step acceptance
ratio, because some steps have to be rejected.

In this section we restrict to quadratic integer lattices for clarity reasons,
actually also simulations for non-quadratic lattices were performed. Except
of the average shortest path length (which grows with |M −N |) all observ-
ables only depend on the actual system size M · N for M · N ' 102 and
M,N ' 4 and not on the two linear sizes.
For comparing the random triangulation averages with the results in

the Erdös-Rényi , the Newman-Watts and the Barabási-Albert random
graphs of the same size that are not known analytically, we use averages
over 500 randomly generated instances of the respective random graphs.
The generation of these random graphs was done using the NetworkX
framework [201].

Vertex degree distribution

The vertex degree distribution of the considered random graphs is known
analytically: for the Erdös-Rényi and Newman-Watts it follows a binomial
distribution, for the Barabási-Albert random graph it is a power-law
distribution [140,262].

In Fig. 3.37a) the degree distribution of random triangulations is displayed
for different lattice sizes and compared with the different random graphs.
In contrast to the random graphs the values k = 0 and k = 1 are not
encountered for triangulations since these vertex degrees are forbidden for
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the graph to form a valid triangulation. The degree k = 2 can only be
realised on the boundary of the triangulation, so the probability decreases
for increasing lattice size and decreasing importance of the boundary.
The calculations for our random triangulations agree for k ≥ 4 with the

results for the degree distribution of a topological triangulation of a torus
in [259]. In contrast to our results, where P (k) is peaked at k = 4, in [259]
a monotonically decreasing P (k) with maximal value at k = 3 was found.
This is because the vertex degree k = 3 is difficult to realise due to the
non-general coordinates of the vertices in lattice triangulations (there are
many collinear points), so even by constructing one cannot realise more than
one out of four vertices having degree k = 3. In topological triangulations
one can realise Apollonian-like networks [47,372,433], where every second
vertex can have degree k = 3.

To compare a Newman-Watts random graph we used a ring with each
vertex connected to its L = 4 nearest neighbors and added edges, so for
this graph the degrees k < 4 are not present. As a result one can see that
the degree distribution of random triangulations is comparable with the
Erdös-Rényi and Newman-Watts random graph for k ≥ 5, whereas the
Barabási-Albert model shows a scale free power law behavior ∝ k−3.

Mean energy

To quantify the disorder of a triangulation we use an energy function which
is, up to boundary terms, the variance of the degree distribution multiplied
with the lattice size. In Fig. 3.37b) we compare the specific average energy of
random triangulations with the degree variance of the random graphs, which
can be calculated from the vertex degree distributions. For the random
triangulations a fit to the numerical calculated data yields a convergence of
the specific average energy to 4.62± 0.05, the Erdös-Rényi and Newman-
Watts random graphs show a similar behavior (see Tab. 3.3 for the detailed
values). For the Barabási-Albert random graph the second moment of the
degree distribution diverges.
For random topological triangulations the energy per vertex can be

calculated analytically to be E/n = (〈k〉− 3)2 = 9 for 〈k〉 = 6 in topological
triangulations [52], which agrees with our finding that E/MN converges for
MN →∞. The absolute value of the specific energy in lattice triangulations
is smaller, because the degree distribution has a peak located nearer at the
mean value as discussed in Sec. 3.4.4.
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Clustering coefficient

The clustering coefficient Ci = 2K/ki(ki−1) of a vertex i with degree ki is the
ratio of the number of connections K between the ki neighbors and number
of possible connections. For a non-boundary vertex of a triangulation holds
K = ki and Ci = 2/(ki−1), for a boundary vertex K = ki−1 and Ci = 2/ki.
The clustering coefficient C of the whole graph is the average of the vertex
clustering coefficients.
The clustering coefficient for the Erdös-Rényi random graph equals the

edge connection probability p (≈ 6/MN to ensure equal edge number),
for the Barabási-Albert model it can be calculated using a mean-field
approach [179]. In both cases the clustering coefficient vanishes for increasing
lattice sizes for our choice of parameters.
The numerical results for the random triangulations and the Newman-

Watts graph can be seen in Fig. 3.37c), both are converging to a constant
value for increasing lattice sizes. For random triangulations the limit is
0.4859± 0.0005, which is higher than for all considered random graphs (see
Tab. 3.3 for the detailed values). Intuitively this means that almost every
second possible edge between neighbors of a common vertex is present in
the random triangulation.
For topological triangulations the clustering coefficient is C ≈ 0.6 [52].

This is higher than for our lattice triangulations, mainly due to the fact that
the degree k = 3 is much more probable for topological than for random
triangulations.

Shortest path length

As for the clustering coefficient the shortest path length is analytically known
for both the Erdös-Rényi and the Barabási-Albert random graphs [180]
and has to be calculated numerically for the Newman-Watts graph. For all
random graphs the shortest path length shows small-world behavior and
increases approximately with the logarithm of the vertex number.
These values are compared with the shortest path length of random

triangulations in Fig. 3.37d). In contrast to the random graphs, for random
triangulations there is a power law behavior of the shortest path length
∝ (MN)0.400±0.001. Also for random topological triangulations a power law
scaling of the average shortest path length can be found [52].
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Figure 3.38: Average adjacency spectrum of random triangulations for
different system sizes. The color scale (a) shows the probability density function
(PDF) for every normalized index of the eigenvalues scaled with the maximum
value expected from order statistics (3.68). The orange, dashed line is the spectrum
of the Erdös-Rényi random graph with 322 vertices. One sees a convergence of the
spectrum for increasing system size. The indexed-summed PDF (b) is compared
with the Erdös-Rényi random graph and the spectrum of the maximal ordered
ground state of the triangulation (dashed black line). The dotted lines in the
indexed-summed spectrum show the cuts that are displayed in Fig. 3.39
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Figure 3.39: Adjacency spectrum of random lattice triangulations, cuts.
Cuts through the probability density function (PDF) of the adjacency spectrum of
random triangulations (a,c) and Erdös-Rényi random graphs (b,d). The cut through
index i = MN/2 (a,b) displays the probability distribution of the eigenvalues for
this index, the cut through α = 0 (c,d) shows the probability for an index to have
this eigenvalue magnitude.

Spectrum of the adjacency matrix

For the Erdös-Rényi random graph there are some analytical results for the
spectrum of the adjacency matrix. The random graph adjacency spectra
are strongly related with the spectra of random matrices, which follows in
most cases a semi-circle distribution [233,420,421].

Numerical investigations showed that for constant edge probability p 6= 0, 1
the adjacency spectrum of the Erdös-Rényi model converges to the semi-
circle distribution up to the largest eigenvalue, but there are additional
peaks for p ∝ n−1, which we actually choose to compare with random
triangulations (see [166, 167] for investigations on the level of random
matrices and [69,169] for investigations on random graphs).
In Fig. 3.38 the probability density function (PDF) for the spectrum of

the adjacency matrix of random triangulations is displayed in an index-
resolved and an index-summed way for different lattice sizes. The spectrum
is compared with the spectra of the ground state triangulations and the
Erdös-Rényi random graph. Fig. 3.39 displays cuts through the random
triangulation and the Erdös-Rényi adjacency PDF for the eigenvalue index
i = MN/2 and the eigenvalue magnitude α = 0. The displayed PDFs are
created using a kernel density estimation [323, 350] with Gaussian kernel
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3. Embedded triangulations

and Silverman’s rule [369] for the width of the Gaussian.
The adjacency spectra of random and ground state triangulations both

have a main peak around the eigenvalue magnitude of -2. The only difference
is that at α ≈ 0 the random PDF has a higher value than the ground state
one, and vice versa at α ≈ 4.5.
In contrast to the random triangulations the numerically calculated

adjacency spectrum of the Erdös-Rényi random graph is symmetric with
respect to α ≈ 0 and behaves like Wigner’s semicircle law with an additional
peak at α = 0. The peak is due to the eigenvalue αMN/2 = 0 occurring in
all random graphs that were calculated numerically and can also be seen as
a small horizontal piece in the index-resolved adjacency PDF.
Considering the values of the index-resolved PDF one can see for each

eigenvalue index a peaked distribution of the eigenvalue magnitudes with
increasing height and decreasing width for growing system size. One can
assume that this is due to the number of eigenvalues MN growing with
the lattice sizes, but all having values in a fixed interval ≈ [−4, 6]. This
behavior can be quantified using order statistics: Assume that one draws n
random variables Xi from a uniform distribution on the fixed interval [a, b]
and sorts them so that Xi ≤ Xj for i < j. Then the probability density
function (PDF) for the Xk is given by the beta distribution

P (Xk = x) = 1
b− a

n!
k!(n− k − 1)!x

k(1− x)n−k−1

The PDF takes its maximal value at xmax = a + (b − a)k/(n − 1), the
maximal value is

P (Xk = xmax) n→∞→ 1
b− a

√
n

2πξ(1− ξ) (3.68)

where ξ = k/(n− 1) denotes the relative index and Stirling’s formula was
used for calculating the asymptotics of the factorials. So one expects that
the maximal value of the PDF scales ∝ (MN)0.5 independently for each
relative index ξ = k/(n− 1). This is in fact the scaling behavior that can
be found in the Fig. 3.38 and Fig. 3.39 for the adjacency spectrum.

Spectrum of the Laplacian matrix

The same considerations as for the adjacency spectrum can also be done for
the Laplacian spectrum of random triangulations and graphs. In Fig. 3.40
the index-resolved and index-summed probability density function (PDF) for
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Figure 3.40: Average Laplacian spectrum of random lattice triangulations
for different system sizes. The color scale (a) shows the probability density function
(PDF) for every normalized index of the eigenvalues scaled with the maximum
value expected from order statistics (3.68). The orange, dashed line is the spectrum
of the Erdös-Rényi random graph with 322 vertices. One sees a convergence of the
spectrum for increasing system size. The indexed-summed PDF (b) is compared
with the Erdös-Rényi random graph and the spectrum of the maximal ordered
ground state of the triangulation (dashed black line). The dotted lines in the
indexed-summed spectrum show the cuts that are displayed in Fig. 3.41
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Figure 3.41: Laplacian spectrum of random lattice triangulations, cuts.
Cuts through the probability density function (PDF) of the Laplacian spectrum of
random triangulations (a,c) and Erdös-Rényi random graphs (b,d). The cut through
index i = MN/2 (a,b) displays the probability distribution of the eigenvalues for
this index, the cut through λ = 6 (c,d) shows the probability for an index to have
this eigenvalue magnitude.

the spectrum of the Laplacian matrix of random triangulations is displayed.
For comparison also the Laplacian spectra of the ground state triangulation
and an Erdös-Rényi random graph with the same number of vertices are
plotted. Fig. 3.41 displays cuts through the PDF for a given eigenvalue
index and a given eigenvalue magnitude. As for the spectra of the adjacency
matrix, the PDFs are calculated using a Gaussian kernel density estimation
and normalized with the order statistics expected maximal values (3.68).
If one compares the Laplacian random spectrum with the spectrum of

the ground state two main things differ: For the ground state triangulation
the largest possible eigenvalue is 9 (as shown analytically for the periodic
ground state), whereas the largest eigenvalues of the random triangulations
are much higher for increasing lattices sizes. The index-summed PDF is
peaked around an eigenvalue magnitude of 8 for the ground state, for the
random triangulation (of lattices with size bigger than 10× 10) there is a
peak around an eigenvalue magnitude of 5 which is less dominant than the
peak of the ground state.

For the considered parameter set of Erdös-Rényi random graphs there are
approximative analytical calculations [133] for the spectrum of the Laplacian
that coincide with earlier numerical calculations [96]. Ding and Jiang [136]
showed that the spectrum of the adjacency matrix of a random (Erdös-
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Figure 3.42: Spectrum observables of random lattice triangulations.
Algebraic connectivity λ1 (a) and spectral radius λMN−1 (b) of random triangu-
lations ( ), Erdös-Rényi ( ), Newman-Watts ( ) and Barabási-Albert ( ) random
graphs for different number of vertices MN . The displayed lines are power law fits
for the numerical data.

Rényi) graph converges to the semi-circle distribution, and the spectrum
of the Laplacian matrix converges to a free convolution of the semi-circle
distribution and a normal distribution.
The Laplacian spectrum of the Erdös-Rényi random graph looks similar

to the spectrum of the triangulations for eigenvalue magnitudes bigger
than 6, both exhibit a linear density decrease for increasing eigenvalue
magnitudes. For eigenvalue magnitudes between 2 and 6 there are several
peaks in the spectrum of the random triangulation which also survive if
one considers the limit MN →∞, whereas the random graph spectrum in
this interval is nearly linear. Between eigenvalue magnitudes 0 and 2 the
laplacian spectrum of the random graph shows two peaks and three dips,
while the spectrum of the random triangulation is smooth at most for large
lattice sizes.
Comparing the Laplacian spectra cuts of the random triangulations

and the Erdös-Rényi random graphs with the expectations from the order
statistics in Fig. 3.41, one can find similar results as in the case of the
adjacency spectra.

Algebraic connectivity and spectral radius

In this section we examine the dependence of the smallest Laplacian eigen-
value λ1 (algebraic connectivity) and the biggest Laplacian eigenvalue
λMN−1 (spectral radius) of random triangulations on the lattice size. The
results of the Monte-Carlo simulations for random triangulations can be
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found in Fig. 3.42, as well as the values of the algebraic connectivity and
the spectral radius for the different considered models of random graphs.

Using a power law fit for the algebraic connectivity of random triangula-
tions one finds that

〈λ1〉 ≈ (10.7± 0.2)(MN)−0.949±0.003 (3.69)

This compares well with the analytical result for the periodic ground state
(3.65)

λ
(p.gs)
1 = 4− 4

[
1− 4π2

N2 +O
( 1
N4

)]
∝ (M ·N)−1

For the algebraic connectivity of the Erdös-Rényi random graph one finds a
different behavior: For MN / 200 there is a power law behavior ∝ x−0.44,
but for MN ' 200 there is a power law behavior with exponent ≈ −2. The
change in the power law exponent corresponds to the fact that for large
number of verticesMN and p→ 6/MN some of the random graphs become
disconnected as described in Sec. 3.4.2 and have an algebraic connectivity
λ1 = 0. So the fraction of disconnected random graphs increases with
MN which influences the averaging of the algebraic connectivity. The
algebraic connectivities of the Newman-Watts model and the Barabási-
Albert model converge to the finite values λ1,NW = 0.553 ± 0.003 and
λ1,BA = 1.238± 0.001.
For the spectral radius of the random triangulation the power law fit

yields

〈λMN−1〉 = (27.4± 0.5)− (27.6± 0.3) · (MN)−0.147±0.006 (3.70)

For the Erdös-Rényi model one gets a limit of 21.1 ± 0.2 and power law
exponent −0.259± 0.006, for the Newman-Watts model the limit is 15.46±
0.09 with power law exponent −0.337 ± 0.007. For the Barabási-Albert
model the spectral radius grows much more quickly, because the preferential
attachment and the resulting power law degree distribution lead to nodes
with much higher degrees than in random triangulations and the other
random graphs. Since in Eq. (3.55) the maximal vertex degree is a lower
bound for the spectral radius this implies a higher spectral radius for the
Barabási-Albert model.

The parameters obtained by the fits of the spectral radius and the algebraic
connectivity are summarised in Tab. 3.4.
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Figure 3.43: Inverse participation ratio for random lattice triangula-
tions.
Scaling of the inverse participation ratio (IPR) of the Laplacian spectrum of random
triangulations. Expectation values of the average IPR 〈χ〉 (a), the IPR 〈χ1〉 of the
algebraic connectivity λ1 (b) and the IPR of 〈χMN−1〉 of the spectral radius λMN−1
of random triangulations ( ), maximal ordered triangulations ( ), Erdös-Rényi ( ),
Newman-Watts ( ) and Barabási-Albert ( ) random graphs for different number
of vertices MN . The displayed lines are power law fits for the numerical data.
Probability density function p(χ) of the IPR for random triangulations for different
system sizes (d) and for the different random graphs for 322 vertices (e).
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Inverse participation ratio and localization

In this section the inverse participation ratio (IPR) (3.56) of the Laplacian
spectrum of random triangulations is examined in terms of the system size.
In Fig. 3.43 the average IPR 〈χ〉, as well as the IPR of the algebraic connec-
tivity 〈χ1〉 and the spectral radius 〈χMN−1〉 are displayed and compared
with the common random graph models.

For random triangulations the average IPR 〈χ〉 decreases with a power
law

〈χ〉 ≈ (0.671± 0.008) · (MN)−0.512±0.004 + (0.05334± 0.0005) (3.71)

for increasing system size (similiar to the other considered random graph
models), the exponent −0.512 ± 0.004 being smaller than the analyical
calculated exponent −1 for periodic maximal ordered triangulations. Since
the data obtained for random lattice triangulations does not allow for a
power-law fit without constant offset, one can conclude that for random
triangulations there is a non-vanishing limit (0.05334± 0.0005) for infinite
system sizes, in contrast to Newman-Watts and Barabási-Albert random
graphs (compare Tab. 3.4, for Erdös-Rényi the situation is ambiguous, both
possible fits are done there). This implies that on average the localization
of eigenvectors for random triangulations is higher than for comparable
random graphs.

The IPR 〈χ1〉 of the algebraic connectivity random lattice triangulations
is approximatly equal to that of the maximal ordered triangulation and
decreases with a power law ∝ x−0.896±0.006, since the algebraic connectivity
is determined by the vertices with low degree (which are the vertices at
the corner of the lattice), and the degree is likely to be unchanged for the
random triangulations. One can find a similiar decrease for Barabási-Albert,
but not for Erdös-Rényi or Newman-Watts random graphs (which converge
towwards a finite value for increasing system size). The IPR of the spectral
radius converges to a value above 0.8, with a similiar functional dependency
as the other random graph models.
The probability distribution function of the IPRs for random triangula-

tions is comparable to the one of random graphs, there are differences only
in the probability of the largest IPRs, which correspond to the strongest
localization.
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Table 3.3: Scaling of graph observables on random lattice triangulations in terms of system size.
Scaling and functional dependence obtained by a least-square fit of the mean energy (or the degree distribution variance), the
clustering coefficient and the shortest path length in terms of the system size for ground state (maximal ordered) and random
triangulations as well as for comparable size Erdös-Rényi , Newman-Watts and Barabási-Albert graphs. If there are no error
bars, the results are taken from analytical calculations.
quantity graph scaling behavior
〈E〉/MN per. triangular lat. 0

random triangs. (4.62± 0.02)− (10.80± 0.043) · (MN)−0.47±0.02

Var(k) Erdös-Rényi 6− 4 · (MN)0.5

Newman-Watts 2− 4 · (MN)0.5

Barabási-Albert →∞

〈C〉

per. triangular lat. 0.4
random triangs. (0.4849± 0.0003)− (0.78± 0.02) · (MN)−0.73±0.01

Erdös-Rényi 6 · (MN)−1

Newman-Watts (0.241± 0.001)− (1.18± 0.02) · (MN)−0.557±0.007

Barabási-Albert 0.678 · (MN)−1 log(MN)2

〈`〉

per. triangular lat. (0.5677± 0.0002) · (MN)0.49978±0.00005

random triangs. (0.673± 0.006) · (MN)0.409±0.001

Erdös-Rényi log(MN)/6
Newman-Watts (0.063± 0.001) · log [(0.595± 0.002)MN ]
Barabási-Albert log(MN)/ log(log(MN))
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Table 3.4: Scaling of spectral observables on random lattice triangulations in terms of system size.
Scaling and functional dependence obtained by a least-square fit of the algebraic connectivity, the spectral radius and the
average inverse participation ratio in terms of the system size for ground state (maximal ordered) and random triangulations
as well as for comparable size Erdös-Rényi , Newman-Watts and Barabási-Albert graphs. If there are no error bars, the
results are taken from analytical calculations.
quantity graph scaling behavior

〈λ1〉

per. triangular lat. 12π(MN)−1

rnd. triangs. 0 + (10.7± 0.2) · (MN)−0.949±0.003

Erdös-Rényi → 0
Newman-Watts 0.541± 0.003
Barabási-Albert 1.235± 0.001

〈λMN−1〉

per. triangular lat. 9
rnd. triangs. (27.4± 0.5)− (27.6± 0.3) · (MN)−0.147±0.006

Erdös-Rényi (21.4± 0.2)− (23.6± 0.2) · (MN)−0.236±0.006

Newman-Watts (16.01± 0.08)− (20.8± 0.2) · (MN)−0.301±0.006

Barabási-Albert →∞

〈χ〉

per. triangular lat. (MN)−1

rnd. triangs. (0.643± 0.009) · (MN)−0.497±0.004 + (0.0522± 0.0002)
Erdös-Rényi (1.19± 0.03) · (MN)−0.601±0.007 + (0.0074± 0.0007)

(1.02± 0.03) · (MN)−0.539±0.007

Newman-Watts (0.59± 0.05) · (MN)−0.58±0.02

Barabási-Albert (0.820± 0.006) · (MN)−0.383±0.002
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Figure 3.44: Ising model on random lattice triangulations.
(a) Probability distribution of the specific heat cV for in terms of the Ising temper-
ature α for 4× 4, 8× 8 and 16× 16 random lattice triangulations. (b) Probability
distribution of the critical exponents ν, −β/ν and γ/ν obtained by finite size
scaling for different random triangulations of the 16 × 16 lattice. The dashed
lines correspond to the value of the critical exponent for the maximal ordered
triangulation. (c) Fit errors of the critical exponents. Every dot corresponds to
one independent calculation of the critical exponent using a tuple of triangulations
with different system size and correlates the value of the critical exponent with the
error of the fit.

Ising model on random triangulations

In Fig. 3.44 the results for calculations of the Ising model on the ensemble
of random triangulations are displayed. Despite the fact that there can be
very diverse triangulations, if one considers Ising observables as the specific
heat2 cV (α) they show a narrow distribution with respect to the underlying
random triangulation ensemble, and agree qualitatively with the results for
the Ising model of square lattices.
The fact that we do not consider the Ising model on a fixed lattice, but

on an ensemble of underlying lattices, does lead to a problem if trying to
determine critical exponents using the Binder cumulant or finite size scaling
as described in Sec. 2.2.5. For calculating e.g., the critical exponent ν of the
correlation length using Eq. (2.74) one has to calculate the slope of the Binder

2 To avoid mixing up the inverse temperature of the Ising model and the inverse temper-
ature of the canonical ensemble of triangulations, we denote already here the inverse
Ising temperature by α, whereas we denote the inverse triangulation temperature by β.
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cumulant at the quasi-critical point, but for random triangulations, for a
fixed system size there is no single quasi-critical point, but a distribution.
To circumvent this problem, to calculate critical exponents we generate
tuples of triangulations by choosing one out of the ensemble for every system
size, which are then used to calculate the quasi-critical temperatures and
the critical exponents using the methods of Sec. 2.2.5.
Note that due to the finite system size the critical exponents, that are

determined by a functional fit, are not universal, but are distributed with a
finite width, which can be seen in Fig. 3.44. In contrast to the other critical
exponents, the distribution of the critical exponent ν of the correlation
length seems to be not Gaussian distributed. If one considers the errors of
the respective fits in Fig. 3.44c, one can see that the regions that deviate
from a Gaussian distribution all have a large fit error, so it is probable
that also this distribution in fact has a Gaussian shape. We also tried an
alternative approach by using averaged of the Binder cumulant over the
random triangulation ensemble to calculate the critical inverse temperature
and exponents, which basically leads to the same average results as the
tuple method, but one looses the information about the distribution of the
critical exponents.

3.4.5 Microcanonical triangulations

In this section we consider triangulations with a fixed energy which corre-
sponds to a microcanonical ensemble and examine the Laplacian spectrum,
the algebraic connectivity λ1 and the spectral radius λMN−1 in terms of
the energy for different system sizes. For each lattice size we measure the
energy in units of the average energy 〈E〉rnd of random triangulations on an
equal sized lattice to make the results for different lattice sizes comparable.
We will use ε = E/Ernd to denote this rescaled energy.

Since in general the Pachner moves are not ergodic if restricting to the
subset of triangulations with energy E, we use the following algorithm for
generating sample triangulations with given energy E:

• Start with a random triangulation with arbitrary energy, generated
as described in Sec. 3.4.4.

• Perform Metropolis Monte Carlo steps [291] with the acceptance
probability

AMetropolis(T1 → T2) := min
(

1, exp[−βE(T2)]
exp[−βE(T1)]

)
(3.72)
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and check after each step whether the obtained triangulation has the
desired energy, then stop (the inverse temperature β can be tuned to
find the desired energy more quickly). Note that the actual number of
steps necessary to find a suitable triangulation depends on the given
energy and cannot be predicted.

• If the desired energy was reached, take the triangulation for measuring
the observables and perform 1000MN steps at β = 0 to randomise
the triangulation and avoid autocorrelations between successive mea-
surements. Note that the autocorrelation time is always below 10MN
as explained in Sec. 3.4.4.

These steps are repeated until the desired number of sample triangulations
with the correct energy are found. In this section we use 1000 samples for
each energy and system size.
For relative energies ε & 2 one must use negative inverse temperatures

in Eq. (3.72), but there are many local minima where the simulation can
get stucked in, which make searching specific energies difficult. In these
situations we use the acceptance probability

Aflat(T1 → T2) := min (1, exp (H[E(T1)]−H[E(T2)])) , (3.73)

for locating triangulations with the proper energy. This acceptance prob-
ability weights every energy level E with the inverse exponential of the
number H(E) the simulation has visited the energy level before. Intuitively
this means the longer the system stays at a certain energy, the larger is the
probability for leaving it, which avoids getting stuck in local energy minima.
Basically this procedure is the Wang-Landau algorithm [406,407] that was
explained in detail in Sec. 2.2.2, using only a single modification factor.

The performed algorithms for searching triangulations with suitable energy
are much slower for relative energies ε > 2 than for lower relative energies.
The problems increase since the maximal specific energy (and with it the
maximal relative energy) does not converge to a finite value for infinite
system size, but is unbounded from above as one can see in some easily
constructable examples. Consider N × N lattice triangulations that are
constructed as in Fig. 3.45, which have energy

E = 4N3 − 8N2 + 4N − 2 ⇒ ε = 4N − 8 +O(N−1).

So for N = 4 there is a lower bound for the maximal relative energy of
εmax > 4.4 from this construction, for N = 32 the same construction leads to
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3. Embedded triangulations

Figure 3.45: Construction for
triangulations with unbounded
specific energy. The energy of
this quadratic N ×N triangula-
tion is E ≈ 4N3 − 8N2 (due to
the contribution of the large gray
vertices). This means that the
specific energy E/N2 ≈ 4N − 8
is not bounded.
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Figure 3.46: Double logarith-
mic plot of the microcanonical
averaged degree distribution
of lattice triangulations of 16×16
lattices at different energies. For
comparison the dashed line shows
a power law ∝ k−3.

the lower bound εmax > 34.3. Using the methods applied here for calculating
the microcanonical average this relative energies cannot be reached due to
the fastly increasing calculation time.

Degree distribution

In Fig. 3.46 the degree distribution for different relative energies is displayed.
For relative energies ε < 1 the distribution agrees qualitativly with the
degree distribution of random triangulations. For the relative energy ε = 3
there is a qualitative change in the behavior: While for k ≤ 4 the degree
distribution behavior does not change if compared to the other relative
energies, for degrees 4 ≤ k ≤ 40 there is a power law behavior P (k) ∝ k−3

with the same exponent as the Barabási-Albert random graph, which is a
hint for small-world behavior. For k > 40 the degree distribution decreases
faster than the power law, probably because finite size effects become
important.
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Figure 3.47: Graph observables of microcanonical lattice triangulations.
Clustering coefficient (a) and shortest path length (b) of microcanonical lattice
triangulations in terms of the normalized energy ε = E/Ernd for different lattice
sizes. The solid lines are the approximative predictions (3.74) for the clustering
coefficients at low energy.

Clustering coefficient

The clustering coefficient of the maximal ordered ground state (E = 0) as
well as its change due to a Pachner flip originating at the ground state
were calculated in Eqs. (3.59) and (3.60) and can be used for estimating
the average clustering coefficient for small energies in the microcanonical
ensemble. The energy of a ground state triangulation increases from E = 0
to E = 4 if executing a Pachner flip that is not located at the boundary.
Extrapolating both the clustering coefficient and the energy linearly leads
to

〈C〉mc(E) ≈ Cgs + 1
60 ·

E

MN
= Cgs + ε

60 ·
Ernd
MN

. (3.74)

The Monte-Carlo results for the clustering coefficient as well as the
approximation (3.74) are plotted in Fig. 3.47. One can see an a good
agreement for ε = E/Ernd < 0.5, for an intermediate energy range the
actual clustering coefficient grows more than linear with the relative energy,
and for high energy it saturates at nearly constant value.

Shortest path length

The Monte-Carlo results for the average shortest path length are plotted
in Fig. 3.47. The shortest path length decreases with increasing energy
since for high energies there are more long edges in the triangulations that
decrease the path length between two arbitrary vertices, but as for random
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3. Embedded triangulations

triangulations for all calculated relative energies the shortest path length
grows with a power law in the system size.

In contrast to the power law behavior for the considered energy ranges, for
triangulations with nearly maximal energy, where one vertex is connected
with all possible other vertices as displayed in Fig. 3.12, the diameter,
which is the maximal shortest path length between any two vertices, is
4 independent of the lattice size. Since the diameter is an upper bound
for the average path length also ` ≤ 4 for these triangulations. So for
microcanonical triangulations there is an energy with crossover from the
power law behavior of the shortest path length found in Fig. 3.47 to a
constant shortest path length.

Laplacian spectrum

The microcanonical average of the Laplacian spectrum probability distribu-
tion function (PDF) for different values of the relative energy ε = E/〈E〉rnd
is plotted in Fig. 3.48. With increasing energy the eigenvalues λi become
smaller for relative index i/MN . 0.75 and bigger for relative index
i/MN & 0.75, at index i/MN ≈ 0.75 the eigenvalues do not change in
a significant way. As expected the index-summed PDF looks similar to
the ground state for ε & 0 with a broad and dominating peak around the
eigenvalue magnitude of λ ≈ 8 and a smooth decrease for λ < 6, and for
ε ≈ 1 it is comparable with the spectrum of the random triangulation with
small and narrow peaks emerging. For relative energies ε > 2.0 narrow
peaks emerge in the eigenvalue range 2 < λ < 6, which can be seen as nearly
horizontal lines in the index-resolved PDF.

Algebraic connectivity and spectral radius

Fig. 3.49 shows the algebraic connectivity λ1, which is the second-smallest
Laplacian eigenvalue, and the spectral radius λMN−1, which is the biggest
Laplacian eigenvalue, for microcanonical triangulations in terms of the
normalized energy for different lattice sizes. For energies around the average
random energy and smaller (ε = E/〈Ernd〉 ≤ 1.5) both eigenvalues depend
linearly on the energy of the triangulation

λ(E)
λ(0) ≈ m(M,N) · E

〈E〉rnd
+ t(M,N)

where slope m(M,N) increases with growing system size M,N . The linear
dependence of the eigenvalues is more clearly for the spectral radius than
for the algebraic connectivity, and so the fits have smaller errors.
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Figure 3.48: Laplacian spectrum of a microcanonical ensemble of 16×16 triangula-
tions. The color code (a) left shows the index-resolved probability density function
(PDF) in terms of the index of the eigenvalue and the magnitude of the eigenvalues
for normalized energies E/〈E〉rnd = 0.2, 0.6, 1.0, 1.4, with 〈E〉rnd ≈ 1000. The
index-summoned PDF (b) is also displayed for the different energies.

The slope m(M,N) can be fitted for the algebraic connectivity and the
spectral radius by

mac(M,N) = (0.28± 0.02)− (1.21± 0.26) · (MN)−0.51±0.09 (3.75)
msr(M,N) = (2.22± 0.32)− (2.84± 0.27) · (MN)−0.11±0.02 (3.76)

From Eq. (3.67) one knows how the spectral radius increases in first
order perturbation theory if one performs one step. One can derive an
approximation for the change of the spectral radius in terms of the relative
energy ε = E/〈E〉rnd by assuming that doing several steps at diagonals that
are well separated the spectral radius is linear in the number of steps f :

λN2−1 ≈ 9 + 6f
N2 = 9 + 6E

4N2 = 9 + 6〈E〉rnd
4N2 · E

〈E〉rnd

Here we used that each step increases the energy by 4 and so E = 4f . So
by using the results for 〈E〉rnd/N

2 from [265], we can find the following
relation for the spectral radius:

λMN−1(ε)
λMN−1(0) = 1 + 1

6 ·
〈E〉rnd
MN

· ε (3.77)

Comparing Eq. (3.77) with the fitted values in Fig. 3.49d one finds a good
agreement of the two values for the slope.
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Figure 3.49: Spectral observables of microcanonical lattice triangula-
tions.
Dependence of the algebraic connectivity (a) and the spectral radius (c) on the
energy of the triangulation normalized by the energy of the random triangulation
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The eigenvalues are normalized by their values at ground states of the respective
system size. (b,d): Gradients of the fits are plotted against the lattice size of the
triangulations, the purple points are the approximation for the spectral radius
using first order perturbation theory with periodic ground state from Eq. (3.77).
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Figure 3.50: Graph observables of canonical lattice triangulations.
a) Canonical averaged degree distribution of 8×8 triangulations for different inverse
temperatures β. The dashed line is a power law ∝ k−3. b) Mean energy in units of
the energy of a random triangulation (with inset for positive temperatures), c) clus-
tering coefficient and d) shortest path length in terms of the inverse temperature β
for triangulations of different lattice sizes. The degree distribution and the lines in
b)-d) were calculated using a Wang-Landau simulation, the data points in c)-d)
are taken from a parallel tempering simulation.

3.4.6 Canonical triangulations

In this section we consider canonical averages of the degree distribution,
the mean energy, the clustering coefficient and the shortest path length of
lattice triangulations in terms of the inverse temperature with respect to
the energy defined in (3.58). These calculations extend the results obtained
in the previous section which correspond to the special case of vanishing
inverse temperature β = 0. The numerical simulations are not restricted
to the usually considered case β ≥ 0, but can be extended to the case of
negative inverse temperatures β < 0. These negative temperatures can also
be interpreted as positive inverse temperatures with a negative coupling
constant included in the definition (3.58) of the energy, which makes most
disordered triangulations the ground state of the energy function.
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3. Embedded triangulations

It is difficult to use Metropolis Monte-Carlo simulations [291] to perform
canonical averages for triangulations, especially if one wants to explore
the regime of negative temperatures/coupling. There exist triangulations
that are local minima in the energy landscape [253], and due to the small
Metropolis acceptance probabilities (∝ exp(−β∆E), where ∆E is the energy
difference induced by the flip) the algorithm gets stuck in one of these local
minima. Other states outside of the local minimum that contribute to the
ensemble average are reached only after many steps or not at all, so the
autocorrelation times and therewith the simulation errors become large, or
the possibility arises that the system is not even computationally ergodic
anymore. This problem was also treated analytically in [108], where the
mixing time (which is related to the autocorrelation time) of Glauber
dynamics on lattice triangulations is shown to scale exponentially with the
system size for a small enough β < 0.

Using a parallel tempering approach [150], which is basically the parallel
calculation of multiple Metropolis simulations at different inverse temper-
atures with the possibility of interchanging the inverse temperatures, can
help to overcome the problem of these local minima in the energy landscape.
But parallel tempering is known to fail in situations with a large free energy
barrier, e.g. in first order phase transitions.
Flat histogram algorithms as the Wang-Landau algorithm [406,407] are

used to calculate the density of states (DOS) g(E) (which is the normalized
number of states with energy E) of systems and can help to overcome
both the local minima and the free energy barrier problem. This algorithm
samples the single states according to their inverse DOS g(E)−1 based on an
initial estimation of g(E) and simultaneously improves the estimation until
it converges to the actual DOS of the system. The two main advantages of
this algorithm is that with the knowledge of the DOS the observables can
be calculated for all inverse temperatures β based on only one simulation,
whereas for the Metropolis algorithm a new simulation for each β has to
be used. The second one is that the algorithm does not get stuck anymore
in local minima and the problems of large autocorrelation times described
before and in [108] do not occur.
In Fig. 3.51 one can see a comparison of Metropolis sampling and a

sampling based on the DOS calculated with Wang-Landau in terms of the
acceptance ratios and the autocorrelation time of the energy observable. For
negative temperatures the Metropolis algorithm basically gets stuck in high-
energy states, which leads to low acceptance ratios and long autocorrelation
times. Using the Wang-Landau algorithm this problem does not occur,
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Figure 3.51: Comparison of Metropolis and Wang-Landau simulation
for canonical lattice triangulations.
Acceptance ratio of a Monte Carlo step (a) and autocorrelation time of the energy
observable (b) in terms of the inverse temperature for the Metropolis algorithm for
8× 8 ( ) and 16× 16 ( ) lattices. The solid line is the temperature independent
value obtained by a multicanonical simulation. Note that for the simulations based
on the density of states the acceptance ratio is lower and the autocorrelation
time is higher than in the Metropolis case for certain temperatures ranges, but
the Wang-Landau algorithm has on the one hand the advantage that only one
simulation has to be performed for the whole temperature range, on the other hand
it makes negative temperatures accessible at all.

because steps are weighted according to their entropy difference, and not
their energy difference.

The DOS of two-dimensional lattice triangulations can only be calculated
up to 11× 11 triangulations for all energies, introducing an energy cutoff
makes it possible to calculate the density of states up to 25×25 triangulations
that can be used only for positive inverse temperatures β > 0. For bigger
lattice sizes the Wang-Landau algorithm does not converge anymore in a
reasonable amount of time, since on the one hand the entropy between
neighboring states differs by orders of magnitude, on the other hand the
high energy states are only connected among themselves by pathes involving
low energy states, which makes flat histogram sampling difficult (see Sec. 3.2
for a detailed discussion).

For our simulations we use an initial modification factor of finitial = exp(1)
and decrease it to ffinal = exp(10−8) using fi+1 = 0.9·fi. The decrease of the
modification factor is chosen carefully compared to fi+1 = 0.5 · fi proposed
in [406,407] to reduce possible statistical errors. The incidence histogram
H(E) is considered to be flat if minH(E) ≥ 0.8 · avgH(E). One simulation
for the largest considered system size, 10× 10 lattice triangulations, took
around 4 to 5 days of computing time on a single core, and a total of 8.1·1010
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attempted steps, which correspond to 3.4 · 108 attempted steps per flippable
edge in the triangulation. We performed 10 independent Wang-Landau
simulations for system sizes smaller or equal than 8× 8, and 5 independent
simulations for the larger system sizes. The relative statistical error of g(E)
is below 0.02 in the former and below 0.03 in the latter case for all energies
E.

Degree distribution

The canonical averaged distribution P (k) of the vertex degrees of 8 × 8
lattice triangulations is plotted for different temperatures in Fig. 3.50a).
For the positive inverse temperature β = 0.2 one finds a similar behavior
as for the random triangulations β = 0 with the maximum of the degree
distribution shifted towards degrees k = 5 and k = 6, because this degrees
are preferred at low temperatures due to the energy function (3.58). For
negative inverse temperatures β = −0.1 there is an additional peak at vertex
degree k ≈ 40, because for this inverse temperature the triangulation with
maximal energy contributes most to the ensemble average. An interesting
behavior can be found for the inverse temperature β = −0.04 (here the
probability distribution of the triangulation energies has two peaks, which
is a hint for a phase transition). For this inverse temperature the degree
distribution behaves similar to a power law k−3 for vertex degrees in the
range 5 < k < 25, which matches the degree distribution of the Barabási-
Albert model qualitatively. One has to admit that due to the small system
size the range of vertex degrees found spans less than one magnitude and
that there are deviations from a pure power law behavior even in this range.
Nevertheless the qualitative change of the degree distribution compared
to random triangulations is remarkable. Additionally we suspect that for
bigger system sizes there is a clearer power law behavior for larger ranges
of degrees.

Similar results for the canonical averaged triangulation degree distribution
can be found in [259] for positive temperatures.

Mean energy, clustering coefficient and shortest path length

To compare the temperature dependence of the mean energy for different
lattice sizes, we consider the expectation value of the mean energy ε =
〈E〉c(β)/〈E〉rnd in terms of the energy of a random triangulation. The results
of the numerical calculations for the relative mean energy, the clustering
coefficient and the shortest path length can be found in Fig. 3.50b) - d).
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The temperature dependence of all considered observables shows the
characteristic behavior of a first-order phase transition, with quasi-critical
inverse temperature βc → 0 for increasing system size, but this is not a
real phase transition. For the maximal energy of a quadratic N ×N lattice
triangulation there is a lower bound that scales with N4 [253], so that
the maximal specific energy scales at least with N2. For β < 0 (which is
equivalent to using negative coupling) these maximal energy states are the
ground states, which are then not bounded by below for the limit of infinite
system size. For negative temperatures only finite systems can be considered
and and the thermodynamic limit of infinite system size cannot be obtained,
so the behavior found at β → 0 is then no actual phase transition in sense
of statistical physics.
For negative inverse temperatures one finds a high clustering coefficient

(approximately 0.7 independent of the system size), and small average path
length between 2 and 3 independent of the system size. The latter can
be understood in terms of the graph theoretical diameter of the highest
energy triangulations, which can be shown to be 4 independent of the lattice
size. So for a small enough negative inverse temperature one can find a
small-world behavior for the triangulation graphs.

For positive temperatures the average energy per vertex and the clustering
coefficient can be approximated analytically. The first possibility is to use
the mean-field approach suggested in [52], where the topological and entropic
properties of the triangulations are neglected. This results in

〈E〉
MN

≈ 2
2 + eβ

(3.78a)

〈C〉 ≈ 5e−β/6 + 2/5
2e−β + 1 . (3.78b)

The second possibility is to use the known degeneracy Ω(E = 4) and
Ω(E = 0) of the ground state and the first excited state [253] to calculate
the expectation values neglecting all other states, resulting in

〈E〉
MN

≈ Ω(E = 4)
MN

4
e4β + Ω(E = 4) ≈

4MN

2e4β +M2N2 (3.79a)

〈C〉 ≈ Cgs
1 + (15MN)−1Ω(E = 4)e−4β

1 + Ω(E = 4)e−4β . (3.79b)

Both approximations are compared with the numerical results in Fig. 3.52.
For both the specific energy and the clustering coefficient the mean field
approximation is correct for 0 < β < 1.5, the two-niveau low-temperature
approximations is correct for β > 3.
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Figure 3.52: Analytical approximations for canonical lattice triangula-
tions.
Analytical approximations for the specific energy (a) and the clustering coefficient
(b) in two different regimes compared with the actual data obtained numerically.
The mean-field approach (red, dashed line, see Eq. (3.78)), which is valid for
an intermediate regime of positive inverse temperatures, neglects the entropic
properties of the triangulations, the two-state approximation (blue, dotted line,
see Eq. (3.79)), which is valid for β →∞, just considers the ground state and the
first excited state of the lattice triangulations.

Laplacian spectrum

In Fig. 3.53 the results for the canonical averages of the Laplacian spectrum
of 8× 8-triangulations are displayed. The indexed-resolved spectrum shows
similar behavior as for the different energies in the microcanonical ensem-
ble. For finite positive temperatures (β = 0.1) the spectrum approaches
the Laplacian spectrum of the ground state. For finite negative temper-
atures/couplings (β = −0.04) the spectrum gets more irregular, which
can be seen in the rich peak structure of the summed probability density
functions. This means that the peaked eigenvalues occur very often in the
triangulations that contribute to the ensemble average at these temperature
with height weight.

Algebraic connectivity and spectral radius

The results for the canonical expectation values of algebraic connectivity
λ1 and the spectral radius λMN−1 are displayed in Fig. 3.54 for lattice size
8× 8.
Both eigenvalues show the same step-like behavior as the energy, the

clustering coefficient and the shortest path length at a negative quasi-critical
temperature [265]. The algebraic connectivity is almost independent of
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Figure 3.53: Laplacian spectrum of a canonical ensemble of 8× 8 triangulations.
The color code (a) left shows the index-resolved probability density function (PDF)
in terms of the index of the eigenvalue and the magnitude of the eigenvalues for
inverse temperatures β = −0.1,−0.04, 0, 0.2. The index-summed PDF (b) is also
displayed for the different inverse temperatures.

the lattice size for β → −∞ and decreases for larger lattices in the limit
β → ∞, while the spectral radius is approximately independent of the
lattice size in the limit β →∞ and increases for larger lattices in the limit
β → −∞. The latter behavior can be understood completely by considering
the bounds (3.55) of the spectral radius. For β →∞ the triangulation with
the biggest weight are the triangulations near the ground state, where most
vertex degrees are 6 independently of the size, which bounds the spectral
radius between 6 and 12. For β → −∞ the ensemble average is dominated
by the triangulation with high energy, which are the triangulations where
one edge is connected with almost all possible edges. Since the degree of
this maximal connected vertex, which is the lower bound for the spectral
radius, is increasing with the size of the lattice, also the spectral radius
must increase.
For a possible application of the canonical ensemble of lattice triangu-

lations one can consider the relation of the algebraic connectivity and the
spectral radius with the synchronization time and the return probabil-
ity [12,307]. Here the canonical ensemble with the inverse temperature as
control parameter can be used for continuously fine-tuning these quantities
on lattice triangulation networks. For negative inverse temperatures (small-
world behavior of the triangulation graph ensemble) with high algebraic
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Figure 3.54: Spectral observables for canonical lattice triangulations.
Canonical averages of the algebraic connectivity (a) and spectral radius (b) in
terms of the inverse temperature β for different lattice sizes, calculated using the
Wang-Landau algorithm. The algebraic connectivity is independent of the system
size for negative temperatures, whereas the spectral radius is independent of the
system size for positive temperatures.

connectivity and spectral radius one finds a short synchronization time and
a fast decrease of the return probability, which implies a fast delocalization.
For growing inverse temperatures (approaching the large-world behavior of
the triangulation graph ensemble) the synchronization time decreases and
the delocalization is slower than in the previous region.

Inverse participation ratio

In Fig. 3.55 the average inverse participation ration (IPR) and the IPRs of
the algebraic connectivity and the spectral radius are plotted in terms of
the inverse temperatures. As expected, all considered IPRs and therewith
the localization increases for increasing disorder in the triangulations. Near
the quasi-critical inverse temperature βqc on observes that the IPRs scale
with the logarithm log |β − βqc| of the reduced inverse temperature.

3.4.6.1 Ising critical temperature

In Fig. 3.56 the dependence of the critical inverse temperature αc of an Ising
model defined on lattice triangulations on the inverse temperature β of an
underlying canonical ensemble of triangulations is displayed. As for the
other observables in the canonical ensemble for each possible energy we used
the calculated density of states of the triangulations to do a flat histogram
sampling in order to calculate microcanonical averages of the observables.
In contrast to the other observables, the critical Ising temperature on a
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Figure 3.55: Canonical averages of the inverse participation ratio for 8×8 lattices.
(a) Expectation values of the average IPR (solid line), the IPR of the algebraic radius
(dashed line) and of the spectral radius (dash-dotted line) in terms of the inverse
temperature. (b) The same expectation values in terms of the (logarithmically
plotted) distance from a quasi-critical temperature βqc, for β > βqc (〈χ〉, 〈χMN−1〉)
and for β < βqc (〈χ1〉). The thinner, red lines are linear fits with respect to
log |β − βqc|. Note that the value of 〈χ1〉 is stretched by a factor 10.

Figure 3.56: Ising model on
canonical lattice triangula-
tions.
Dependence of the critical inverse
temperature α of the Ising model
on the inverse temperature β of
the underlying canonical ensem-
ble of triangulations for differ-
ent lattices sizes (from 3 × 3 to
10 × 10). The data for this plot
is taken from Ref. [411].
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3. Embedded triangulations

certain triangulation has to be calculated numerically doing a Markov chain
Monte Carlo simulation. We used a Wang-Landau simulation to calculate
for every triangulation the Ising density of states gIsing(E), which then can
be used to find the Ising critical temperature of the respective triangulation
by locating the maximum of the specific heat cV (α). Using the Binder
cumulant is not constructive in this situation, because there is not only one
underlying triangulation for each system size, so that there is no well defined
intersection between the Binder cumulants of different system sizes, but a
distribution of intersections that is usually broader than the distribution of
the critical temperatures obtained from locating the maximum of the heat
capacity.

As for the other observables we find a transition behavior near the random
lattice triangulations. For β →∞ the underlying triangulation is basically
the ordered ground state, so that the Ising inverse critical temperature
converges towards the value for triangular lattices. For β → −∞ the
triangulations contributing to the partition function are stars as displayed in
Fig. 3.12, where one that is connected with almost all other spins dominates
the partition function. One can compare this situation with the mean-field
solution of the Ising model (since this solution describes the behavior of
one spin in the average field of its neighbors), where the inverse critical
temperature equals the inverse average number of neighbors, which converges
towards 1/6 within integer lattice triangulations with increasing system
size.

Quasi-critical temperature

As described in Sec. 3.4.5, the specific energy of lattice triangulations is
not bounded by below, i.e. the regime of negative temperatures is not
well-defined in the thermodynamic limit, it is only valid for finite systems.
So the search for a possible phase transition, which can be found only for
infinite systems and thus within the thermodynamic limit, can only take
place at positive temperatures.
In Fig. 3.57 the quasi-critical temperatures are plotted in terms of the

system size for the different observables. The inverse quasi-critical tempera-
tures were found by searching the maximum of the suszeptibilities of the
respective observable. All inverse quasi-critical temperatures are all in the
regime of negative temperatures for the considered range of system sizes,
they seem to converge to βc = 0 for infinite system size. So one can conclude
that there is no phase transition in two-dimensional lattice triangulations,
if using the energy functional considered in this section.
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Figure 3.57: Quasi-transition for canonical lattice triangulations.
(a) Quasi-critical temperatures βc(MN) in terms of the system size MN for the
clustering coefficient C ( ), the average shortest path length ` ( ), the algebraic
connectivity λ1 ( ) and the spectral radius λMN−1 ( ). (b) Normalized variance per
vertex of the observables at the quasi-critical temperature for the same observables.

3.4.7 Conclusion

In this section we proposed a new model for real-world graphs or networks by
interpreting unimodular triangulations of two-dimensional integer lattice as
graphs. Considering averages of random triangulations we found that they
show a higher clustering coefficient than common random graph models, but
also a power law growing shortest path length in terms of the system size,
where one would expect a logarithmic scaling for small world behavior. The
degree distribution behaves similar as in the Erdös-Rényi and Newman-
Watts random graph.

Introducing an energy function that measures the order and disorder of a
triangulation, canonical averages of graph observables in triangulations can
be calculated using the Wang-Landau algorithm. This Monte Carlo method
made it possible for the first time to calculate expectation values for the
whole temperature range, albeit only for small system sizes. Using the Wang-
Landau algorithm it is possible to access equilibrium properties of both
high energy triangulations, which are poorly connected with other similar
triangulations, and low energy triangulations, where dynamically a glass-like
phase was found in the literature before, both phenomena making it difficult
to use the Metropolis algorithm. Considering the temperature dependence
of the clustering coefficient, the average shortest path length and the degree
distribution we found small-world behavior for negative temperatures β <
βc below a negative, quasi-critical temperature and hints for scale-free
behavior for temperatures near the quasi-critical temperature. All considered
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3. Embedded triangulations

observables show a cross-over behavior going from negative temperatures,
where the partition function dominated by disordered triangulations, to
positive temperatures, where it is dominated by ordered triangulations.

In contrast to the topological the lattice or in general embedded triangu-
lations are useful if one deals with networks and graphs where the actual
coordinates of the vertices become important. Despite the introduction of
vertex coordinates which induce non-executable flips, our results show quali-
tatively agreement with the graph properties of topological triangulations of
surfaces with suitable genus that were estimated analytically and calculated
numerically in the literature.
An extension to the grandcanonical ensemble, where the number of

vertices is not fixed any more, is possible by considering also insertion and
removal Pachner moves. Additionally one can apply the methods described
in this paper also to triangulations of arbitrary point sets in two and more
dimensions.
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3.4. Two-dimensional unimodular lattice triangulations as graphs

Table 3.5: Table summarizing the results of the interpretation of lattice triangula-
tions as graphs for the various ensembles and observables. The observables are the
degree distribution P (k) (see Eq. (3.51)), the triangulation energy E (see (3.58)),
the clustering coefficient C (see Eq. (3.52)), the average shortest path length ` (see
Eq. (3.53)), the spectra specA(x) and specL(x) of the adjacency and the Laplacian
matrix, the algebraic connectivity λ1, the spectral radius λMN−1, the inverse
participation ratio χ (see Eq. (3.56)) and the results of coupling of the Ising model
with the lattice triangulations. Note that in Tabs. 3.3 and 3.4 the scaling behavior
of these observables in terms of the system size is listed for random triangulations
and common random graphs.

observable max. ordered random microcan. can.
P (k) Fig. 3.37a Fig. 3.46 Fig. 3.50a
E Fig. 3.37b Fig. 3.50b

Fig. 3.52a
Eq. (3.78a)
Eq. (3.79a)

C Eq. (3.59) Fig. 3.37c Fig. 3.47a Fig. 3.50c
Eq. (3.74) Fig. 3.52b

Eq. (3.78b)
Eq. (3.79b)

` Fig. 3.37d Fig. 3.47b Fig. 3.50d
specA(x) Fig. 3.35 Fig. 3.38

Fig. 3.39
specL(x) Fig. 3.35 Fig. 3.40 Fig. 3.48 Fig. 3.53

Fig. 3.41
λ1 Eq. (3.65) Fig. 3.42a Fig. 3.49a Fig. 3.54a

Eq. (3.69) Eq. (3.75)
λMN−1 Eq. (3.66) Fig. 3.42b Fig. 3.49b Fig. 3.54b

Eq. (3.76)
IPR χ Fig. 3.43 Fig. 3.55
Ising see Ref. [411] Fig. 3.44 Fig. 3.56
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4 Topological triangulations

Until know we only considered triangulations of point sets embedded into
the Euclidean space Rd. In this chapter we move on to triangulations of
more general spaces, namely topological spaces or manifolds, thus these
triangulations are also called topological triangulations. The main difference
with respect to embedded triangulations is that the actual coordinates of
the points or vertices of the triangulations are neglected in the topological
case, and only topological degrees of freedom (which vertex is part of which
maximal simplex etc.) are considered.
Topological triangulations have been used as random graph models [47,

52, 259, 372, 433], because every graph is embeddable into a surface with
high enough genus. They can also be used for describing the topology of
foams in terms of neighboring cells [53, 143,319,381].
Since topological manifolds can be used for discretizing curved spaces,

they are an important tool for calculations in general relativity. Historically
the first use of triangulations in discrete general relativity is the Regge
formalism [338], where instead of coordinates only the topological and
geometric quantities of a fixed triangulation are considered. The edge lengths
of the triangulation are used as generalized coordinates in a Lagrangian
formalism. Based on the Regge formalism, but fixing the edge lengths and
using the triangulation itself as dynamical variable in a path-integral like
formalism, the quantum gravity approaches of dynamical triangulations
(DT) [29] or causal dynamical triangulations (CDT) [38] try to solve the
puzzle of unifying quantum mechanics and general relativity. The Regge
formalism as well as DT and CDT are presented in detail in Chap. 5 later.
For mathematicians, as well as for the described quantum spacetime

models based in triangulations there are three important questions. The
first question is: Are triangulations ergodic? Strictly speaking this question
means whether it is possible to define a set of local moves, so that each
triangulation of a topological space can be transformed into each other
triangulation using a finite number of these moves. In fact one can define
two such sets, the so-called Alexander [11] and the Pachner moves [322],
where the latter ones are a certain subset of the first ones that are easier to
handle conceptionally and on the computer. From the mathematical point
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of view ergodicity of topological triangulations with respect to these moves
is only proven in two and three dimensions [303, 334] (there are explicit
counterexamples for higher dimensions, compare Ref. [337]), and for a
certain subclass of (so-called piecewise linear) manifolds [322] (see Sec. 4.1.2
for more detailed explanations). In this context, there is also the question
whether triangulations are computationally ergodic, i.e. whether the moves
are ergodic in a certain simulational setup. This notion is stronger than
ergodicity, there can be situations where the latter holds, but the former
is violated. Computational ergodicity can break if the number of moves
that connects two triangulations is higher than the number of total steps
done in the simulation, or if for the connection a detour is needed that leads
to triangulations outside of a certain observation window (which can be
given by cuts or by sampled probability distributions that assign nearly
zero weight to certain regions of the phase space).

The second questions is: Are triangulations exponentially many? This
means, is there a number κ∞c so that there are less than exp(κ∞c · m)
triangulations with m maximal simplices? In the notion of statistical physics
this implies that the entropy (which is up to a constant the logarithm of the
number of states) is a linear function in terms of the system size (denoted
as extensive), or that the entropy density is a constant, at least in the limit
of infinite system sizes. Only systems that have an extensive entropy can
be treated with the methods of statistical physics, and only if there are
exponentially many triangulations the partition functions of the DT and
CDT quantum gravity models are well defined. Additionally, the entropy
density κ∞c in the infinite system limit determines the value of the coupling
constant to obtain a phase transition necessary for results independent
of the introduced discretization scale in those models [13, 38]. As for the
ergodicity, there is a strict mathematical proof only for two-dimensional
triangulations [399], and the question for three and higher dimensions is an
unsolved puzzle [197].

The third and last questions is: How do the properties of triangulations
depend on the topology (in the sense of topological invariants) of the under-
lying space? Since coordinates and other geometric quantities are neglected
if considering topological triangulations, the only remaining controllable
parameter is the topology of the underlying space. For two-dimensional
closed manifolds this is fully determined by specifying whether a surface is
orientable and how many holes are in the surface [101], in three and more
dimensions the classification of manifolds is much more complicated (see e.g.
Refs. [366,390]). The question arising is how certain properties defined on
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ensembles of triangulations (e.g. their number in terms of the number m of
maximal simplices) depend on the type of the manifold, and whether such
observables can be used to determine the topological type of the underlying
manifold. In appreciation of the famous question ”Can you hear the shape
of a drum?”, one can ask ”Can you count the topology of a triangulation?”
In this chapter we apply the methods that were used for counting the

number of embedded lattice triangulations on the topological case. We
use the Wang-Landau algorithm to calculate the density of states of tri-
angulations for different underlying spaces, which will be the number of
triangulations in terms of the number of maximal simplices. This allows us
to numerically give answers to the three questions (ergodicity, extensivity
and topology dependence) of topological triangulations.
This chapter is organized as follows: In Sec. 4.1 first different types of

topological spaces and manifolds that can be triangulated are examined,
and triangulations are defined as homeomorphisms between realizations of
abstract simplicial complexes and the space to be triangulated. Afterwards
Alexander and Pachner moves are introduced and the mathematical exact
results about their ergodicity are presented. An important result of this
section is the proof of Thm. 4.22 that one can formulate Pachner in terms of
oriented circuits, which can be used for easily calculating the change of the
number of simplices induced by a Pachner move and for treating embedded
and topological triangulations unified in an object-oriented computer code
for simulations. The last part treats the ratio of selection probabilities
of Pachner moves and explains why isomorphisms of triangulations are a
computational challenge for calculating this ratio and therewith for the
whole simulation.

Sec. 4.2 examines the entropy density of triangulations of two-dimensional
orientable and non-orientable surfaces and its dependence on the genus
of the underlying surface. The first important result depicted in Fig. 4.10
is that one can neglect symmetries in large enough triangulations. This
means that one can use a simplified version of the selection probability
ratio, which allows us to access very large system sizes with our Monte
Carlo methods. Using an approximative counting algorithm based on
Wang-Landau simulations and comparing to some exact results known
from counting rooted graphs [182,398], the asymptotic number of surface
triangulations is conjectured in Eq. (4.18) to be

N(m,h)→ (170.4± 15.1)hm−2(h−1)/5
(256

27

)m/2
where m is the number of triangles and h is the type of the surface, which
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is the genus for orientable and the half of the genus for non-orientable
surfaces. Our result is the first to present the leading order behavior for non-
sphere triangulations and differs from the asymptotics of ordinary graphs
on surfaces. This section is based on the paper

[264] B. Krüger and K. Mecke, Genus dependence of the number of (non-
)orientable surface triangulations, Phys. Rev. D 93, 085018 (2016)

In Sec. 4.3 we apply a similar algorithm on triangulations of the 3-sphere
to obtain results about their numerical ergodicity and the numerical value of
a possibly existing exponential bound of their number in terms of the system
size. (Note that due to a recent (unpublished) statement of Karim Adiprasito
using a certain number of steps only exponentially many triangulations in
terms of the number of executed flips can be reached [286]. So it is not
possible to make a statement about the existence of an upper bound, but
only about its value if it exists.) We present the methods of Metropolis
Monte Carlo simulations that were used in a dynamical triangulation setup
to numerically calculate the entropy density of 3-sphere triangulations
and give some drawbacks of this method compared to our methods. For
triangulations with m tetrahedra we consider the difference between the
entropy density κc(m) and the entropy density κc(m,∆m) with a finite
window [m−∆m,m+ ∆m] of allowed numbers of maximal simplices as a
measure for the violation of the numerical ergodicity of the Pachner moves,
and show in Fig. 4.24 and Eq. (4.33) that this measure scales as

κc(m)− κc(m,∆m) ∝ m0.68±0.03

(∆m)2 .

Furthermore we can improve in Fig. 4.25 the asymptotics of the number of
triangulations of the 3-sphere in terms of number of maximal simplices.
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4.1. Topological triangulations and Pachner moves

4.1 Topological triangulations and Pachner moves

In this section we present step by step the definition of triangulations of
topological spaces. We proceed by introducing elementary steps (stellar
and bistellar exchanges, also called Alexander and Pachner moves), that
can be used to transform triangulations of a given topological space into
other triangulations of the same space. For the Pachner moves we present
the changes in the number of simplices they induce, calculate the selection
probability ratio that has to be used in Markov chain Monte Carlo algorithms
and present the difficulties that arise due to the fact that topological
triangulations are only defined up to isomorphism.

4.1.1 Abstract simplicial complexes and triangulations

As a first step in the development of the mathematical foundations of
topological triangulations, we develop the definition of a triangulation of
a topological space. Therefor we introduce first the notions of topological
spaces and manifolds. Afterwards we present two different types of simplicial
complexes, abstract and Euclidean ones, where the first class is defined purely
set-theoretically and the members of the second one can be embedded into an
Rn. On both types certain operations can be defined, and we introduce an
algebraic notion that can sometimes simplify notation and proofs. Last we
define a triangulation of a topological space as an abstract simplicial complex
that is associated with an Euclidean simplicial complex homeomorphic to
the space to be triangulated, together with this homeomorphism.

Topological spaces and manifolds

Despite of topology and manifolds are topics that can fill several textbooks,
in this section we try to give a very short introduction to the basic con-
cepts we need to consider topological triangulations. Nice introductions to
these topics can be found in the textbooks [275] (topology and topologi-
cal manifolds), [351] (piecewise-linear structures and manifolds) and [276]
(differentiable and smooth manifolds).

Recall that in the case of embedded triangulations we constructed a
tessellation of the convex hull of a set of points in an Rd using triangles
or higher dimensional simplices. Topological triangulations can be seen as
tessellations of much more general spaces, namely topological ones:

Definition 4.1 (topological space, [275, p. 18]):
Let X be a set and let T be a set of subsets of X, which elements
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are called open sets. (X,T ) is a topological space (often abbreviated
simply by X), if

1. The set X and the empty set are open, i.e. they are contained
in T : ∅, X ∈ T

2. Any union ⋃i ti of open sets ti ∈ T is open: ⋃i ti ∈ T
3. Any finite intersection ⋂i ti of open sets ti ∈ T is open: ⋂i ti ∈ T

The next step is to define so-called continuous maps between topological
spaces that preserve their defined structure, i.e., that inverse images of open
sets are open sets.

Definition 4.2 (continuous function, [275, p. 20]):
Let (X1, T1) and (X2, T2) be two topological spaces. A function
f : X1 → X2 is called continuous, if for every open set V ∈ T2 the
inverse image f−1(V ) := {x ∈ X1|f(x) ∈ V } ∈ T1 is an open set in
T1.

To define equivalence of topological spaces, one needs continuous bijections
with continuous inverse.

Definition 4.3 (homeomorphism, homeomorphic, [275, p. 20]):
Let (X1, T1) and (X2, T2) be two topological spaces. A function
f : X1 → X2 is called homeomorphism, if f is a bijection and f and
its inverse f−1 are continuous. Two topological spaces (X1, T1) and
(X2, T2) are called homeomorphic, if there exist a homeomorphism
f : X1 → X2.

Clearly homeomorphisms are an equivalence relation on topological spaces,
because they are reflexive with f = id, symmetric and transitive.

In this thesis we use as underlying space of triangulations mainly objects
that have more structure than a topological space, namely manifolds, which
are topological spaces that are locally equivalent to an Rd.

Definition 4.4 ((topological) manifold, chart, atlas, [275, p. 30-34]):
A topological spaceM is called (topological) d-manifold, if the following
axioms hold:

1. M is a Hausdorff-space (i.e., for two distinct points x, y ∈ M
there are open sets Ux ⊂ M and Uy ⊂ M with x ∈ Ux, y ∈ Uy
so that Ux ∩ Uy = ∅)

2. There is a countable basis for the open sets U ⊂M .
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3. For every point x ∈ M there is an open set Ux that is homeo-
morphic to an open subset of Rd.

The homeomorphism φ : Ux → Rd is often denoted as a chart, the set
of all charts is denoted as atlas.

Manifolds can be equipped with additional structure by specifying how the
charts of different intersecting neighborhoods are related. This is done by
stipulating the type of the transition maps:

Definition 4.5 (transition maps; piecewise linear, differentiable and
smooth manifolds, [276, p. 12-15, 32-35], [351, p. 7]):
Let M be a topological d-manifold and let Ux, Uy ⊂M be two open
sets on M with Ux ∩ Uy 6= ∅ and charts φx, φy. The homeomorphism

τx,y := φy ◦ φ−1
x : φx(Ux ∩ Uy)→ φy(Ux ∩ Uy),

introduces a commutative diagram and is called transition map.
If all transition maps are piecewise linear1, the topological manifold

is called piecewise linear (PL) manifold. If all transition maps are k-
differentiable (i.e. k-differentiable in every component), the topological
manifold is called k-differentiable manifold. For k = 1 the manifold is
simply called differentiable, for k =∞ the manifold is called smooth
manifold.

The three presented structures, in the given order, become stronger, i.e. every
smooth manifold is also a differentiable manifold, and every differentiable
manifold is also a PL manifold.

For all these types of manifolds there are structure preserving maps that
can be used for defining equivalence, which are special homeomorphisms2:

Definition 4.6 (maps between manifolds, [275, p. 22], [276, p. 38-39],
[351, p. 6]):
Let M and N be two topological (piecewise-linear, smooth) d-mani-
folds with charts (Ux, φx) and (Vy, ψy). A map F : M → N is called
continuous (piecewise linear, smooth), if for each pair of charts φ of M
and ψ ofN there exists a continuous (piecewise linear,∞-differentiable)
map f : φx(Ux)→ ψy(Uy) with F = ψ−1

y ◦ f ◦ φx.

1 A map f : P ⊃ Rm → Rn is piecewise-linear, if (x, f(x)) ∈ Rm+n|x ∈ P is a polyhedron,
see [351, p. 6]

2 Note that for continuous maps between topological manifolds this is just an application
of the respective maps between topological spaces on manifolds. Nevertheless we
included these maps because they show the nice parallel between the definitions.
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If there is a bijective continuous (piecewise linear, smooth) map
F : M → N with continuous (piecewise linear, smooth) inverse
F−1 : N → M , the manifolds M and N are called homeomorphic
(PL homeomorphic, diffeomorphic), and the map F is called homeo-
morphism (PL homeomorphism, diffeomorphism). One abbreviates
M ' N (M PL' N , M diff.' N).

As the continuous maps between topological spaces, these maps also define
an equivalence relation.
There are some very interesting results about the different structures

of triangulations3: First, every two diffeomorphic manifolds are also PL
homeomorphic (by the work of Cairns in 1935 [107] and Whitehead in 1940
[419]), and every two PL homeomorphic manifolds are also homeomorphic
(by definition). This can be summarized as

DIFF→ PL→ TOP,

in the categorial sense that there are morphisms that map every differentiable
manifold to a PL manifold, and every PL manifold to a topological manifold.
There are several important results about this morphisms for manifolds in
general:

• PL→ TOP is not injective, i.e., there are topological manifolds which
can be equipped with several (non-PL homeomorphic) PL structures.
E.g., there are uncountably many different PL structures of the
topological manifold R4 [189].

• PL → TOP is not surjective, i.e., not every topological manifold
admits a PL structure. Only topological manifolds with vanishing
Kirby-Siebenmann class can be piecewise linear manifolds [248], so
there are topological manifolds that do not admit a PL structure
(in [248] it was shown that this happens for all dimensions d ≥ 5, in
Ref. [175] it was shown that the topological E8 4-manifold does not
admit a PL structure).

• The original conjecture that PL → TOP is bijective was posed by
Steinitz [376] and Tietze [391] in 1908, and was denoted as Hauptvermu-
tung der algebraischen Topologie4. The Hauptvermutung was proven

3 The following paragraphs are inspired by the MathOverflow answer
http://mathoverflow.net/questions/96670/classification-of-surfaces-and-
the-top-diff-and-pl-categories-for-manifolds/97019#97019

4 Main conjecture of algebraic topology
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in 1925 by Radó [334] for 2-manifolds and in 1952 by Moise [303] for
3-manifolds, and there was hope that the conjecture is true in arbitrary
dimensions. But in 1961 Milnor [295] gave a first counterexample in
six dimensions (but for a simplicial complex that is not a manifold),
for a general overview see Ref. [337].

• An important difference can be found for topological d-spheres, which
can be equipped with a unique PL structure for d ≤ 3 [304] and for
d ≥ 5 [370]. Whether this is true also for d = 4 is still unsolved.

• DIFF → PL is not injective in general, i.e., there are PL manifolds
which can be equipped with several (non-diffeomorphic) differentiable
structures. There is a manifold (called Milnor’s sphere) that is home-
omorphic (and therewith PL homeomorphic) to the S7, but not dif-
feomorphic to it [294]. For dimensions less or equal 6 DIFF→ PL is
in fact injective [296, Thm. 2].

• DIFF→ PL is not surjective in general, i.e., not every PL manifold
admits a differentiable structure [243]. For dimensions less or equal 7
DIFF→ PL is in fact surjective [296, Thm. 2].

For the dimensions d ≤ 4 that are important for this thesis (and in general for
most physical applications), one can summarize that for d ≤ 3 the morphisms
between the categories are bijective, so every topological manifold has a
unique PL structure, and every PL manifold has a unique differentiable
structure. For d = 4 this is only true for the relation between PL and DIFF,
there are topological 4-manifolds without any or several PL structures.

Abstract simplicial complexes

Remember that the key ingredients of the definition of an embedded tri-
angulation were simplices grouped together to a simplicial complex. For
triangulations of manifolds we need an object that is slightly more general
than a simplicial complex in the embedded case.

Definition 4.7 (abstract simplicial complex, [318, Def. 2.7]):
Let A be an arbitrary set5. An abstract simplicial complex K on A is
a set of subsets σ ⊂ A called faces or simplices of K, that is closed

5 In this thesis we are restricting ourselves to complexes over finite sets, and therewith
finite triangulations. Extensions can be made for infinite sets and complexes, but this
leads to complications we do not want to deal with
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under the formation of subsets, formally

σ ∈ K ∧ σ′ ⊂ σ ⇒ σ′ ∈ K

The vertex set V (K) := ⋃K ⊂ A is the union of all faces and consists
of the elements of A that are used in the subsets K. A simplex σ′ ⊂ σ
is called subsimplex of σ, σ is called supersimplex of σ′.
The faces with the maximal cardinality in the complex are called

facets or maximal simplices. The dimension d = max{|σ| − 1 | σ ∈ K}
of the abstract simplicial complex is the maximal cardinality of the
facets minus 1. Note that every abstract simplicial complex contains
the empty set by definition.

So the notion of an abstract simplicial complex encapsulates the concept of
closure. For example, consider the set A = {0, 1, 2, 3, 4, 5}. The following
set of subsets of A is an abstract simplicial complex

K1 ={{0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {0, 3, 4},
{0, 1, 5}, {1, 2, 5}, {2, 3, 5}, {0, 3, 5}}

∪{{0, 1}, {1, 2}, {2, 3}, {0, 3}, {0, 4}, {1, 4},
{2, 4}, {3, 4}, {0, 5}, {1, 5}, {2, 5}, {3, 5}}

∪ {{0}, {1}, {2}, {3}, {4}, {5}, ∅} (4.1)

but the set of subsets

K2 = {{0, 1, 2}, {0, 1}, {0, 2}, {0}, {1}, {2}, ∅}

is not an abstract simplicial complex, since {1, 2} ⊂ {0, 1, 2}, but {1, 2} /∈
K2.

One can define maps between abstract simplicial complexes that conserve
their structural properties:

Definition 4.8 (simplicial map, [275]):
Let K1 and K2 be abstract simplicial complexes. A map f : V (K1)→
V (K2) which fulfills

σ1 ⊂ σ2 ∈ K1 ⇒ f(σ1) ⊂ f(σ2) ∈ K2

is called simplicial map between K1 and K2, and the abstract simplicial
complexes are called isomorphic. If K1 = K2 a simplicial map f :
V (K1)→ V (K1) is called simplicial automorphism.
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4.1. Topological triangulations and Pachner moves

Clearly simplicial automorphisms form an equivalence relation amongst
abstract simplicial complexes. Consider e.g. the simplicial complex (4.1).
The permutations

π1 : [0, 1, 2, 3, 4, 5] 7→ [0, 1, 2, 3, 5, 4]
π2 : [0, 1, 2, 3, 4, 5] 7→ [2, 1, 0, 3, 4, 5]

are simplicial automorphisms of K1, whereas the permutation

π3 : [0, 1, 2, 3, 4, 5] 7→ [0, 1, 2, 4, 3, 5]

is not a simplicial automorphism, because π3({2, 3, 5}) = {2, 4, 5}, which is
not a simplex of K1.

Euclidean simplicial complexes

The idea for defining a topological triangulation is to construct an object
embedded into an Rn that can be related to an abstract simplicial complex
that consists of elementary building blocks (vertices, lines, triangles, tetra-
hedra etc.) and that is homeomorphic to the topological space that should
be triangulated. This object is denoted as Euclidean simplicial complex and
will be defined in this section.

First we have to define the elementary building blocks, which are very
similar to the simplices in embedded triangulations.

Definition 4.9 (simplex, [318, Def. 2.1]):
Let x := {x0, x1, . . . , xk} be a set of k + 1 linearly independent points
in Rn (k ≤ n). An open k-simplex supported by the point set x is a
subset of Rn and defined as

σ(k) :=
{

k∑
i=0

λixi

∣∣∣∣∣ 0 < λi < 1,
k∑
i=0

λi = 1
}
⊂ Rn

A closed k-simplex supported by the point set x is defined as

σ̄(k) :=
{

k∑
i=0

λixi

∣∣∣∣∣ 0 ≤ λi ≤ 1,
k∑
i=0

λi = 1
}
⊂ Rn

The point set x is called support of the open or closed simplex. The
boundary ∂σ(k) of an open or closed simplex for k > 0 is the union
of all simplices that arise from proper and non-empty subsets of its
support {x0, x1, . . . , xn}, for k = 0 and for the empty simplex the
boundary is the empty simplex.
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So a closed simplex is again the convex hull of the defining points, and
the open simplex is the interior of the convex hull. Note that there is an
ambiguity in the notion simplex: On the one hand it denotes an element
of an abstract simplicial complex, on the other hand it is the (interior of)
the convex hull of a set of points. We will see later that these concepts
are strongly related, and in most cases the term simplex can refer to both
objects, especially since we often use simplex as a synonym for its support.
Using simplices one can define Euclidean simplicial complexes, which

are equivalent to the simplicial complexes defined in Sec. 3.1 for embedded
triangulations:

Definition 4.10 (Euclidean simplicial complex, underlying polyhe-
dron, [318, Definitions 2.3 and 2.5]):
Let K be a finite set of open simplices ⊂ Rn. K is called Euclidean
simplicial complex if

1. The intersection of two distinct simplices is empty

σ
(k1)
1 , σ

(k2)
1 ∈ K,σ(k1)

1 6= σ
(k2)
2 ⇒ σ

(k1)
1 ∩ σ(k2)

2 = ∅

2. For each simplex of K also its boundary simplices are contained
in K:

σ(k) ∈ K ⇒ ∂σ(k) ⊂ K
The set |K| := ⋃{σ | σ ∈ K} is called the underlying polyhedron of
K. The set V (K) is the set of all points defining the simplices of the
simplicial complex and is called vertex set of K.

Consider for example the points

~x0 =

1
0
0

 , ~x1 =

0
1
0

 , ~x2 =

−1
0
0

 ,
~x3 =

 0
−1
0

 , ~x4 =

0
0
1

 , ~x5 =

 0
0
−1


(4.2)

in R3 and the set of simplices supported by the sets
K = {{~x0, ~x1, ~x4}, {~x1, ~x2, ~x4}, {~x2, ~x3, ~x4}, {~x0, ~x3, ~x4},

{~x0, ~x1, ~x5}, {~x1, ~x2, ~x5}, {~x2, ~x3, ~x5}, {~x0, ~x3, ~x5}} ∪ . . .
(4.3)

with the respective subsimplices, as depicted in Fig. 4.1. Then K is an
Euclidean simplicial complex, and its underlying polyhedron |K| is homeo-
morphic to the 2-sphere.
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4.1. Topological triangulations and Pachner moves

Figure 4.1: Two-dimensional Euclidean sim-
plicial complex (4.3) with vertex set (4.2), con-
sisting of 8 2-simplices, 12 1-simplices and 6
0-simplices (and the trivial empty face ∅). This
complex is homeomorphic to the 2-sphere S2

and a geometric realization of the abstract sim-
plicial complex (4.1).

0 1

23

4

5

Triangulations of topological spaces

The following definition shows that there is a natural relation between
Euclidean and abstract simplicial complexes:

Definition 4.11 (geometric realization, [318, Def. 2.8]):
Let K be an Euclidean simplicial complex with vertex set V (K). Let
K be the following set of supports of simplices in K (which are subsets
of V (K)): {

x ⊂ V (K) | ∃σ(n) ∈ K supported by x
}

Then K is an abstract simplicial complex, and K or sometimes |K| is
called a geometric realization of the abstract simplicial complex K.

One can show that there is a geometric realization for each abstract simplicial
complex [318, Prop. 2.9], but the dimension of the space the Euclidean
simplex is embedded in is in general larger than the dimension of the
abstract simplicial complex.
Now we have all ingredients to define the triangulation of a topological

space:
Definition 4.12 ((combinatorial) triangulation of a topological space
[318, Def. 2.12].):
Let (X,T ) be a topological space, and letK be a d-dimensional abstract
simplicial complex. If there is a geometric realization |K| of K that
admits a homeomorphism T : |K| → (X,T ), the homeomorphism is
called triangulation of the topological space (X,T ).
A triangulation is denoted as combinatorial, if the link of every

vertex is PL homeomorphic to the boundary of the d-simplex.
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4. Topological triangulations

Often triangulation is also used to denote the pair consisting of the abstract
simplicial complex K and the homeomorphism T . There are also pseudo-
simplicial triangulations, which are tessellations of manifolds into simplices
not forming a valid simplicial complex (e.g., the triangulation of the 1-sphere
with two vertices and two edges), which are not considered in this thesis.

Throughout this thesis we only use combinatorial triangulations and
denote them simply as triangulations. There is a slightly more general
definition, which also includes non-combinatorial triangulations, where
simplices cannot be embedded locally flat into an Rn (even with arbitrarily
large n), so they are not homeomorphic to an Euclidean simplicial complex,
or equivalently, where there are vertices that have a link (as defined in the
next section) that is not homeomorphic to the (d− 1)-sphere. An example
for a non-combinatorial triangulation is the triangulation of the S1 with
two edges and two vertices.

As an example we give here the homeomorphism that maps the geometric
realization (4.3) (depicted in Fig. 4.1) of the abstract simplicial complex (4.1)
onto the 2-sphere S2 and triangulates it. This is not its smallest triangulation
of the 2-sphere, but it allows a simple construction of the homeomorphism
between the geometric realization and the manifold. Therefor we note that
S2 can be coordinatized by the polar coordinates

[0, 2π]× [0, π]→ S2 (φ, ϑ) 7→

cosφ sinϑ
sinφ sinϑ

cosϑ


As a homeomorphism we construct the function that maps a point of the
geometric realization onto the intersection of the line through the origin
and this point with the sphere given by this coordinatization. If both the
octahedron and the sphere points are given in spherical coordinates, this is
the map (r, φ, ϑ)→ (1, φ, ϑ). A point on the closed simplex {~x0, ~x1, ~x4} is
given by

~x = ~x0 + λ1(~x1 − ~x0) + λ2(~x4 − ~x0) =

1− λ1 − λ2
λ1
λ2


in Cartesian coordinates, with 0 ≤ λ2 ≤ 1 and 0 ≤ λ2 ≤ 1. So the
homeomorphism can be constructed by the transformation of Cartesian
coordinates into polar coordinates, for the considered simplex this is

T : |K| → S
2

(
λ1
λ2

)
7→
(
φ
ϑ

)
=

 arctan
(

λ1
1−λ1−λ2

)
arccos

(
λ2

1+2λ2
1+2λ2

2−λ1−λ2−λ1λ2

) (4.4)
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4.1. Topological triangulations and Pachner moves

Figure 4.2: Closed simplex
{~x0, ~x1, ~x4} of the Euclidean sim-
plicial complex (4.3) (green) and
standard coordinization of the
sphere (blue) in the same sec-
tor. The vectors ~ei are the co-
ordinate vectors. The red ar-
row depicts the homeomorphism
(4.4) that maps points of the Eu-
clidean simplicial complex onto
the sphere, which is a triangula-
tion of a sphere.

~e3

~e2

~e1

The procedure is displayed in Fig. 4.2. For the other simplices the homeo-
morphisms can be constructed similarly.
We now introduce a name for topological manifolds that can be triangu-

lated and have to fit this subclass into the hierarchy of manifolds introduced
in Sec. 4.1.1.

Definition 4.13 (triangulable, triangulated and combinatorial mani-
fold, [318, Def. 2.12], [97, Sec. 2].):
Let M be a topological manifold. If there is a triangulation T of M ,
the manifold is called triangulable.
A simplicial complex with geometric realization that is homeomor-

phic to a topological manifold is denoted as triangulated (sometimes
also simplicial) manifold. A combinatorial manifold is a triangulated
manifold where the link of every vertex is PL homeomorphic to the
boundary of a simplex.

So by definition each triangulated or combinatorial manifold is also a
topological manifold, and one can show easily that each combinatorial
manifold has a PL structure, and every PL manifold is combinatorially
triangulable [222], which can be summarized a bit sloppy as

(triangulated ) combinatorial = PL) manifolds

Due to the equivalence of the TOP and the PL category for d ≤ 3, in
these dimensions every topological manifold is triangulable, and every
triangulation is a combinatorial one. Due to the proof of the Poincaré
conjecture by Perelman also in d = 4 every triangulation is combinatorial [78]
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4. Topological triangulations

(but remember that in d = 4 there are topological manifolds with different
PL structures [189]). For four and more dimensions there are topological
manifolds that cannot be triangulated, and for d ≥ 5 there are, e.g., non-
combinatorial triangulations of the d-sphere that are not PL homeomorphic
to the boundary of the (d+ 1)-simplex [286].

As a last step we have to define under which circumstances triangulations
are considered to be equal:

Definition 4.14 (isomorphic triangulations [318, Def. 2.13]):
Let X be a topological space, let K and L be two abstract simplicial
complexes with geometric realizations |K| and |L|. Let TK : |K| → X
and TL : |L| → X be two triangulations of the topological space X. If
the map τ−1

L ◦ τK : |K| → |L| is a homeomorphism consistent with the
simplicial structure (i.e. maps simplices of the geometric realization
into simplices), then the two triangulations are called isomorphic.

So two triangulations are isomorphic if the geometric realizations |K| and
|L| are homeomorphic and the underlying abstract simplicial complexes K
and L are isomorphic.

Operations on simplicial complexes

In this section we describe some elementary unary and binary operations
that can be applied to simplicial complexes. The definitions of these oper-
ations are formulated in terms of abstract simplicial complexes, but they
can be formulated for Euclidean simplicial complexes or combinatorial
triangulations as well.
First we define the closed and the open star, which is intuitively the

simplicial neighborhood of a simplex, the link, which is the boundary of the
closed star, and the deletion of a simplex.

Definition 4.15 (((open) star, deletion and link [260, Sec. 2.1.2]):
Let K be an abstract simplicial complex, and let σ ∈ K be one of its
simplices. The (closed) star stK (σ) and the open star stK (σ) of the
simplex σ are the subsets

stK (σ) := {σ̃ ∈ K | σ̃ ∪ σ ∈ K}
stK (σ) := {σ̃ ∈ K | σ̃ ⊇ σ} .

The deletion dl(σ) and the link lk(σ) of the simplex σ are defined as:

dlK (σ) := {σ̃ ∈ K | σ̃ + σ}
lkK (σ) := {σ̃ ∈ K | σ ∩ σ̃ = ∅ ∧ σ ∪ σ̃ ∈ K}
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4.1. Topological triangulations and Pachner moves

Figure 4.3: Different parts of a simplicial complex K in two-dimensions. (From
left to right) star stK (σ), open star stK (σ), deletion dlK (σ) and link lkK (σ) of a
(from top to down) 0-simplex, 1-simplex and 2-simplex σ. The open star consists of
all simplices that contain the given simplex sigma, the deletion is the complementary
set of the open star. The star is the closure of the open star, and the link.

Note that the (closed) star, the link and the deletion are itself abstract
simplicial complexes, but the open star is not an abstract simplicial complex.
Consider e.g. the abstract simplicial complex (4.1) denoted by K. There
we have for the 0-simplex {0} the operations

stK ({0}) = {{0, 1, 4}, {0, 3, 4}, {0, 1, 5}, {0, 3, 5},
{0, 1}, {0, 3}, {0, 4}, {0, 5}, {0}}

stK ({0}) = stK ({0}) ∪ {{1,4}, {1,5}, {3,4}, {3,5}, {0}, {1}, {3}, {4}, {5}, ∅}
lkK ({0}) = stK ({0}) \ stK ({0}) ,
and for the 1-simplex {0, 1} we have the operations

stK ({0, 1}) = {{0, 1, 4}, {0, 1, 5}, {0, 1}}
stK ({0, 1}) = stK ({0,1}) ∪ {{0,4}, {0,5}, {1,4}, {1,5}, {0}, {1}, {4}, {5}, ∅}
lkK ({0, 1}) = {{4}, {5}, ∅} .
In Fig. 4.3 stars, links and deletions for all types of simplices in a two-
dimensional simplicial complex are depicted.
In addition to the functions that act on one simplicial complex we intro-

duce a binary function that combines two simplicial complexes into a new
one.
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Definition 4.16 (join of complexes [260, Sec. 2.1.3]):
Let K and L be abstract simplicial complexes with disjoint vertex sets
V (K) and V (L). The join K ? L of K and L is defined as:

K ? L := {σ ⊆ (V (K) ∪ V (L)) | σ ∩ V (K) ∈ K, σ ∩ V (L) ∈ L}

The join σ ?K of a simplex σ and a simplicial complex K is the join
of the simplicial complex consisting of σ and all of its subsimplices
with K.

Consider for example the abstract simplicial complexes K = {{0}, ∅} and
L = {{1, 2}, {2, 3}, {1, 3}, {1}, {2}, {3}, ∅}. The join of K and L is

K ? L = {{0, 1, 2}, {0, 2, 3}, {0, 1, 3}, {0, 1}, {0, 2}, {0, 3},
{1, 2}, {2, 3}, {1, 3}, {0}, {1}, {2}, {3}, ∅}

Algebraic representation of simplicial complexes

There is an interesting algebraic formulation of (abstract or Euclidean)
simplicial complexes, compare e.g. Ref. [11]. We give this formulation here
for two reasons, first because of its elegance and second because it allows a
very simple definition of the boundary operator and the link (without the
necessity of defining stars and deletions). Let K be a simplicial complex
over the set I and let σ = {i0, . . . , ik+1} ⊂ I be a k-simplex. The simplex
is now represented by the monomial

σ = {i0, . . . , ik+1} → xi0xi1 . . . xik

The whole simplicial complex K is then represented by a polynomial with
coefficients in Z2 (so that 1 + 1 = 0). The example of the abstract simplicial
complex (4.1) can be formulated as the polynomial

K = x0x1x4 + x1x2x4 + x2x3x4 + x0x3x4+
+ x0x1x5 + x1x2x5 + x2x3x5 + x0x3x5+
+ x0x1 + x1x2 + x2x3 + x0x3 + x0x4 + x1x4 + x2x4 + x3x4+
+ x0x5 + x1x5 + x2x5 + x3x5 + x0 + x1 + x2 + x3 + x4 + x5 + 1.

The presence of the term 1 corresponds to the empty set which is part
of every simplicial complex. Sometimes this term has to be added after
operations manually in order to get again a correct representation.
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The algebraic representation can be used for easily calculating the join,
which is then simply the product of the two associated polynomials: The
join of the simplicial complexes K = {{0}, ∅} → x0 + 1 and

L = {{1, 2}, {2, 3}, {1, 3}, {1}, {2}, {3}, ∅}
→ x1x2 + x2x3 + x1x3 + x1 + x2 + x3 + 1

is given by the product

K ? L = (x0 + 1) · (x1x2 + x2x3 + x1x3 + x1 + x2 + x3 + 1)
=x0x1x2 + x0x2x3 + x0x1x3+

+ x1x2 + x2x3 + x1x3 + x0x1 + x0x2 + x0x3

+ x0 + x1 + x2 + x3 + 1

We can now use the usual differential operators ∂i := ∂/∂xi to define the
boundary operator

∂ :=
∑
i∈I

∂i

Since the monomials are linear in each term xi, as always ∂∂ ≡ 0. Consider
for example the simplicial complex

K = x0x1x2 + x0x1 + x0x2 + x1x2 + x0 + x1 + x2 + 1,

which has the boundary

∂K = (∂0 + ∂1 + ∂2) (x0x1x2 + x0x1 + x0x2 + x1x2 + x0 + x1 + x2 + 1) =
= x1x2 + x0x2 + x0x1 + x1 + x0 + x2 + x0 + x2 + x1 + 1 + 1 + 1 + 1 =
= x1x2 + x0x2 + x0x1

Note that due to the coefficients of the polynomial being in Z2 all double
terms cancel.
The differential operators ∂i and the boundary operator ∂ allow us to

formulate the operations on simplicial complexes in the algebraic represen-
tation:

lkK ({i0, . . . , ik}) = ∂i0 . . . ∂ikK
stK ({i0, . . . , ik}) = xi0 . . . xik · lkK ({i0, . . . , ik}) = xi0 . . . xik · ∂i0 . . . ∂ikK
stK ({i0, . . . , ik}) = (xi0 . . . xik + ∂xi0 . . . xik) · lkK ({i0, . . . , ik})

= (xi0 . . . xik + ∂xi0 . . . xik) · ∂i0 . . . ∂ikK

Note the easy formulation of the link compared to Def. 4.15.
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4.1.2 Alexander and Pachner moves

In the previous section we gave the definition of the triangulation of a
topological space, and the definitions of certain classes of manifolds. Here
we present the two different types of moves that can be used to transform
triangulations of the same manifold into each other. The first one are stellar
exchanges or Alexander moves, the second are bistellar exchanges or Pachner
moves. The latter ones are deduced from the former ones and are used later
in our simulations.

Stellar exchanges (Alexander moves)

We first state the definition of stellar exchanges, which will not be used in
our simulations, but are the foundations of the flips used later on.

Definition 4.17 (Stellar exchange, stellar subdivision, stellar equiva-
lence [11,322]):
Let M be a triangulated d-manifold with boundary ∂M , and let
A ∈M \ ∂M be a simplex in the interior of M with lkM (A) = ∂B ?L
for a simplex B /∈ M and a subset L ⊂ M (dim(A),dim(B) ≥ 0).
Then the operation κA,B that transforms M into

κA,BM := (M \A ? ∂B ? L) ∪ ∂A ? B ? L

is called stellar exchange of simplices A and B. The stellar exchange
κ−1
A,B := κB,A is called inverse of the stellar exchange κA,B (one can

easily show that κ−1
A,BκA,B = id).

If dim(B) = 0 (i.e. B is a point), then the stellar exchange κA,B =:
κA is called stellar subdivision.

Let M and M ′ be two triangulated manifolds. M and M ′ are called
stellarly equivalent (denoted by M st∼M ′), if there is a finite number
of stellar exchanges κAi,Bi so that

M ′ = κA1,B1κA2,B2 . . . κAk,BkM

The stellar subdivisions and their inverses are also called Alexander moves
due to the following theorem of J. W. Alexander in 1930:

Theorem 4.18 (Stellar equivalence of triangulated manifolds [11]). Let
M1

PL' M2 be two PL homeomorphic, triangulated manifolds. ThenM1
st∼M2

are stellarly equivalent, even if one restricts to stellar subdivisions and their
inverses, and vice versa: M1

PL' M2 ⇔M1
st∼M2.
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4.1. Topological triangulations and Pachner moves

Figure 4.4: Stellar subdivision
(Alexander move) κA,B of a three-
dimensional simplicial complex.
The simplices that induce the flip
are A = {0, 1} and B = {5}, the
link lk(A) and the observing com-
plex L coincide and are displayed
in green.
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This theorem implies that Alexander moves can be used to transform
triangulations of PL manifolds ergodically into each other.
In Fig. 4.4 an example for a stellar subdivision (Alexander move) is

depicted. Starting point is the simplicial complex

K = {{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}} ∪ subsimplices,

and we consider the stellar subdivision κA,B given by the simplices A = {0, 1}
and B = {5}, where B /∈ K. The boundary ∂B = {∅} is empty, the link of
A is given by

lkK(A) = {{2, 3}, {2, 4}, {3, 4}, {2}, {3}, {4}, ∅} ,

so L = ∂B ? lkK(A) = lkK(A). So the simplices removed by the stellar
subdivision are

A ? ∂B ? L = {{0, 1}, {0}, {1}, ∅} ? {∅}
? {{2, 3}, {2, 4}, {3, 4}, {2}, {3}, {4}, ∅} =

= {{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}} ∪ subsimplices

the simplices inserted by the stellar subdivision are

∂A ? B ? L = {{0}, {1}} ? {{5}} ? {{2, 3}, {2, 4}, {3, 4}, {2}, {3}, {4}, ∅} =
= {{0, 2, 3, 5}, {0, 2, 4, 5}, {0, 3, 4, 5},
{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}} ∪ subsimplices,

so every 3-simplex is replaced by two 3-simplices containing the new vertex
5.

Bistellar exchanges (Pachner moves)

Alexander moves have the disadvantage that there are (countable) infinitely
many of them if one considers all possible triangulations of a manifold, so
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there cannot be a complete list of all possible Alexander moves. (Note
that of course in a fixed triangulations there is only a finite number of
Alexander moves). E.g., consider the stellar subdivision of an edge in a
three-dimensional triangulated manifold. There is no limit on the number
of tetrahedra incident with this edge, and for every number k of incident
tetrahedra there is an Alexander move that transforms the k incident
tetrahedra into 2k tetrahedra incident with the newly inserted vertex. In
fact one can define another finite set of flips that can be used to transform
two triangulations of PL homeomorphic manifolds into each other:

Definition 4.19 (Bistellar exchange, bistellar equivalence [322]):
LetM be a triangulated d-manifold and let κA,B be a stellar exchange.
If dim(A) + dim(B) = d, then χA := κA,B = κ−1

B κA is called a
(d+1−dim(A)→ 1+dim(A))-bistellar exchange (because it transforms
d+ 1− dim(A) into 1 + dim(A) maximal simplices).

Let M and M ′ be two triangulated manifolds. M and M ′ are called
bistellarly equivalent, denoted by M bst∼ M ′, if there is a finite number
of bistellar exchanges χAi so that

M ′ = χA1χA2 . . . χAkM

These exchanges are denoted as bistellar because a bistellar exchange χA =
κ−1
B κA can be composed into a stellar subdivision κA and an inverse stellar

subdivision κB [322]. Bistellar exchanges are also called Pachner moves,
referring to the following theorem of Udo Pachner:

Theorem 4.20 (Bistellar equivalence of triangulated manifolds [322]). Let
M1

PL' M2 be two PL homeomorphic triangulated manifolds. ThenM1
bst∼ M2

are bistellarly equivalent and vice versa: M1
PL' M2 ⇔M1

bst∼ M2.

For d-manifolds there are d+ 1 different Pachner moves, namely the moves
(1→ d+ 1), (2→ d), . . . (d+ 1→ 1). They are displayed in the first rows of
Figs. 3.9 (on page 103) for d = 2 and 3.10 (on page 104) for d = 3, since
there is a one-to-one correspondence between the non-degenerated flips used
in embedded triangulations and Pachner moves, which will be proven later.

Note that not every simplex A of a triangulation generates a valid Pachner
move χA. First a k-simplex A must be incident with d − k + 1 maximal
simplices in order to find a suitable simplex B. Furthermore the simplex B
that will be inserted into the triangulation must not be contained in the
triangulation before.
There are two alternate ways of defining Pachner moves, the first one

is by considering the different partitionings of the facets of the boundary
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4.1. Topological triangulations and Pachner moves

of a (d + 1)-simplex, the second one uses the notion of circuits as in the
embedded case. We give a sketch for the proof of the former alternative,
and a complete proof of the latter one, because we did not find a similar
proof in the literature and the alternative definition is important for the
unified algorithmic implementation of triangulations in computer code.

Theorem 4.21 (Pachner move by boundary of (d+1)-simplex [318, Numbs.
2.16, 2.17, 2.18]). Let M be a triangulated d-manifold with underlying
abstract simplicial complex K and triangulation TK : |K| → M , and let
σ(d+1) be a (d + 1)-simplex with boundary d-simplices σ(d)

1 , . . . , σ
(d)
d+1. Let

0 < k ≤ d and define the two Euclidean simplicial complexes

A :=
k⋃
i=1

{
σ | σ ⊆ σ(d)

k

}
B :=

d+1⋃
i=k+1

{
σ | σ ⊆ σ(d)

k

}
,

and their associated abstract simplicial complexes A and B, where ∂A = ∂B.
Let ΨA : A → K be an injective simplicial map. Then there exists an
abstract simplicial complex L and a triangulation TL : |L| →M so that

• the map TL ◦ T −1
K is simplicial outside of |ΨA(A \ ∂A)|, and

• there exists a injective simplicial map ΨB : B → L with

TL(|ΨB(B)|) = TK(|ΨA(A)|)
TL(|ΨB(x)|) = TK(|ΨA(x)|) for x ∈ ∂A = ∂B.

The replacement of TK with TL is then a (k, d− k) Pachner move.

Proof. (sketch) The simplex A of the original definition Def. 4.19 is the
largest simplex which is a subsimplex of all maximal simplices in A. Identify
then A with A ? ∂B of the original definition and B with ∂A ? B of the
original definition.

So consider, e.g., a triangulated manifold M in two dimensions and a
3-simplex. There are two possibilities to subdivide the boundary of the
3-simplex into two non-empty groups, first using two triangles each in A
and in B, secondly using three triangles in one component and one triangle
in the other component. The first case leads to the (2→ 2)-flip (depicted
in Fig. 4.5), and the second case leads to the (3 → 1)-flip and its inverse,
the (1→ 3)-flip (depicted in Fig. 4.6).
The next theorem states the equivalence of the original Pachner move

formulation and the formulation of oriented circuits. This formulation will
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σ(d+1)

A ⊂ σ(d+1)

B ⊂ σ(d+1)

ΨB : B → M
simplicial map

ΨA : A → M
simplicial map

Pachner move

Figure 4.5: Visualization of the (2, 2)-bistellar Pachner move, compare Thm. 4.21.
From a 3-simplex σ(4) two boundary simplices are chosen for the complex A, the
two other boundary simplices are chosen for complex B. Note that ΨA and ΨB map
simplicial complexes, the geometric realizations are only displayed for visualization.

be very useful later for calculating the change in the number of simplices
induced by a flip, and for a unified treatment of several types of triangulations
in a numerical setup.

Theorem 4.22 (Pachner move by oriented circuit). Let M be a triangulated
d-manifold, and let σ ∈M \ ∂M be a k-simplex in the interior of M with
d+ 1− k maximal supersimplices σ1, . . . , σd+1−k. Denote by Z := V (σ1 ∪
· · · ∪ σd+1−k) the set of vertices of the maximal simplices, by Z− := V (σ)
the set of vertices of σ, and by Z+ := Z \ Z−. Then the following operation
is the bistellar move χσ:

χσM =
(
M \ {σ′ ⊂ Z | Z+ * σ′

}) ∪ {σ′ ⊂ Z | Z− * σ′
}

Proof. We identify σ with A in Def. 4.17 and have to define a simplex B /∈M
so that{

σ′ ⊂ Z | Z+ * σ′
}

= σ ? ∂B and
{
σ′ ⊂ Z | Z− * σ′

}
= ∂σ ? B

In the following we choose B to be the simplex composed of the points of
Z+. We can restrict to the case that |Z+| = d+ 1− k, because otherwise
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A ⊂ σ(d+1)

B ⊂ σ(d+1)

ΨB : B → M
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ΨA : A → M
simplicial map

Pachner move

Figure 4.6: Visualization of the (1, 3)-bistellar Pachner move, compare Thm. 4.21.
From a 3-simplex σ(4) one boundary simplex is chosen for the complex complex
A, the three other boundary simplices are chosen for complex B. Note that ΨA
and ΨB map simplicial complexes, the geometric realizations are only displayed for
visualization.
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the considered move would not be bistellar, and also in the alternative
formulation we would discard this move. We use the description of simplicial
complexes in terms of polynomials and use the following monomials for the
considered simplices

σ → xi−0
. . . xi−

k
andB → xi+0

. . . xi+
l

with l = d− k, {i+0 , . . . i+l } := Z+ and {i−0 , . . . i−k } := Z−.
The first part of the proof is to show that{

σ′ ⊂ Z | Z+ * σ′
} ⊃ σ ? ∂B.

For a simplex σ̃ ∈ σ ? ∂B it is true that σ̃ ⊂ Z, because σ ⊂ Z and
B ⊂ Z ⇒ ∂B ⊂ 2Z . However, for a simplex σ̃ ∈ σ ? ∂B it is also true that
σ̃ + Z+, because supersets of Z+ can only be generated by multiplying a
monomial in σ and its subsimplices with xi+0 . . . xi+l , but the latter is not
contained in ∂B because of the boundary operator.
The second part of the proof is to show that{

σ′ ⊂ Z | Z+ + σ′
} ⊂ σ ? ∂B.

A simplex Z+ + σ̃ → xj+
0
. . . xj+

l′
xj−0

. . . xj−
k′

with {j+
0 , . . . j

+
l′ } ( Z+ and

{j−0 , . . . j−k′} ⊆ Z− is constructed from the product of the monomial xj+
0
. . .

xj+
l′
in ∂B and the monomial xj−0 . . . xj−k′ in σ, so σ̃ ∈ σ ? ∂B.

So we proved that the two sets are equivalent, the proof for {σ′ ⊂ Z |
Z− * σ′} = ∂σ ? B is analogue.

4.1.3 Number of simplices in triangulations and their
change due to Pachner moves

Our aim is to approximately count the number of triangulations of a given
manifold using the Wang-Landau algorithm similar to Secs. 3.2 and 3.3.
The therefor necessary ergodic steps (Pachner moves) were defined in the
previous section. Another necessary ingredient will be an energy function
that classifies the microstates of triangulations into macrostates. A canonical
quantity for this classification are the number of k-simplices of the respective
triangulation. So in this section we present some general relation between
the number of simplices in a triangulation and calculate the change in these
numbers induced by Pachner moves.
The numbers of k-simplices are not independent, in fact their are the

following relations:
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4.1. Topological triangulations and Pachner moves

Theorem 4.23 (Dehn-Sommerville relations for triangulated manifolds, see
Refs. [134,251,371]). Let M be a d-dimensional manifold with triangulation,
let K be a simplicial complex and let τK : |K| → M be a triangulation of
M . Let Nk be the number of k-simplices in the simplicial complex K. Then
there are the following (not necessarily independent) relations between the
simplex numbers:

Nk =
d∑
i=k

(−1)d+i
(
i+ 1
k + 1

)
Ni, k ∈ {0, . . . , d} (4.5)

If one defines N−1 := χ/2 for the Euler characteristic χ the relation for
k = −1 is also valid.

We specify these relations for 2 ≤ d ≤ 4, which will be the dimension that
are considered within this thesis. For 2-dimensional triangulated manifolds
there are the following independent Dehn-Sommerville relations:

k = −1 : χ = N0 −N1 +N2 (4.6a)
k = 0, k = 1 : 2N1 = 3N2 (4.6b)

Eq. (4.6a) is simply Euler’s formula for surfaces relating the number of
vertices, edges and faces, and Eq. (4.6b) encodes the fact that there are
three edges per triangle, and each edge is incident with two triangles.

For 3-dimensional triangulated manifolds there are the following indepen-
dent Dehn-Sommerville relations:

k = −1 : 0 = N0 −N1 +N2 −N3 (4.7a)
k = 0 : 2N0 = 2N1 − 3N2 + 4N3 (4.7b)

k = 1, k = 2 : N2 = 2N3 (4.7c)

Note that Eqs. (4.7a) and (4.7c) imply6 Eq. (4.7b). Eq. (4.7a) intuitively
means that every 3-manifold has a vanishing Euler characteristic, and
Eq. (4.7c) encodes the fact that there are four triangles per tetrahedron,
and every triangle is incident with two tetrahedra.

For 4-dimensional triangulated manifolds there are the following indepen-
dent Dehn-Sommerville relations:

k = −1 : χ = N0 −N1 +N2 −N3 +N4 (4.8a)
k = 0, k = 1 : 2N1 = 3N2 − 4N3 + 5N4 (4.8b)
k = 2, k = 3 : 2N3 = 5N4 (4.8c)

6 By calculating 2·(4.7a) + (4.7c)
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4. Topological triangulations

The Eqs. (4.8b) for k = 0 and k = 1 are equivalent if one uses 2N3 = 5N4
from Eqs. (4.8c) for k = 2 or k = 3. The implications are similar to the two-
or three-dimensional cases.

As the next step we calculate the change in the simplex numbers induced
by a Pachner move in the oriented circuit notion. Remember that we denote
by Z− the set of points of simplex A, by Z+ the set of points of simplex B,
and by Z = Z+ ∪ Z− the union of these disjoint sets. We begin by giving
the number of different k-simplices that can be constructed from points in
Z, and the number of those that contain Z± as a subset:

Lemma 4.24. Let Z = (Z+, Z−) be an oriented circuit in d dimensions,
and let |Z±| be the number of points in Z±. Then the following assertions
hold:

1. The total number Nk of k-simplices that can be constructed using the
points of Z is:

Nk =
(
|Z|
k + 1

)

2. The total number N±k of k-simplices that can be constructed using all
the points of Z± (and possible other points of Z) is:

N±k =
(
|Z| − |Z±|
k + 1− |Z±|

)
=
(

|Z∓|
k + 1− |Z±|

)

Proof. 1. A k-simplex consists of k+1 points. The number of possibilities
for choosing a subset with k+1 elements out of a set with |Z| elements
is given by the stated binomial coefficient.

2. To obtain the possibilities for constructing the k-simplex containing
all the points of Z± one has to multiply the number of possibilities to
choose all elements out of |Z±| elements and to choose the remaining
k + 1− |Z±| elements out of the remaining |Z| − |Z±| points. This is
given by

N±k =
(
|Z±|
|Z±|

)(
|Z| − |Z±|
k + 1− |Z±|

)
=
(
|Z| − |Z±|
k + 1− |Z±|

)
=
(

|Z∓|
k + 1− |Z±|

)
.

Using this lemma we can calculate the change ∆Nk in the total number
Nk of k-simplices induced by a Pachner move.
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4.1. Topological triangulations and Pachner moves

Proposition 4.25 (simplex number change in flips). Let Z = (Z+, Z−) be
an oriented circuit in a d-dimensional triangulation T that induces a flip
T+ → T−. Then the change in the number of k-simplices ∆Nk(T+ → T−) :=
Nk(T−)−Nk(T+) can be calculated as following:

∆Nk =
(
|Z| − |Z+|
k + 1− |Z+|

)
−
(
|Z| − |Z−|
k + 1− |Z−|

)
=

=
(

|Z−|
k + 1− |Z+|

)
−
(

|Z+|
k + 1− |Z−|

) (4.9)

Proof. The simplices of T that are not subsets of Z are not affected by the
flip, so it is enough to consider the change in the number of simplices that
are subsets of Z. The number Nk(T±) of k-simplices in the T± triangulation
is the number of k-simplices that can be constructed using points out of Z
minus the number of simplices that contain all the points of Z±. Using the
proceeding lemma this number can be calculated as:

Nk(T±) =
(
|Z|
k + 1

)
−
(
|Z| − |Z±|
k + 1− |Z±|

)

So the change in the number of k-simplices is:

∆Nk =
(
|Z|
k + 1

)
−
(
|Z| − |Z−|
k + 1− |Z−|

)
−
(
|Z|
k + 1

)
+
(
|Z| − |Z+|
k + 1− |Z+|

)

=
(
|Z| − |Z+|
k + 1− |Z+|

)
−
(
|Z| − |Z−|
k + 1− |Z−|

)

In Tab. 4.1 the total change in the number of simplices is listed for the
small dimensions d = 2, d = 3 and d = 4, which are the dimensions that are
considered in this thesis.

After calculating the change ∆Nk = Nk(T−)−Nk(T+) of the total number
of simplices in the triangulation, we proceed calculating the local per-vertex
change ∆N (±)

k of k-simplices for points ∈ Z±, which can be useful in certain
applications.

Proposition 4.26 (change of number of incident simplices at points in flips).
Let Z = (Z+, Z−) be an oriented circuit in the d-dimensional triangulation T
that induces a flip T+ → T−. Then the change in the number of k-simplices
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dim step ∆N0 ∆N1 ∆N2 ∆N3 ∆N4

d = 2
1→ 3 1 3 2
2→ 2 0 0 0
3→ 1 -1 -3 -2

d = 3

1→ 4 1 4 6 3
2→ 3 0 1 2 1
3→ 2 0 -1 -2 -1
4→ 1 -1 -4 -6 -3

d = 4

1→ 5 1 5 10 10 4
2→ 4 0 1 4 5 2
3→ 3 0 0 0 0 0
4→ 2 0 -1 -4 -5 -2
5→ 1 -1 -5 -10 -10 -4

Table 4.1: Change ∆Nk in the numberNk of k-simplices induced by a (l→ d+2−l)
Pachner move in d = 2 (top), d = 3 (middle) and d = 4 (bottom) dimensions. Note
that ∆Nk = 0 if l = (d+ 2)/2, so the number of non-maximal simplices does not
change in a move that conserves the number of maximal simplices. Additionally
note that ∆Nk(l → d+ 2− l) = −∆Nk(d+ 2 − l → l), because these moves are
their inverses.

∆f (±)
k (T+ → T−) := f

(±)
k (T−) − f (±)

k (T+) that are incident with a point
P ∈ Z± can be calculated as following:

∆N (±)
k := N

(±)
k (T−)−N (±)

k (T+) =

= ±
(

|Z∓|
k − |Z±|+ 1

)
∓
k−|Z∓|∑
i=0

(
|Z±| − 1

i

)
·
(
|Z∓|
k − i

)

Proof. The number N (+)
k (T±) of k-simplices incident with a point p ∈ Z+

of the positive circuit in triangulation T± that consist only of circuit is

N
(+)
k (T+) =

|Z+|−2∑
i=0

(
|Z+| − 1

i

)
·
(

|Z−|
(k + 1)− 1− i

)

N
(+)
k (T−) =

|Z+|−1∑
i=k−|Z−|+1

(
|Z+| − 1

i

)
·
(

|Z−|
(k + 1)− 1− i

)
.

For calculating N (+)
k (T+), one has to calculate the number of possibilities to

construct a k-simplex with k + 1 points from Z, so that Z+ is not a subset

224



4.1. Topological triangulations and Pachner moves

of the chosen points. This can be done by choosing at most |Z+| − 2 points
out of |Z+ − 1| points (positive points without the point where the change
should be calculated), and the remaining points from Z−. The difference in
the bounds of the summations for N (+)

k (T+) and N (+)
k (T−) comes from the

fact that for T− the set Z− may not be a subset of the chosen points. Using
the same arguments one can calculate the number of simplices incident with
a negative point:

N
(−)
k (T+) =

|Z−|−1∑
i=k−|Z+|+1

(
|Z−| − 1

i

)
·
(

|Z+|
(k + 1)− 1− i

)

N
(−)
k (T−) =

|Z−|−2∑
i=0

(
|Z−| − 1

i

)
·
(

|Z+|
(k + 1)− 1− i

)

Empty sums (from i = 0 to i = −1) in both equations are considered as
zero, which agrees with the intuitive fact that inserted points or removed
points do not have any simplex before or after the flip.
We can now very easily calculate the difference in the numbers induced

by a flip:

∆N (+)
k := N

(+)
k (T−)−N (+)

k (T+) =

=
(
|Z+| − 1
|Z+| − 1

)
·
(

|Z−|
k − |Z+|+ 1

)
−
k−|Z−|∑
i=0

(
|Z+| − 1

i

)
·
(
|Z−|
k − i

)
=

=
(

|Z−|
k − |Z+|+ 1

)
−
k−|Z−∑
i=0

(
|Z+| − 1

i

)
·
(
|Z−|
k − i

)
∆N (−)

k := N
(−)
k (T−)−N (−)

k (T+) =

= −
(
|Z−| − 1
|Z−| − 1

)
·
(

|Z+|
k − |Z−|+ 1

)
+
k−|Z+|∑
i=0

(
|Z−| − 1

i

)
·
(
|Z+|
k − i

)
=

= −
(

|Z+|
k − |Z−|+ 1

)
+
k−|Z+|∑
i=0

(
|Z−| − 1

i

)
·
(
|Z+|
k − i

)

The calculations for the change of the total number of simplices in arbitrary
dimensions can be used to proof that the usual Euler characteristic in two
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dimensions and a generalization of the Euler characteristic in three and
more dimensions is invariant under all flips.

Definition 4.27 (Euler characteristic for simplicial complexes):
Let K be a simplicial complex and Nk its number of k-simplices. The
Euler-characteristic χ(K) of the simplicial complex is defined as:

χ(K) :=
d∑

k=0
(−1)kNk = N0 −N1 +N2 −+ . . .

Theorem 4.28 (Invariance of the Euler-characteristic w.r.t. Pachner moves).
The Euler-characteristic of a simplicial complex is invariant under perform-
ing Pachner moves

Proof. Consider an oriented circuit Z = Z+ ∪ Z− in d-dimensions, and
denote by ∆χ the change in the Euler-characteristic induced by the step.
Clearly

∆χ =
d∑

k=0
(−1)k∆Nk

=
d∑

k=0
(−1)k

[(
|Z| − |Z+|
k + 1− |Z+|

)
−
(
|Z| − |Z−|
k + 1− |Z−|

)]

=
d∑

k=0
(−1)k

[(
d+ 2− |Z+|
k + 1− |Z+|

)
−
(
d+ 2− |Z−|
k + 1− |Z−|

)]

Now switch the summation variable from k to k′ = k + 1− |Z±|:

=
d+1−|Z+|∑
k′=1−|Z+|

(−1)k′−1+|Z+|
(
d+ 2− |Z+|

k′

)
−

−
d+1−|Z−|∑
k′=1−|Z−|

(−1)k′−1+|Z−|
(
d+ 2− |Z−|

k′

)

The lower bound of the sums is always 0 or smaller, since |Z±| ≥ 1. Using
the identity

n∑
k=0

(−1)k
(
n

n

)
= 0⇒ 1 =

(
n

n

)
= (−1)n+1

n−1∑
k=0

(
n

k

)
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a

b

c

d

e

1 → 3

1 → 3

3 → 1

2 → 2

≇

∼=

∼= ≇

Figure 4.7: Possible flips of the smallest triangulation of a two-dimensional sphere
S2. The two (1→ 3)-flips a 7→ b and a 7→ c are treated as different flips, but lead
to topologically equivalent configurations b and c. The (2 → 2)-flip c 7→ e does
not lead to a different triangulation from the topological point of view. Starting
from configuration b, there are two (3→ 1)-steps leading to a configuration that is
equivalent to a, namely steps b 7→ a and b 7→ d.

for alternating sums of binomials one can simplify both sums in the upper
calculation:

∆χ = (−1)|Z+|−1(−1)d+2−|Z+| − (−1)|Z−|−1(−1)d+2−|Z−|

= (−1)d+1 − (−1)d+1 = 0

4.1.4 Selection probability of flips

For applying Markov chain Monte Carlo simulations to topological trian-
gulations, the ratio of the selection probability of a flip and of its inverse
flip has to be calculated. We will see in this section that this can lead to
difficulties, because the actual coordinates of the vertices are not important,
and so two triangulations have to be treated as equal if their simplicial
structure is equal. Therefor we introduce in this section first a simple and
later an exact way to calculate the selection probability, and compare both.
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For both the simple and the exact selection probability the algorithm of
choosing a certain step is important. Throughout this thesis we use the
following one:

1. Choose which type of simplex to flip by selecting k ∈ {0, . . . , d} equally
distributed.

2. Choose the k-simplex that will be considered equally distributed in
the set of all Nk k-simplices.

If there is no Pachner move associated with this k-simplex (see Sec. 4.1.2 for
a discussion which simplices are associated with a Pachner move), we treat
the step as rejected step. This means that we do sample from all simplices,
and not from the simplices associated with valid flips, because the latter
complicates the calculation of the selection probability.
Naively one could now calculate the selection probability of a certain

k-simplex inducing a (d−k+1→ k+1)-step if following the stated selection
algorithm:

Ssimple(d− k + 1→ k + 1) = 1
d+ 1 ·

1
Nk

Analogously the selection probability for the simplex inducing the inverse
(k + 1 → d − k + 1)-Pachner move selected by a (d − k)-simplex can be
calculated, denoting by Nd−k the number of (d − k)-simplices before the
original Pachner move and ∆Nd−k is the change of this number induced by
the original Pachner move.

Ssimple(k + 1→ d− k + 1) = 1
d+ 1 ·

1
Nd−k + ∆Nd−k

By using Equation (4.9) for ∆Nd−k, the ratio of the simplified selection
probability of a flip and its inverse flip can be calculated as

Ssimple(d− k + 1→ k + 1)
Ssimple(k + 1→ d− k + 1) = 1

Nk
·
(
Nd−k + 1−

(
d− k + 1
k + 1

))
(4.10)

As the name suggests, Ssimple(d − k + 1 → k + 1) is not the correct
selection probability for the Pachner move. The way it is defined calculates
the probability for selecting a simplex that induces a certain Pachner move,
but not the selection probability for the move itself. There is a difference
between these two selection probabilities because there can be several
different simplices that induce flips that lead to the same triangulation,
since isomorphic triangulations are considered as equal.
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Consider e.g. the situation in Fig. 4.7 where we restrict to triangulations
of the two-dimensional sphere S2 with four or five vertices. One can check
easily that for both vertex numbers there is only one triangulation up to
permutation of the vertices, two possible embeddings into R3 are displayed
in Figs. 4.7a and 4.7b. If using a Markov chain Monte Carlo algorithm
for counting triangulations using the selection probability ratio (4.10) one
gets that there are twice as much triangulations with five vertices than
triangulations with four vertices. This can be understood by considering
all possible flips of the two triangulations. For the triangulation with four
vertices (displayed in Fig. 4.7a) there are the following flips:

• For each of the four 2-simplices a (1→ 3)-flip is proposed and can be
executed. Each step leads to the five-vertex triangulation.

• For each of the six 1-simplices a (2→ 2)-flip is proposed, but all of
these flips are not executable, because they would introduce a new
simplex that is already contained in the triangulation

• For each of the four 0-simplices (vertices) a (3→ 1)-flip is proposed,
but all of these flips are not executable, because they would introduce
a new triangle that is already contained in the triangulation.

For the triangulation with five vertices (displayed in Figure Fig. 4.7b) there
are the following flips:

• For each of the five 2-simplices a (1→ 3)-flip is proposed, but we do
not considered them here, because they lead to triangulations with
six vertices being outside of our bounds on the number of vertices.

• For three of the nine 1-simplices there is an executable (2 → 2)-
flip which leads to a triangulation that is equivalent to the original
triangulation before the step.

• For two of the five 0-simplices there is an executable (3 → 1)-flip
which leads to the triangulation with four vertices, the other three
0-simplices do not have the right number of maximal simplices.

In order to fulfill detailed balance, the following equations has to be fulfilled
in the case of Wang-Landau sampling

Sexact(T1 → T2)
Sexact(T2 → T1) ·

Aexact(T1 → T2)
Aexact(T2 → T1) = g(E(T1))

g(E(T2)) ,
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4. Topological triangulations

where Sexact is the exact selection probability, A is the acceptance probability,
T1 and T2 are the unique triangulations with four and five vertices, and
E is the energy function used to map microstates to macrostates. Here
we assume that E yields different results for the two triangulations, so
g(E(T1,2)) = 1. By inserting the ratio of the simple selection probabilities
on both sides, we get

Ssimple(T1 → T2)
Ssimple(T2 → T1) ·

Aexact(T1 → T2)
Aexact(T2 → T1) =

= g(E(T1))
g(E(T2)) ·

Ssimple(T1 → T2)
Ssimple(T2 → T1) ·

[
Sexact(T1 → T2)
Sexact(T2 → T1)

]−1
.

The different selection probabilities are

Ssimple(T1 → T2) = 1
3 ·

1
4 Sexact(T1 → T2) = 1

3 · 1

Ssimple(T2 → T1) = 1
3 ·

1
5 Sexact(T2 → T1) = 1

3 ·
2
5 ,

so that we get the following modified detailed balance equation

Ssimple(T1 → T2)
Ssimple(T2 → T1) ·

Aexact(T1 → T2)
Aexact(T2 → T1) = g(E(T1))

2 · g(E(T2)) .

This induces that by using the simple selection probability we wrongly
conclude that there are twice as many triangulations with five vertices as
there are in reality.

As next step we give the general formula for calculating the exact selection
probability:

Sexact(T1
d−k+1→k+1−−−−−−−−→ T2) = 1

d+ 1 ·
|{σk ∈ T1 | σk induces T1 → T2}|

Nk
(4.11)

Calculating this selection probability has two disadvantages compared to
(4.10): One the one hand, this exact selection probability depends not only
on the type of the flip, but also on the actual flip. On the other hand and
even worse, for calculating this selection probability for every k-simplex of
the triangulation it has to be checked whether the induced flip leads to a
triangulation isomorph to T2, which scales with the squared system size (for
every simplex the whole triangulation has to be compared).
The difference between exact and simple selection probability does not

only occur in small triangulations, and the error resulting if using simple
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4.1. Topological triangulations and Pachner moves

selection probability is not bounded. Consider for example the abstract
simplicial complex

K = {{0}, {1}, ∅} ? {{2, 3}, {3, 4}, . . . , {n+ 1, 2}, {2}, {3}, . . . , {n+ 1}, ∅}

which is a ring consisting of n vertices, where every vertex of the ring is
additionally connected with two external vertices, so there are in total n+ 2
vertices and 3n edges. K has a geometric realization that is homeomorphic
to S2, so it can be used for a triangulation T of S2. The simple probability
for selecting a certain T 2→2−→ T ′ Pachner move is

Ssimple(T 2→2−→ T ′) = 1
3 ·

1
3n ⇒

Ssimple(T 2→2−→ T ′)
Ssimple(T ′ 2→2−→ T )

= 1,

independent of the actual move. But in fact there are only two triangulations
that can be reached from T doing a (2→ 2)-Pachner move: Triangulation T1
originates from a flip of one of the 2n edges {0, i} or {1, i} (with 2 ≤ i ≤ n+1),
and triangulation T2 originates from a flip of one of the n edges {i, i+ 1}
(with 2 ≤ i ≤ n+1 and 2 ≡ n+2). The respective inverse flips are generated
only by one edge, so the ratios of the selection probabilities are

Sexact(T 2→2−→ T1) = 1
3 ·

2n
3n Sexact(T1

2→2−→ T ) = 1
3 ·

1
3n

⇒ Sexact(T 2→2−→ T1)
Sexact(T1

2→2−→ T )
= 2n

Sexact(T 2→2−→ T2) = 1
3 ·

n

3n Sexact(T2
2→2−→ T ) = 1

3 ·
1

3n

⇒ Sexact(T 2→2−→ T2)
Sexact(T2

2→2−→ T )
= n

so the errors in the ratios obtained by using simple selection probability are
2n for T → T1 and n for T → T2.
There are two strategies for handling the difficulties introduced by cal-

culating the exact selection probability. The first one is to examine the
phase space and find regions where triangulations with symmetries (which
produce deviations between simple and exact selection probability) are rare
compared to unsymmetrical ones. We will see later that in all considered
cases the ratio of symmetric triangulations with respect to all triangulations
approaches 0 if one increases the number of maximal simplices, so the error
if using simple selecting probability vanishes for large triangulations. The
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calculation of the density of states can then be split into two parts, one
part is limited only to small triangulations and uses the exact selection
probability, the other ranges over all triangulations and uses the simple
selection probability. These two density of states can than be glued together
using a suitable normalization.
The second strategy to handle the problems occurring if using the exact

selection probability is to accelerate its calculation by efficiently testing
triangulations for isomorphisms. Naively, for two triangulation T1,2 that are
based on simplicial complexes K1,2 w.l.o.g. on the set {1, 2, . . . , n}, one has
to check for every of the n! permutations π ∈ Sn whether it is a simplicial
map. Because one can find invariants of vertices which have to be conserved
by the permutation, for example the number of maximal simplices incident
with each vertex, most permutations can be excluded before, So on the
one hand one can exclude an isomorphism between triangulations if the
set of vertex invariants does not match, one the other hand we can reduce
the number of permutations that needed to be checked. Consider, e.g., the
simplicial complexes

K1 = {{0, 1, 3}, {0, 1, 4}, {0, 2, 4}, {0, 2, 3}, {1, 2, 3}, {1, 2, 4}} ∪ subsimpl.
K2 = {{0, 2, 3}, {0, 2, 4}, {0, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}} ∪ subsimpl.

For K1, the vertices 3 and 4 are incident with three maximal simplices,
whereas the vertices 0, 1 and 2 are incident with 4 maximal simplices. The
vertex invariants match, because for K2, the vertices 0 and 1 are incident
with three maximal simplices, whereas the vertices 2, 3 and 4 are incident
with 4 maximal simplices. But one has to check not all 5! = 120 permutations
of S5, but only the 2! · 3! = 12 permutations π with π({3, 4}) = {0, 1} and
π({0, 1, 2}) = {2, 3, 4}. In this thesis we use even more complicated vertex
invariants, namely the number of incident maximal simplices together with
the set of numbers of incident maximal simplices of the nearest neighbors of
the vertices, so the size of the permutations that need to be checked reduces
drastically.
In fact, throughout this thesis we use both strategies at the same time,

since they can be used independently.
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4.2. Counting triangulations of two-dimensional manifolds

4.2 Counting triangulations of two-dimensional
manifolds

As already mentioned in the introduction of this chapter, triangulations of
manifolds provide a standard method of discretizing them and a possibility
to quantize spacetime. They are used in the simplicial quantum gravity
models of dynamical triangulations [13], the causal version thereof [38], as
well as in spin-foams [352]. For the simplicial quantum geometry models
it is crucial to know the scaling of the number of triangulations in terms
of the system size, because on the one hand the statistical models are
only well-defined if there exists an exponential scaling, and on the other
hand the scaling constant determines the value of the coupling constant to
obtain a phase transition necessary for results independent of the introduced
discretization scale [13,38].

For rooted triangulations of the 2-sphere it is well-known that the number
scales ∝

√
256/27m, with m being the number of triangles [398]. A trian-

gulation is rooted by marking some vertex as well as some adjacent edge
and face as special in order to break symmetry and to simplify the counting
procedure. For standard triangulations the same result was obtained later by
proving that the ratio of triangulations possessing any non-trivial symmetry
vanishes for large triangulations [399]. For other surfaces with different
genus or orientability, like the torus or the projective plane, no asymptotic
numbers are known, neither for the rooted nor for the default, unrooted
case.
For simplicial quantum gravity, triangulations of arbitrary surfaces are

important, because the models are not restricted to a certain topology
of the underlying manifold, but they are also an object of study in other
branches of physics: Since every graph is embeddable into a surface with
arbitrary high genus, and triangulations are the maximal embeddable graphs
for the respective surfaces (every insertion of an edge would violate the
embeddability into the respective surface), they are an important tool in
graph and network theory [47,52,259]. Furthermore, critical properties of
statistical systems defined on quantum surfaces or triangulated manifolds
are sometimes easier to solve than on Euclidean lattices, but can be related
to these using the KPZ-formula [146,184,254].
Using lexicographic enumeration it is possible to exactly count trian-

gulations of orientable and non-orientable surfaces for small genus g ≤ 6
and small number of vertices v ≤ 23 [103, 379, 380]. For bigger genera or
larger triangulations this method does not give results in any reasonable
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Figure 4.8: Examples for triangulations of surfaces with low genus. (Left, red)
Triangulation of the 2-sphere with m = 50 maximal simplices. (Right, blue)
Triangulation of the torus (orientable surface with genus g = 1 with m = 200
maximal simplices.

computation time.
In contrast to triangulations, the asymptotic behavior of (triangular)

maps on surfaces is far better understood. A triangular map is a graph
drawn on a surface so that each face is a triangle, the main difference to
triangulations is that triangular maps allow for digons, multiple edges or
loops (depending on the exact definition). One can show that the asymptotic
number T (k, h) (orientable) and P (k, h) (non-orientable) of certain classes
of maps on arbitrary surfaces has the form [182][

T (k, h)
P (k, h)

]
= α

[
th
ph

]
(βk)5(h−1)/2 · γk (4.12)

where k is the number of edges and h = g (orientable) respectively h = g/2
(non-orientable) is the type of the surface. The constants th and ph do
only depend on h and not on the class of maps that are counted, they
were calculated in [76] using a recursion relation obtained in [194]. The
numbers α, β and γ depend on the class of maps, one finds e.g. γ = 12 for
all maps [75] or γ = 22/3√3 for triangular maps [183].
In this section we numerically approximate the number of surfaces tri-

angulation in terms of the genus g and the number of triangles m using
the Wang-Landau algorithm [406,407] for several orders of magnitude in g
and m. A similar version of this method was used in Secs. 3.2 and 3.2 to
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4.2. Counting triangulations of two-dimensional manifolds

approximate the number of lattice triangulations. We are able to extract
the asymptotics for the number of triangulations of arbitrary surfaces for
the first time in literature and find an exponential growth that coincides
with the one found for spheres in [399]. Additionally, we determine the
sub-exponential corrections similar to Eq. (4.12), which are a valuable hint
for mathematicians proving the exact asymptotics for the number of surface
triangulations. The presented calculations are not limited to estimating the
total number of surface triangulations, but could also be used for estimating
the asymptotics of the cardinality for certain subclasses of these triangu-
lations. A possible application can be estimating the asymptotic number
of irreducible triangulations, which are triangulations without contractible
edges (see Ref. [63] for detailed definition, and Ref. [379] for enumerations
of small irreducible triangulations). Furthermore, our method can also be
applied to k-equivelar or k-covered triangulations, where in the former every
vertex has degree k and in the latter there is at least one vertex with degree
k (see Refs. [287, 310] for detailed discussion and numbers for few vertices),
and to much more different subclasses of triangulations.

4.2.1 Setup and methods

The topology of surfaces is characterized only by their Euler characteristic
(integrated curvature) and whether they are orientable [101], so we have to
construct surface triangulations with given genus and orientability and given
number of triangles as initial configurations for the Monte Carlo algorithm.
A triangulation of the sphere is given by the boundary of a 3-simplex. To
create triangulations of orientable and non-orientable surfaces of arbitrary
genus one needs triangulations of torus T (orientable surface with g = 1), of
the projective plane P (non-orientable surface with g = 1) and the connected
sum #. A (non-)orientable surface with genus g can then be constructed
by taking the g-fold connected sum T#T# . . .#T (P#P# . . .#P ) of the
torus (projective plane). The connected sum of two triangulated surfaces
can be constructed easily be removing a triangle from each triangulation
and gluing the boundary together.
To create then a triangulation with the correct number of maximal

simplices, we then use the three Pachner moves in two dimensions (insertion,
removal and diagonal edge flip, compare Sec. 4.1.2. Note that there is a
lower bound on the number of vertices or triangles necessary to triangulate a
surface with given genus [215,234,346], so it is not possible to create arbitrary
small triangulations for a given g. If one has obtained a triangulation
with the desired topology and number of triangles, for the Wang-Landau

235



4. Topological triangulations

algorithm (see Sec. 2.2.2) one can restrict to the diagonal edge flips, because
are ergodic for the subset of triangulations with same number or vertices v,
if choosing v high enough [247,309].

There are two different questions that should be addressed in this section,
each requiring different methods. The first one is to estimate numerically
the number of small triangulations, i.e., triangulations with few vertices or
triangles. Therefor one needs to know or to calculate the normalization
factor to scale the DOS that was calculated by the Wang-Landau algorithm.
Without any further analysis it is only possible to give the exact number for
sphere (orientable surface with genus g = 0), there is only the triangulation
with four vertices having four triangles that is the boundary of the 3-simplex,
thus for other genera we extend the energy and introduce a reference bin as
described in Sec. 2.3.3.

The second question address in this section is to estimate the asymptotics
of large triangulations, i.e., triangulations with lots of vertices or triangles.
Here, instead of using the number N(m, g) of triangulations, we instead
calculate the entropy density κc(m, g) defined by

κc(m, g) := m−1 logN(m, g). (4.13)

By using the entropy density we can use directly the output of the WL-
algorithm, which is the logarithmic DOS, and cancel the normalization
factor. It is also a common quantity discussed in literature [112,238,253]
and corresponds to the value of the DT and CDT coupling constant for
obtaining scale invariance [13, 38]. In Fig. 4.9 a comparison between our
calculations and results obtained by lexicographic enumeration for small
triangulations [380] shows excellent agreement and justifies our method.
Due to the diagonal-edge flips being ergodic for large enough surface

triangulations it is enough to calculate the density of states in an interval
[m− 2,m+ 2] to obtain the entropy density κc by

κc(m) = 1
8 · log g(m+ 2)

g(m− 2) , (4.14)

using the assumption that κc(m ± 2) ≈ κc(m), which is valid for large
m. Choosing this small interval of calculations, the calculation speeds up
drastically compared to calculating the whole DOS using the Wang-Landau
algorithm, because calculation time scales with the number of bins, as
derived in Sec. 2.3.2.

As already described in Sec. 4.1.4, for fulfilling the detailed balance condi-
tion in the Wang-Landau algorithm and to correctly calculate the transition
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Figure 4.9: Comparison of the exact entropy density from [380] and our numerical
calculations. (a) Entropy density κc(m, g) in terms of the number of triangles m for
orientable surfaces (g = 0 , g = 1 , g = 2 ) and non-orientable surfaces (g = 1 ,
g = 2 ). Our numerical data is plotted with filled symbols, the exact values are
plotted with empty symbols and are shifted slightly to the right to resolve these
points. (b) Relative error κc(m, g)/κ(exact)

c (m, g)−1 of numerical data with respect
to the exact values.

probabilities, one has to calculate for each flip the ratio of selection prob-
abilities of the flip and the inverse flip. Assuming that the triangulation
has no special symmetries, the selection probabilities can be calculated in
terms of the current simplex numbers and their change induced by the
flip using Eq. (4.10). However, there are symmetric triangulations which
make it necessary to check whether there are other flips leading to an
isomorphic triangulation (these flips are then equivalent), the same for the
inverse flip, in order to calculate the exact ratio of selection probabilities
using Eq. (4.11). These isomorphism checks increase the computation time
needed for one step drastically. But fortunately, as depicted in Fig. 4.10, the
deviations of the exact (with isomorphisms) calculated and the simplified
calculations are negligible for triangulations with m > 30. These results are
comparable with these of [343] on the level of maps, where it was shown
that almost all maps do not posses intrinsic symmetries, which implies in
our notion that simplified and exact selection probability match. Note that
for approximately counting the number of small triangulations we in fact
have to use the slow but exact selection probability Eq. (4.11) in order to
get correct results.

Throughout our Wang-Landau simulations we start with the modification
factor m0 = exp(1) and decrease it by mi+1 = m0.9

i till the final modification
factormf = exp(10−8). This choose of the modification factor is more careful
than the original choice proposed in Refs. [406, 407], but it ensures a small
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statistical error and better simulational results.
In Fig. 4.11 the course of a Wang-Landau simulation in terms of the

modification factor is displayed for estimating the asymptotic number of
triangulations of the 2-sphere. We will see in Sec. 4.3.2 that using the
standard flatness criterion flatH(m) ≤ 0.8 as requirement for decreasing
the modification factor can lead to wrong results, so we will propose an
alternative flatness criterion (4.30) that starts tightly and will be relaxed
towards the end of the simulation. We checked also for the counting of
triangulations of 2-manifolds whether there is a similar problem and did
calculations with the alternative flatness criterion (4.30) also displayed
in Fig. 4.11, but no similar problems were found. In fact the resulting
error using the alternative flatness criterion is a bit smaller than using the
standard, constant flatness criterion, but the necessary simulation time
grows. Since we are not limited by the simulation time but merely by the
memory usable, we used the alternative flatness criterion in our calculations
to be absolutely sure to eliminate this possible error.

4.2.2 Approximative counting of small surface
triangulations

In this section the number of triangulations of surfaces with arbitrary
orientability and genus is numerically estimated for small number v of
vertices, which can bijectively mapped to the numberm of maximal simplices
using the Euler characteristic or the genus of the surface. (In fact we use here
the number v of vertices to easily compare with existing results). Calculating
the exact number is possible using lexicographic enumeration as presented
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Figure 4.11: Alternative flatness criterion (4.30) for WL-simulations on
triangulated surfaces.
Characteristic plot of Wang Landau simulations for two-dimensional topological
triangulations of the sphere for 102 (red), 103 (blue), 104 (green) and 105 (brown)
triangles. The left column (a, c, e) shows the standard Wang-Landau simulation
with the decrease fi+1 = f0.9

i of the modification factor and the flatness criterion
flat(H) ≥ 0.8. The right column (b, d, f) shows a modified Wang-Landau simulation
with the same decrease of the modification factor, but an alternative flatness
criterion (4.30) which is very rigorous for large modification factors and more
relaxed for small ones. (a,b) Average value and distribution of the entropy density
κc in terms of the decreasing modification factor. (c,d) Standard deviation of the
distribution of κc (color, left axis) and mean number of sweeps (black, right axis)
in terms of the modification factor. (e,f) Necessary number of sweeps to calculate
κc with an error of less than 10−3.
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in [379], but this method is limited to a rather small triangulations and
genera. Using our approximative counting scheme allows to increase the
accessible system size by several order of magnitudes, but unfortunately
it is not possible to access higher genera than using the lexicographic
enumeration.

As explained already in Sec. 2.3.3, multicanonical algorithms as the Wang-
Landau algorithm estimate the density of states (DOS) only up to a common
normalization factor. This normalization factor can be determined by a
known number of states in a certain macrostate. For counting triangulations
of surfaces this is the case for the triangulations of the sphere (orientable
surface of genus g = 0), because there is only one triangulation with m = 4
triangles, which is the boundary of a 3-simplex. For surfaces with different
genus or orientability a similar result is not available a prior, only the
lexicographic enumeration in [379] can provide the number of triangulations
with minimal number of triangles for the different genera. In order to check
the approximate counting algorithm proposed in Sec. 2.3.3, we did not use
these numbers of minimal triangulations in our calculations, but used an
extended an extended energy to be able to compare these numbers with the
exact calculations.

The relative error N(v)/Nexact(v) − 1 of the number of triangulations
N(v) calculated using our approximative counting scheme with respect to
the exact number Nexact(v) in terms of the number v of vertices is displayed
in Fig. 4.12. One can see in almost all cases a deviation from the exact
result less than 0.01.

In Fig. 4.13 the parameters of triangulations accessible with our algorithm
are displayed and compared to the set of parameters where results from
lexicographic enumeration are known. We can outperform the lexicographic
enumeration especially with respect to the number of vertices of the triangu-
lation. In principle we can obtain the number of triangulations for surfaces
with up to at least up to m = 105 without any problems on a standard
desktop computer (by merging results with exact selection probability ratio
(4.11) for small triangulations with results for simple selection probability
(4.10) for larger triangulations, as used for calculating the asymptotics in
the next Sec. 4.2.3). For larger number of triangles we can access the number
of triangulations with higher computational effort. In fact we are at present
not limited by the computing time, but by the size of the memory needed
for storing the single triangulation.

The lower boundary of accessible vertex numbers v is given by the Hea-
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Figure 4.13: Number of sur-
face triangulations with respect
to the number of vertices and
the genus of the surface for ori-
entable (left) and non-orientable
(right) surfaces displayed as a log-
arithmic colorplot. The red lines
corresponds to Heawoods bound
(4.15), which specifies the mini-
mal number of vertices necessary
to triangulate a surface of given
genus. The black lines is the up-
per bound of the region where the
number of triangulations is acces-
sible using lexicographic enumer-
ation [379].
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( ), g = 10 ( ), g = 30 ( ), g = 100 ( ), g = 300 ( ) and g = 1000 ( ). The lines are
fits of (4.17) with respect to a(g) and b(g).

wood bound [215]

v ≥ 1
2
(
7 +

√
49− 24χ

)
, (4.15)

where χ is the Euler characteristic. This bound is proven to be tight for
orientable surfaces with genus g 6= 2 [346], and for non-orientable surfaces
with genus g 6= 2, 3 [234].

Unfortunately it is not possible to approximately count triangulations
with higher genera than it is possible with lexicographic enumeration. This
is because of the Wang-Landau algorithm getting stuck already in the first
modification factor, or a few modification factors later. We conjecture that
this is because the number of triangulations with minimal vertices grows
fast, which make it difficult to sample the minimal energy bin correctly. If
using only a few reference triangulations, the entropy difference between the
reference and the non-reference triangulations gets large, and it is unlikely to
find reference triangulations at all in the simulation. If using more reference
triangulation, in each step going to the macrostate with minimal vertices the
resulting triangulation has to be compared with a huge number of reference
triangulations, which increases the necessary computation time for one step.
Even worse, the system size of the minimal triangulations grows as √g
with the genus, and the time for calculating the exact ratio of the selection
probabilities (4.11) grows with the factorial of the system size.
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c for triangulations of
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4.2.3 Asymptotics of the entropy density for m→∞
As explained previously, for calculating the entropy density (4.14) κc(m, g)
it is not necessary to calculate the common normalization factor of the
density of states. So the energy has not to be extended with a reference
bin, and we can limit the interval of accessible energies for the algorithm to
shorten the computation time.
We calculated the entropy density (4.14) κc(m, g) for orientable and

non-orientable surface triangulations up to genus gmax = 1000 and up to
mmax = 107 triangles using 400 independent Wang-Landau simulations each.
In Figs. 4.14 and 4.15 κc(m, g) is displayed for fixed genus and for fixed
number of triangles in terms of the other variable.
Inspired by the asymptotic enumeration results for triangulations of the

2-sphere and for maps on arbitrary surfaces we assume that the number of
triangulations behaves as

N(m, g) = a(g) · b(g)m ·mκ∞c (g), (4.16)

which implies the following relation for the entropy density (4.14)

κc(m, g) = a(g) · 1
m

+ b(g) · log(m)
m

+ κ∞c (g). (4.17)

Considering Fig. 4.14 we find that the constant term κ∞c (g) in (4.17) does
not depend on the genus g and on whether the surfaces is orientable,
furthermore we find excellent agreement with the theoretical value of
log(

√
256/27) ≈ 1.1247 obtained for triangulations of the sphere [399].
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points are darker for smaller error, only points with κc(m)/κ∞c < 1.05 are plotted.

By inspecting κc(m, g = 1) one finds that for g = 1 the entropy density is
approximately constant in terms of m, which implies the conjecture that
b(g) ∝ b1 · (g− 1) without any constant term, in agreement to [399] and [76],
where b1 = 7/2 for triangulations of the 2-sphere and b1 = 5/2 for triangular
maps on surfaces.
To obtain the constants a(g) and b(g) we rescale the entropy density

(4.17) so that

m · [κc(m, g)− κ∞c (g)] = a(g) + b(g) logm.

For every genus g both constants can then be determined by a linear fit of
the rescaled entropy density in terms of logm. In Fig. 4.16a the rescaled
entropy density is plotted for orientable surfaces of different genera, one can
see an excellent agreement with the proposed linear dependency in terms of
logm for sufficient triangles. Using the fitted constants all obtained data
points can be brought to a collapse as depicted in Fig. 4.16b.
Having fitted a(g) and b(g) for all considered genera of orientable and

non-orientable surfaces, one can access numerically the scaling relation
of both for triangulations as depicted in Fig. 4.17. The leading order
b(g) = b1 ·(g−1) does differ from the results for triangular maps qualitatively,
we find b1 = −0.197 ± 0.006 for orientable and b1 = −0.102 ± 0.004 for
non-orientable triangulations, while for triangular maps the theoretical
value b1 = 5/2 was found [76]. We conjecture that b1 = −2/5 for orientable
and b1 = −1/5 for non-orientable surface triangulations, since these small
integer fractions are in the 1σ bounds of the numerically obtained values.
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Figure 4.17: Values of the asymptotic constants a and b in terms of the genus g
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are linear fits.

The next-to-leading order a(g) = (5.14± 0.09) · g (orientable) respectively
a(g) = (2.60±0.03) · g (non-orientable) has a linear dependency on g for the
considered range of genera (implying a ∝ exp(g) in (4.16)), no logarithmic
correction as proposed in [76] for triangular maps is present. For both a(g)
and b(g) one can deduce that the results for orientable and non-orientable
triangulations coincide, if one does not consider the genus, but the type of
the surface (which is half the genus for non-orientable surfaces).

4.2.4 Conclusion and outlook

In this section the number of triangulations of (orientable and non-orientable)
surface triangulations with arbitrary genus was calculated using the Wang-
Landau Markov chain Monte Carlo algorithm. Based on our results, we
conjecture the following relation for the asymptotic number of surface
triangulations

N(m,h)→ (170.4± 15.1)hm−2(h−1)/5
(256

27

)m/2
(4.18)

in terms of the type h of the surface, which can be concluded from the
entropy density

κc(m,h)→ (5.14± 0.09) · g 1
m
− 2(h− 1

5
log(m)
m

+ 1
2 log

(256
27

)
(4.19)

These quantitative results for the leading and next-to-leading order terms
can be a valuable hint for mathematicians proving the exact asymptotics of
the number of surface triangulations. Additionally, the numerical method
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presented in this paper can be directly applied to estimate the number and
its asymptotics of special types of triangulations, e.g. irreducible, k-equivelar
or k-covered triangulations.

Our methods and results can also be used for solving simplicial quantum
gravity models like (causal) dynamical triangulations on surfaces with
arbitrary genus, where the leading order term gives the value of the coupling
constant necessary for obtaining scale-independent limits. Furthermore, the
next-to-leading order terms can provide insights into their finite size scaling,
which is important since these models are solved mainly using Monte Carlo
simulations.
As a possible application we give a short outlook on the Ising model

defined on such surface triangulations, as considered in Ref. [411]. As for
the embedded triangulations, we assign an Ising spin to each of the vertices,
and define the neighboring vertices as those that are connected with the
original vertex by an edge. One of the quantities of interest is the critical
inverse temperature βc, which is displayed for orientable triangulation in
Fig. 4.18. The critical inverse temperature βc shows unexpectedly a similar
behavior as the entropy density displayed in Fig. 4.147.
We already calculated in Eq. (2.34) that using a mean-field solution the

critical inverse temperature βc on an arbitrary network is given by the
inverse average number q of neighbors. For topological triangulations, this

7 Note that in Fig. 4.14 the entropy density is plotted in terms of the number m of
triangles, and not in terms of the number v of vertices as in Fig. 4.18. At fixed genus g
these quantities can be converted easily.
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4.2. Counting triangulations of two-dimensional manifolds

quantity is given by

βcJ = 1
q

= v

2e = v

12(g − 1) + 6v
v→∞≈ 1

6 −
12(g − 1)

v
, (4.20)

where e is the number of edges, because every edge is common to two
vertices. Since the mean-field solution breaks down near the critical point
due to the correlations becoming important, as expected the numerically
calculated data in Fig. 4.18 does not match Eq. (4.20). But it can be used
as a hint for the actual functional dependency of the critical temperature
on the genus g and on the number v of vertices. Using a least-square fit
resulted in

βcJ ≈ 0.20(2)− 0.190(8) · (g − 1)v−0.25(8) g = 0 (4.21a)
βcJ ≈ 0.225(5)− 0.065(9) · (g − 1)v−0.56(6) g = 10 (4.21b)

For g = 1 (torus), the function is constant up to the first order in v−1 as
predicted, for g = 100 there are too few data points and too large errors to
get a suitable fit.

247



4. Topological triangulations

4.3 Ergodicity and extensivity of
three-dimensional sphere triangulations

As already stated in the introduction of this chapter, it is crucial for simplicial
quantum gravity models like dynamical triangulations (DT) [29] or causal
dynamical triangulations (CDT) [38] that the number of triangulations grows
at most exponentially with the number of maximal simplices (triangles in
2d, tetrahedra in 3d and 4-simplices in 4d). Faster growth implies that the
partition function of these models does not posses a valid thermodynamic
limit, so that the model is not well-defined. In this section we focus on
the number of triangulations of the 3-sphere, which is important for 3-
dimensional DT and (3 + 1)-dimensional CDT. Also for other models of
quantum gravity like spin-foams triangulations are an important tool for
constructing discrete structures [328].
Deciding whether the number of triangulations of the 3-sphere grows

exponentially or faster has also been an important and open problem in
mathematics for long time [197]. For 2-spheres, already in 1980 Tutte showed
that the number N of triangulations scales as N ∝ (256/27)m/2 with the
number m of triangles [399], and we considered the case of arbitrary genus
in the previous Sec. 4.2. For 3-spheres, neither asymptotics nor explicit
bounds are known. It can be shown that there are only exponentially
many of a special group, so called locally constructable (LC), of 3-sphere
triangulations [147], but there are triangulations that are not LC [80].
Nevertheless, one can give the exponential bound 2d2·n for the number of
LC triangulations of any d-manifold [80]. There are also exponential bounds
for further subclasses of 3-sphere triangulations (e.g., locally constructable
triangulations [80, 147], geometric triangulations [2], triangulations with
a Morse function with a fixed number of critical cells [79], or melonic
triangulations, which are the dominant contribution to the 1/N expansion
in group field theory [200]).
Recent results show that N scales like cv5/4 in terms of the number v of

vertices for 3-spheres [329] and for d-spheres with d ≥ 4 [239], very recently
this asymptotics were improved to be cv(d+1)/2 for odd dimensions [312].
Furthermore, there are some consideration about triangulations of the
homology sphere [347] and reformulations of the problem in terms of so-
called nuclei triangulations [120].
Beside the analytical treatments there are also numerical calculations

searching for an exponential bound for 3- and 4-spheres [28, 44, 45, 100,
104,111,112], all using standard Metropolis Monte Carlo simulations [291]
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4.3. Ergodicity and extensivity of three-dimensional sphere triangulations

calculating the local growth rate of the number of triangulations in the
vicinity of triangulations with m0 maximal simplices. Due to technical
details of the Metropolis algorithm the action has to be modified by lowering
(increasing) the external chemical potential by a constant for being above
(below) the desired value of m0 as in [44, 45, 104], or by introducing an
artificial term ∝ |m(t)−m0|c as in [28,111,112]. These calculations claim
to find that the number of simplicial 3-spheres grows exponentially with
the number of simplices [44, 112], but there are diverging results for 4-
spheres (Ref. [111] argues for a faster than exponential growth, Ref. [28]
for exponential growth). Due to a recent (unpublished) statement by Karim
Adiprasito there are only exponentially many triangulations in terms of the
number of executed bistellar Pachner moves [286], so simulations using a
finite number of Pachner moves can in principle make no statement about
the existence of exponential bounds.

Another important question in simplicial quantum gravity addressed in
this section is the ergodicity of the Pachner moves [322] that are used as
elementary steps in the Markov chain Monte Carlo simulations (compare
Sec. 4.1.2). Pachner moves are ergodic for partially linear (PL) mani-
folds [322], and for d = 3 every topological manifold has a unique PL
structure [303], so Pachner moves are also ergodic for topological mani-
folds in this dimensions. (Not that this is in general not true for higher
dimensional manifolds, where not every topological manifold is a PL man-
ifold, so the Pachner moves may be not ergodic). This ergodicity results
is only valid if one allows for triangulations with arbitrary many vertices
or maximal simplices, but in all numerical simulations one must apply a
cut on these numbers due to limited computation time or limited memory.
For triangulations of the 4-sphere it was shown analytically that they are
not computationally ergodic [308], i.e. that there is no recursive function
that bounds the number of Pachner moves necessary for transforming one
triangulation into another one. Numerical experiments showed that there is
no hint for computational non-ergodicity for the 4-sphere [29], but these
experiments relied on constructing triangulations from the smallest one
(boundary of a 5-simplex) in terms of Pachner moves, so it is possible that
this result was obtained because the simulations were near enough to this
simplest triangulation.

Ergodicity of Pachner moves in S3 has also been discussed in the math-
ematics before, but for a slightly more general version of triangulations,
where one allows for a tetrahedron to be its own neighbor. It was shown
that the number of steps for reaching the smallest possible triangulation of
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S3 is exponentially bounded [293]. Numerical experiments suggest that it is
enough to increase the number of tetrahedra by two using Pachner moves
to reach this ground state [106]. In this section we want to take another
perspective and ask the question, whether two triangulations with m tetra-
hedra are connected by Pachner moves that include only triangulations with
their number of tetrahedra between m−∆m and m+ ∆m, so we bound
the accessible range of tetrahedra numbers symmetrically from both sides.
We use the Wang Landau algorithm [406,407] to calculate directly the

number of triangulations of the 3-sphere in terms of the number v of vertices
and m of tetrahedra. These calculations also give the critical coupling
constant of 3d DT that has to be used for getting a reasonable continuum
limit (see Sec. 5.2.1). By introducing cutoffs in m one can predict how
big the interval of allowed tetrahedra must be to ensure ergodicity of the
calculations. For our purposes this algorithm has the main advantage
that one can calculate the density of states directly, which is basically the
normalized number of states. As energy function grouping the microstates
into macrostates for calculating the density of states we use either the
v or m. Compared with usual methods in literature our method has the
advantage that one does not need to introduce a certain physically motivated
action, or even to modify this action unphysically to cancel the entropic
force driving the simulation to triangulations with more vertices, since
the algorithm ensures that each v or m is hit equally often. Despite the
mentioned (unpublished) results of Adiprasito about the recognizability of
non-exponential growth using simulations, our results about the scaling
of the entropy density provide valuable hints for mathematicians proving
such an exponential bound. Additionally, using our methods we see also an
almost perfect match with other enumeration techniques for small 3-spheres,
as well in the previous section with asymptotic results about 2-spheres,
so there is hope that after a thorough inspection of our methods and the
(unpublished) proof by Adiprasito one can yet make statements about the
existence of an exponential bound, e.g., by inspecting the scaling of the
entropy density in terms of the number of executed steps.

4.3.1 Calculating entropy density with the Metropolis
algorithm

The entropy density of three- and four-dimensional spheres was calculated
in the literature before using the Metropolis algorithm in the context of
dynamical triangulations, which will be described in detail in Sec. 5.2. The

250



4.3. Ergodicity and extensivity of three-dimensional sphere triangulations

common procedure used e.g. in [28,111,112] is to extend the action

SDT(κd, κd−2, T ) = κdNd(T )− κd−2Nd−2(T )

(that will be derived in detail in Sec. 5.2.2) within the partition function

ZDT(κd, κd−2) =
∑
T
e−SDT(κd,κd−2,T ) =

∑
T

exp [−κdNd(T ) + κd−2Nd−2(T )]

of dynamical triangulations (where the sum is over all possible triangulations
of a given d-manifold, Ni are the number of i-simplices in the triangulation
and κi is a coupling constant or generalized inverse temperature) with
an additional term −γ(Nd(T ) − V )2. Here V is the number of maximal
simplices of the triangulations (volume of the triangulation) where the
entropy density κd,c(V ) should be calculated, γ is an additional coupling
constant and the whole term drives the system near triangulations with
Nd ≈ V . So that the modified action becomes

SDT,mod(κd, κd−2, γ, V, T ) = κdNd(T )− κd−2Nd−2(T ) + γ (Nd(T )− V )2 .
(4.22)

In the following we set the inverse temperature κd−2 = 0 and omit the index
at the inverse temperature κd. The number of maximal simplices will be
denoted by m instead of Nd. Note that one can do these calculations and
the resulting simulations also for κd−2 6= 0, which leads to similar interesting
results, but not the actual entropy density or number of triangulations. For
comparing with our method we only need the calculations for κd = 0.

Introduce the entropy density as the exponential grow rate of the number
N(m) of triangulations with m maximal vertices in terms of the number of
maximal vertices

N(m) = exp [κc(m) ·m]⇔ κc(m) := logN(m)
m

,

and rewrite the partition function using the density of states g(m) ∝
N(m), which is the (normalized) number of triangulations with m maximal
simplices:

ZDT,mod(κ, γ, V ) =
∞∑

m=d+2
g(m) exp

[
−κm− γ(m− V )2

]

=
∞∑

m=d+2
exp

[
(κc(m)− κ)m− γ(m− V )2

]
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The index c (for critical) in κc comes from the fact that naturally there is
a phase transition at κ = κc, where the physical phase does only exist for
κ ≥ κc. For κ < κc the system would be driven entropically to an infinite
number m of maximal simplices.

Now assume that the entropy density κc(m) is slowly varying with m, so
that one can approximate κc(m) ≈ κc for m ≈ V . Assume additionally that
one can replace the infinite sum in the partition function with an integral,
and complete the square to get

ZDT,mod(κ, γ, V ) =
∫ ∞
d+2

dm exp
[
−γ

(
m− κc − κ+ 2γV

2γ

)2]

· exp
[
−γV 2 + (κc − κ+ 2γV )2

4γ

]

Assuming that we can extend the lower boundary of the integral to ∞,
which is justified because the integral kernel is zero outside a certain region
around m ≈ V � d+ 2, the integral becomes a simple Gaussian integral,
resulting in the partition function

ZDT,mod(κ, γ, V ) =
√
π

γ
exp

[ 1
4γ (κc − κ+ 2γV )2 − γV 2

]
(4.23)

A similar calculation can be done now fro the average number 〈m〉(κ, γ, V )
of maximal simplices, resulting in

〈m〉mod = 1
Z

∫ ∞
−∞

dm′
(
m′ + κc − κ+ 2γV

2γ

)
· exp−γm′

2
exp

[
−γV 2 + (κc − κ+ 2γV )2

4γ

]
.

Using the expression for the partition function (4.23) one arrives at

〈m〉mod(κ, γ, V ) = κc − κ+ 2γV
2γ , (4.24)

which can be used for calculating the entropy density by

κc = κ+ 2γ (〈m〉mod(κ, γ, V )− V ) , (4.25)

where the average number of maximal simplices 〈m〉mod(κ, γ, V ) can be
determined using a Metropolis simulation.
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Figure 4.19: Influence of the ar-
tificially included term −γ(m −
V )2 in the action (4.22) on the
probability for finding a state
with m = V ±∆m maximal sim-
plices. The approximate proba-
bility ∝ exp(−γ(m−V )2) is plot-
ted in terms of ∆m = m− V for
different values of the constant γ.
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We identified that there are some problems if using this approach to deter-
mine the entropy density of topological triangulations. The first problem is
that the additional term −γ(m− V )2 in the action restricts the simulation
to values of m that are in the proximity of V , as can be seen in Fig. 4.19.
For the common choice of γ = 0.005 in [111, 112] and assuming that κ = κc
the probability for encountering a triangulation T with |m(T )− V | > 50
is smaller than 10−10. This can lead to problems with ergodicity, because
it could be possible that in order to transform two triangulations with
m ≈ V into each other it is necessary to use Pachner moves that lead to
intermediate triangulations with the number of maximal simplices far away
from V . These pathes would be rejected because of the additional penalty
for triangulations far away from V .
The second problem is that there are a lot of assumptions and approxi-

mations for calculating the analytical correspondence between κc and 〈m〉.
Especially the assumption κc(m) ≈ κc near V can cause problems. The
error of this approximation can be quantified by not using a constant
approximation, but a linear Taylor expansion

κc(m) = κ(0)
c + κ(1)

c · (m− V ) +O
[
(m− V )2

]
Doing the same calculations as above leads to the expectation value

〈m〉mod = κ
(0)
c − κ(1)

c V − κ+ 2γV
2(γ − κ(1)

c )
, (4.26)

which can be used for calculating the entropy density

κc(V ) = κ(0)
c = κ+ 2γ(〈m〉mod − V ) + κ(1)

c (V − 2〈m〉mod) . (4.27)

Using 〈m〉mod ≈ V one can deduce that for κ(1)
c > 0 (which is found in the

calculations of the considered paper, and also later in our calculations) the
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entropy density calculated using the constant approximation overestimates
the actual value by approximately ≈ κ(1)

c V . The first order term κ
(1)
c could

even be calculated using Metropolis simulations by measuring the variance
Var(m) of the number of maximal simplices, which can also be determined
using the Gaussian integrals as above to be Var(m) = 1/2(γ − κ(1)

c ), so the
entropy density can be calculated as

κc(V ) = κ(
c0) = κ+ 2γ(〈m〉 − V ) +

(
γ − 1

2Var(m)

)
· (V − 2〈m〉) . (4.28)

If one uses the constant approximation κ
(1)
c ≈ 0, the variance in this

approximation is Var(m) = 1/2γ. This could be checked in the Metropolis
simulation done in the papers [28, 111, 112] to verify the validity of the
method, but was inattentively not done.
Using the new method developed in this thesis we can on the one hand

calculate the full functional form (including derivatives as κ(1)
c ) of the entropy

density from scratch, because the density of states g(m) can be calculated
directly. On the other hand we can estimate the error of the Metropolis
method with modified action used in Refs. [28, 111,112].

4.3.2 Calculations of the entropy density using
multicanonical methods

In the previous section it was discussed which problems can occur if estimat-
ing the entropy density of triangulations using the Metropolis algorithm. To
overcome this problem, we use the same approximative counting algorithm
based on Wang Landau simulations [406,407] as for lattice triangulations
in Secs. 3.2 and 3.3, and for two-dimensional topological triangulations in
Sec. 4.2. For details about the Wang-Landau simulation refer to Sec. 2.2.2.
The annealing procedure towards the direct density of states can take

a lot of computation time, especially if the number of energy bins is high.
So we do not simulate the whole DOS at once, but within certain intervals
[m−∆m,m+ ∆m] and combine the DOS of these intervals to obtain the
DOS of the whole range of maximal simplices. For this procedure it is
of course necessary that the system is ergodic within the single intervals
[m−∆m,m+ ∆m], otherwise not all configurations can be reached from
every other triangulations using steps within the intervals. This ergodicity
will be examined in this section.

Having calculated the DOS using the Wang-Landau algorithm, κc(m) can
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be calculated using the density of states g(m) by

κc(m) ≈ 1
2 [log (g(m+ 1))− log (g(m− 1))] . (4.29)

This is good since the actual quantity considered in the Wang-Landau
algorithm is the logarithm of the density of states, and due to the subtraction
(which is a division on the level of the density of states) the unknown
normalization constant cancels.
For using Markov chain Monte Carlo simulations the ratio of the selec-

tion probabilities of a step and its inverse step (4.11) must be known. As
explained in Sec. 4.1.4 this can be difficult for topological triangulations,
because we count triangulations up to isomorphisms. So in principle several
steps originating from one triangulation can result in the same other triangu-
lation, which leads to the necessity for checking all results of possible steps
whether they are isomorphic to the result of the considered step. One can
also use the simplified version (4.10) of the ratio of the selection probabilities
which is computable much faster especially for large system sizes, because
it only depends on the f -vector of triangulations and its change due to the
flip, but can lead to errors in the obtained results.

In Fig. 4.20 the influence of using the simple selection probability on the
results is depicted. In Fig. 4.20a one can see that the relative error of the
simple ratio (4.10) with respect to the exact ratio (4.11) vanishes ∝ 2−m/2,
where m is the number of maximal simplices. Intuitvly that means that
increasing the number of tetrahedra or the system size by 2, the average
relative error of the simple selection probability is halved. Another feature
that can be seen is that for a fixed number m of tetrahedra the average
error introduced by a (d−k+ 2→ k)-flip decreases with increasing k, which
is clear because a high k means that the target triangulation is larger then
the original one, and symmetries are less likely in larger triangulations. In
Fig. 4.20b the relative error of the entropy density (4.29) is displayed. As for
the error of the selection probabilities one can see an exponential decrease
∝ 2−m/3, which is slower than for the selection probabilities. For m ≈ 40
triangles the error in the entropy density is ≈ 10−3, so one can neglect the
error for all bigger triangulations.
For verifying the correctness of our methods and numerical implemen-

tations we calculated the number of triangulations of the 3-sphere with
5 ≤ v ≤ 11 vertices (using the exact selection probability) and compared
with the results obtained by lexicographic enumeration of triangulations
in [380], as displayed in Fig. 4.21. The relative error of our approximative
results compared with the exact enumeration is always below 0.003 with
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Figure 4.20: Error of the simple selection probability for 3-spheres.
(a) Relative error of the simple ratio Ssimple(T1 → T2)/Ssimple(T2 → T1) of selection
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is an exponential ∝ 2−m/2 drawn for comparison. (b) Relative error of the entropy
density κc(m) = m−1 log g(m) calculated using simple selection probability with
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the exact values always being in the 2 · σ interval of the approximative data.
This implies that our numerical method in fact produces correct results.

In Fig. 4.22 the course of a Wang-Landau simulation in terms of the
modification factor is displayed for the approximative counting of three-
dimensional triangulations of the sphere. In our first standard simulations
that used the flatness criterion flat(H(m)) ≥ 0.8 we observed that the
recorded density of states (DOS) is very inaccurate at the beginning of
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the simulations, which leads to the histogram not becoming flat and the
simulations getting stuck for large system sizes. This is traceable to the
flatness criterion being very relaxed, it can be reached sometimes just by
coincidence and not because the DOS is accurate enough. So a flatness
criterion that depends on the current modification factor and that is very
strict for low and more relaxed for high ones was tested:

flat(H(m)) ≥


0.99 10−2 < fi ≤ 100

0.95 10−4 < fi ≤ 10−2

0.90 10−6 < fi ≤ 10−4

0.85 10−8 < fi ≤ 10−6

(4.30)

The standard and the adapted procedures are compared for small m in
Fig. 4.22. In both cases one can see in the standard deviation of the
distributions of κc the onset of the saturation of error at modification
factor f ≈ 10−6, for smaller modification factors the standard deviation is
approximately constant and independent of the system size. As expected,
the value of the relative standard deviation σ/κc ≈ 3.8·10−3 for the standard
flatness criterion depicted in Fig. 4.22c is higher than σ/κc ≈ 2.7 · 10−3

for the alternative flatness criterion depicted in Fig. 4.22d at the smallest
modification factor used, because the annealing is done more cautiously in
the latter case. For the same reason more sweeps are necessary to reach a
given modification factor (depicted in the same subfigures). Considering
the necessary sweeps for reaching a relative error of 10−3 in Fig. 4.22e and
f one sees that the standard procedure is faster for the small system sizes
(m = 102 and m = 103), for m = 104 the speed is almost equivalent.

But one can find a relevant difference between the two different flatness
criteria if one considers the average value of κc

(
m = 104) in terms of the

modification factor. Using the standard flatness criterion the entropy density
is underestimated for a long time during the simulation and approaches the
correct value only for relative small modification factors, while for smaller
system sizes (m = 102 and m = 103) the deviation from the actual value
vanishes much earlier. For even larger system sizes the convergence to
the actual value is shifted to small modifications factors even more, and
there is the danger that the convergence sets in after the last modification
factor used in the simulations. For the alternative flatness criterion the
underestimation is damped, the convergence to the actual value sets in
much faster. So we use in all cases the alternative flatness criterion (4.30)
in order to assure a convergence to the actual value before the end of the
simulation.
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Figure 4.22: Modified flatness criterion for Wang-Landau simulations of
the 3-sphere.
Characteristic plot of Wang Landau simulations for three-dimensional topological
triangulations of the sphere for 102 (red), 103 (blue) and 104 (green) maximal
simplices, and ∆m = 10. The left column (a, c, e) shows the standard Wang-
Landau simulation with the decrease fi+1 = f0.9

i of the modification factor and
the flatness criterion flat(H) ≥ 0.8. The right column (b, d, f) shows a modified
Wang-Landau simulation with the same decrease of the modification factor, but an
alternative flatness criterion (4.30) which is very rigorous for large modification
factors and more relaxed for small ones. (a,b) Average value and distribution of the
entropy density κc in terms of the decreasing modification factor. (c,d) Standard
deviation of the distribution of κc (color, left axis) and mean number of sweeps
(black, right axis) in terms of the modification factor. (e,f) Necessary number of
sweeps to calculate κc with an error of less than 10−3.
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Figure 4.23: Ergodicity of Pachner moves in terms of the accessible
tetrahedra range.
The grayscales show the probability distribution of the relative deviation ε (4.31) of
the finite bin-number entropy density κc(m,∆m) from the actual entropy density
κc(m) in terms of ∆m of simplicial 3-spheres for m = 3 · 102 (a), m = 103 (b),
m = 3 · 103 (c), m = 104 (d), m = 3 · 104 (e) and m = 3 · 105 (f). The black,
dashed line is the mean error of the distribution. The black, dotted lines show the
probability for accessing a state at m±∆m if using the modified action (4.22) with
γ = 0.005 as in Refs. [28, 111,112]. The labels of the lines are the probabilities of
finding a state right of the line.

For the following results we performed at least 5 independent simulations
for every data point, and changed the modification factor according to
fi+1 = f0.9

i after reaching flatness. Within a typical simulation we performed
103 to 105 sweeps of Pachner moves, where one sweep consists ≈ m proposed
Pachner moves.

4.3.3 Numerical ergodicity

For testing the numerical ergodicity of simplicial 3-spheres we calculated
the entropy density κc(m,∆m) for m maximal simplices using the interval
[m−∆m,m+ ∆m] of accessible number of maximal simplices within the
Wang-Landau algorithm. As a measure for the ergodicity we use the relative
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Figure 4.24: Scaling of the ergodicity violation in 3-spheres.
(a) Scaling of the error ε (4.31) of the entropy density in terms of ∆m of simplicial
3-spheres for m = 3 · 103 ( ), m = 3 · 104 ( ) and m = 3 · 105 ( ) tetrahedra.
Especially for a low range ∆m one finds that |ε| = a(m) · (∆m)−2. (b) Scaling
behavior of the power law prefactor a(m) in terms of the number of tetrahedra m.

error
ε := κc(m,∆m)− κc(m)

κc(m) , (4.31)

where κc(m) is either given by κc(m,∆m) with the largest ∆m, or by fitting
to the model (4.32) for ε that will be discussed later in this section. For
fixed m > 5 the entropy density κc(m,∆m) and the relative error ε are
monotonous increasing functions converging to the actual value κc(m) (see
Fig. 4.23). For low ∆m there is a broad distribution of κc obtained in
independent numerical simulations that narrows for increasing ∆m. For
increasing m the convergence to κc is slower, the distribution broader, and
determined mainly by the statistical error of the Wang-Landau algorithm.

Additionally, in Fig. 4.23 the influence of using the modified action (4.22)
for γ = 0.005 is depicted (which is the value used in Refs. [28, 111, 112]).
Using κ = κc, the probability of finding a state in the Metropolis Markov
chain that has a difference of ∆m or more in the number of tetrahedra is
given by 1− erf(√γ ·∆m), which is below 10−3 for ∆m = 33. This shows
that using the method described in Sec. 4.3.1 can lead to errors for larger
system sizes.

Using a double-logarithmic plot as in Fig. 4.24a for the ergodicity deviation
ε in terms of the width ∆m of accessible bins, one can see that it follows a
power law

|ε| :=
∣∣∣∣κc(m,∆m)− κc(m)

κc(m)

∣∣∣∣ = a(m)
(∆m)2 (4.32)

with prefactor a(m) growing with the system size m, which can be deter-
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Figure 4.25: Scaling of the
entropy density of 3-spheres.
(a) Entropy density κc(m) in
terms of the number of tetrahedra
m calculated using Wang-Landau
simulations ( ), and the literature
values [112] ( ), together with the
listed fits. (b) Error (fit(m) −
κc(m))/κc(m) of the fit functions
with respect to the Wang-Landau
results, for the power law fit of
Ref. [112] (red, ) and our fits
(4.34) of a power law (blue, ),
the logarithm of a logarithm (or-
ange, ) and a function inspired
by the enumeration results for 2-
manifolds (orange, ).
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mined using a fit in terms of ∆m for constant m. For large ∆m the exponent
−2 changes slightly, because of κc(m,∆m) − κc(m) becoming small and
there is some uncertainty in κc(m). By fitting the prefactor functional
dependency of a(m) in terms of m as in Fig. 4.24b one finds that

|ε| :=
∣∣∣∣κc(m,∆m)− κc(m)

κc(m)

∣∣∣∣ ∝ m0.60±0.03

(∆m)2 . (4.33)

This result can be used for extrapolating the necessary width ∆m of acces-
sible bins for large systems without the need for simulations for different
∆m.

4.3.4 Scaling of the entropy density

The entropy density κc(m) was calculated and plotted in Fig. 4.25 for up
to m = 106 vertices and compared to the already existing calculations in
Ref. [112]. We find a good agreement for m 6= 1.28 · 105, but for this value
Ref. [112] claims a result lower than our calculations. We think that this
is the first sign of ergodicity breaking introduced by the γ-term into the
action to be able to measure κc(m) using the Metropolis algorithm.
We use our data to compare three possible fits: On the one hand we

use a power law fit κc(m) = κ
(∞)
c − a · m−c (which suggests that there

is an exponential bound N(m) ≤ eκ
(∞)
c m for the number of 3-spheres in
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terms of the number of tetrahedra) and a fit κc(m) = κ
(∞)
c − a · logb(m)/m

inspired by the enumeration results for 2-manifolds (which also suggests
an exponential bound), On the other hand we use a double-logarithmic
fit κc(m) = a · log(log(b ·m)) + c (suggesting an over-exponential growth
N(m) ∝ mlogm of the triangulation number). These fits that were done for
m ≥ 3000 result in

κc(m) = 2.107(6)− 3.16(20) ·m−0.276(9) (4.34a)

κc(m) = 2.056(1)− 0.0031(3) · log6.03(4)(m)
m

(4.34b)

κc(m) = 0.189(9) · log log(0.0017(3)m) + 1.66(2) (4.34c)
A logarithmic fit κc(m) = a · log(b · m), implying N(m) ∝ mm is not
compatible with our data.
Considering the relative error of κc(m) calculated with the respective

models and the numerical results depicted in Fig. 4.25b shows that the power
law fit (4.34a) matches better if one considers all values of m, and that the
fit (4.34b) inspired by the two-dimensional results fits better for large m.
So for the considered values of m an exponential bound for the number of
triangulations (that can be reached with the number of Pachner moves done
in the simulation) of the 3-sphere is preferred among the considered models.

4.3.5 Conclusion

The number of triangulations and their scaling in terms of the number of
vertices and maximal simplices is an unsolved question in topology and has
important applications in simplicial quantum gravity, where exponential
scaling is crucial for the models being well-defined. We calculated the effec-
tive scaling function κc(m) of simplicial 3-spheres using the Wang-Landau
algorithm for up to m = 106 tetrahedra and found that an exponential
bound of the number N of triangulations (that can be reached with the
number of Pachner moves done in the simulation) in terms of m is more
favorable than even a very slow increasing function. The same simulational
setup can be used to calculate the effective scaling function κc(m,∆m) only
considering triangulations with tetrahedra in the interval [m−∆m,m+∆m].
We found that |κc(m,∆m)− κc(m)| ∝ m0.60(3)(∆m)−2. This result is im-
portant for estimating the width of the interval of maximal simplices one
needs to allow in order to get correct results in numerical simulations in
simplicial quantum geometry.
Since for larger triangulations the number of bins that have to be taken

into account for ergodicity increases, and so does the simulation time. This
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is why our simulations cannot be performed for larger system sizes. In
the future one can use a replica-exchange Wang-Landau simulation with
several overlapping energy windows, in order to decrease the simulation
time without violating the ergodicity of the system.
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5 Triangulations as fluctuating
space-(times)

One of the most challenging questions of physics today is the search for a
theory of quantum gravity that contains both general relativity and quantum
field theory as asymptotic theories, or in a simpler setup to quantize gravity
without matter. Both theories are very successful on their own and are
the basis of most of modern physics. In fact there are also no observations
that contradict any of the theories, the search for a unified theory is driven
only by speculations about energy ranges or length scales that cannot be
accessed by today’s experiments. However, they may have importance in
the early universe or in the context of black holes.
The quantization of three of the four elementary forces, the electromag-

netic, the weak and the strong one, involves a procedure called perturbative
renormalization. This very successful approach (that lead to the standard
model of particle physics) cannot be applied to general relativity, because
one would have to include an infinite number of coupling constants that are
undetermined by the theory (comparable to integration constants) Thus
perturbativly renormalized gravity is not predictive [204, Sec. 1.5]. There
are several alternative approaches that try to find a quantum theory of
gravitation (compare also the list given in Ref. [388, pp. 15-21]), of which
we present only a selection in the following list:
• Loop quantum gravity [388]: Loop quantum gravity (LQG) is an at-

tempt to canonically quantize general relativity using a Hamiltonian
formulation of gravity given by ADM or Ashtekar variables, following
the quantization methods proposed by Paul Dirac [137]. When apply-
ing this formalism to general relativity one finds canonical momenta
that cannot be solved for the associated velocities, which leads to
the necessity to introduce new variables as Legendre multipliers of
constraints in order to obtain the Hamiltonian from the Lagrangian
formulation (which is usually and for the invertible momenta done
by a Legendre transformation). After the quantization, which leads
first to a kinematic Hilbert space, these constraints have to be im-
plemented on the quantum level, which leads to the dynamic Hilbert
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space (which contains only the states of the kinematic Hilbert space
that fulfill the constraints). The resulting states (of both Hilbert
spaces) can be described in terms of spin-networks (see Sec. 6.2 for
a closer look on spin networks). Although not all of the constraints
can be implemented at present, there are several interesting results
within LQG, e.g., that the area operator has a minimal non-vanishing
eigenvalue near `2P (where `P is the Planck-length), which implies some
discreteness of space at short scales [51,353,387].

• String theory [71, 434]: The basic idea of string theory is to use
one-dimensional strings instead of zero-dimensional point particles
as basic building blocks of the theory, that cannot be distinguished
on the usual observation scales. Different elementary particles can
then emerge from the vibration modes of these strings. A famous
extensions that claims to unify gravity, supersymmetry and string
theory is the so-called M-theory, but to formulate it in a consistent
way, one has to consider an eleven-dimensional spacetime instead of
the usual four-dimensional spacetime.

• Causal sets [141]: Causal sets are finite sets of points in Lorentzian
spacetime together with an order x ≺ y if x is in the past of y. If these
points are sprinkled into a small part of a Lorentzian manifold with a
probability that is proportional to the volume of the part, the causal
set can be shown to be Lorentz invariant. One of the most promising
results is that the causal structure alone determines the geometry or
equivalently the metric on a manifold up to a conformal factor.

• Spin foams: Roughly speaking, spin foams can be seen as describing
spacetime as the time-evolution of spin-networks, which are the states
of LQG and describe time. Since we consider spin foams in more
detail in Sec. 6.2, we refer the reader to the more detailed description
there.

In general one has to discriminate between two types of approaches to
quantum gravity: On the one hand there are approaches that start from
a continuum theory and try to quantize it, as LQG or string theory. This
approach is comparable with the usual approach of quantum mechanics or
quantum field theory. On the other hand there are approaches that start
from some discretized system and try to obtain a continuum limit, as causal
sets, spin foams or different models using triangulations. This approach
is comparable with the usual setup of statistical physics, or with lattice
quantum field theory.
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In this chapter we consider the use of triangulations as models for Eu-
clidean or Lorentzian spacetime described by Einsteins theory of general
relativity. There are three reasons why to use such discretized spaces for
this purpose [339]: The continuous Einstein equations can analytically only
be solved in situations with a lot of symmetries (e.g. the Schwarzschild
solution for isotropic space). Additionally, it is difficult to describe spaces
with complicated topological structure within the Einstein equations. Fur-
thermore, it is discussed in various quantum gravity setups that spacetime
is discrete on the smallest length- and time-scales, so discrete manifolds are
the actual description of spacetime, and using continuous variables is the
approximation.

First approaches in this direction can be found already in 1840 by Jakob
Steiner [375], who defined Flächenkrümmung (curvature of area) and Eck-
enkrümmung (curvature at corners) on simplicial manifolds. The starting
point of almost all results using triangulations as models for (quantum)
spacetime is the paper General relativity without coordinates by Tullio
Regge from 1961 [338]. In this paper the author shows how to obtain an
analogue of the Einstein-Hilbert action for simplicial manifolds, and derives
the corresponding classical Einstein equation of motions by considering the
edge lengths of the triangulation as the dynamic variables of the theory.
The derivation of Regge will be described in detail in Sec. 5.1. Note that
in the original paper [338] the Riemann tensor on simplicial manifolds was
calculated only for a certain limit case, and that it is a conjecture that
this is valid in all setups. In 1984 a strict proof was given that the Regge
method for simplicial manifolds approximates smooth space, by showing
that the curvature defined in the discrete and in the continuous approach
are close in the sense of measures [115]. In the same year the Regge action
was derived from the Einstein-Hilbert action by discretizing it [177]. More
information about the usage of the Regge formalism and its application of
quantizing gravity can be found in the reviews [280,339,422].

A popular method for quantum gravity using triangulations was first pro-
posed by Berg [83] and is still developed in the ongoing work of Hamber and
Williams (e.g., Refs. [202,203,205–211], see the book [204] for an exhausting
review). The idea is to start with a triangulation of a flat Euclidean space
and let the edge lengths evolve using Monte Carlo simulations, using the
standard Regge action.
There are further applications of triangulations as spacetime models in

the spin-foam setup, which we consider in detail in Sec. 6.2. Note that
there are several models assigning different amplitudes to a spin foam, the

267



5. Triangulations as fluctuating space-(times)

earliest model was the Ponzano-Regge model [330] in 1968, a more recent
development is the Turaev-Viro model [397] or the EPRL model [155] which
we will consider in Sec. 6.2.

In this chapter we are mainly concerned with the approaches of dynamical
and causal dynamical triangulations, explained in great detail in Secs. 5.2
and 5.3. In contrast to the other approaches that go back to the Regge
approach, the dynamical variables are not the edge lengths (which are fixed
in this approach), but the triangulation itself. First approaches into this
direction go back to Don Weingarten in 1982 [417], who calculated transition
amplitudes between different three-geometries by summing over possible
four-geometries that connect these three geometries, and to J. Römer and
M. Zäringer in 1986 [349], who fixed the edge length in the simplicial complex
and for the first time write the Regge action in terms of the number of
simplices. Another origin of the model lies in the study of random surfaces
by Jan Ambjørn [17], that was used as a model for quantum gravity later
on. The extension to three and four dimensions was then done at the
beginning of the 1990s [18, 27, 45]. An important modification was done
by using Lorentzian instead of Euclidean spacetime, or imposing causality
on the level of the single triangulations [42]. The history and the different
models used in the approaches of (causal) dynamical triangulations will be
explained in detail in Secs. 5.2 and 5.3.
This chapter consists of three different parts. The first part, Sec. 5.1,

explains how to reformulate the Einstein-Hilbert action and the resulting
Einstein equations of motion with edge lengths of a triangulation as dynami-
cal variable. This is basically a didactic expansion of the historic paper [338]
by Tullio Regge. The first part is to explain that curvature on d-dimensional
triangulations is located on the (d− 2)-dimensional simplices, the interior of
the higher dimensional simplices can be considered as flat. As a next step
we express the Riemann curvature tensor in terms of the discrete curvature,
which then can be used for deriving equations of motion in the last part of
this section.

The second part, Sec. 5.2, considers the model of dynamical triangulations
(DT). The path-integral formulation as well as the expression of the action
in terms of the number of simplices and the analytical solution of the
2-dimensional model are reconsidered. The main result of this part is
Subsec. 5.2.5, which is a synopsis of the problems of the DT approach. Some
of the problems were already given by the authors of the original papers
about DT in their later work about the more sophisticated model of causal
dynamical triangulations (CDT). But there are also more severe problems
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that remain in the CDT approach, mainly concerning the mathematical
foundation of discrete topology (e.g., ergodicity and extensivity as explained
in Chap. 4).
The last part of this chapter, Sec. 5.3, considers the model of causal

dynamical triangulations. After explaining details about the construction of
causal triangulations, we develop a transfer matrix method for calculating
expectation values using the one-slice density of states that can be calculated
with the Wang-Landau algorithm (see Eqs. (5.70) to (5.84)). This method
allows for taking the thermodynamic limit of infinite time slices T → ∞
exactly. The main result of this part is the application of this transfer
matrix method to (2 + 1)-dimensional causal dynamical triangulations and
the finding in Fig. 5.37 that the second-order phase transition that was
found in the literature takes only place in one of the coexisting phases of the
first-order transition that is used for fine-tuning the cosmological constant.

269



5. Triangulations as fluctuating space-(times)

5.1 General relativity without coordinates - The
Regge formalism

As already stated in the introduction, the foundation for using topological
triangulations as spacetime models were laid by Tullio Regge in 1961 [338],
where general relativity was formulated without coordinates using edge
lengths of a fixed triangulation as dynamic variables. Because of the great
importance of this work for all successive formulations of simplicial quantum
geometry, we explain in detail how to obtain an action in terms of the
geometric quantities of a triangulation and the corresponding equations of
motions from the usual continuum theory of general relativity. Therefor
we follow closely the original paper of Regge [338], although it presents no
rigorous proofs, but it is very suited for getting an intuitive picture of the
discrete approach to general relativity. For a detailed proof of the Regge
formalism we refer the reader to Ref. [115], where it is rigorously proven that
the curvature defined by Regge approximates a smooth space, by showing
that discrete and smooth curvature are close in a measure sense, and to
Ref. [177], where the opposite way was taken and the Regge equations were
derived by discretizing the continuum version of general relativity.
In this section we first present how curvature can be described in tri-

angulations or simplicial complexes. Afterwards we express the Riemann
curvature tensor in terms of this discrete curvature. As a last step the Regge
action is introduced, which is a discrete version of the Einstein-Hilbert
action, and the equations of motion are derived from this discrete action.

5.1.1 Curvature assignment in simplicial complexes

In this section it will be explained how curvature arises if gluing flat simplices
together at the boundaries. We will see that for a d-dimensional triangulation
the curvature is located at the (d− 2)-dimensional simplices, which will be
denoted as bones.

We first describe how to use the metric tensor for calculations within flat
simplices. Then we consider how the metric can be continued if gluing two
flat simplices at their boundary. Last we make plausible by considering
closed pathes around bones that the curvature of the simplicial manifold is
located at the (d− 2)-dimensional bones.
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5.1. General relativity without coordinates - The Regge formalism

Figure 5.1: Orthonormal basis ~ei and non-
orthonormal edge basis ~Eµ in a two-dimensional
simplex.

v0 v1

v2

~E1 = 2~e1

~E 2
=

2~e 1
+ 2~e 2

~e1

~e2

Geometry within flat simplices

We first explain how geometric quantities within a simplex can be calculated
using the metric tensor, if using the edges of the simplices as a basis. The
interior of a d-simplex (as defined in Def. 4.9) is flat, since it is a subset of
Rd. So the metric tensor gij = δij for Euclidean signature and gij = ηij for
Lorentzian signature. Note that we use the convention η00 = −1 and ηii = 1
for i 6= 0. In this section we restrict ourselves to Euclidean signature.

Suppose that we have an orthonormal basis ~ei (with 0 ≤ i ≤ d− 1) inside
of the simplex. Choose now an arbitrary vertex of the simplex and define
as ~Eµ (with 0 ≤ i ≤ d− 1) the vectors that point from this chosen vertex
to the other vertices of the simplex. The vectors ~Eµ are a non-orthonormal
basis of the Rd, and there exists a transformation matrix relating the edge
vectors and the orthonormal basis:

~Eµ = Tµ
i~ei (5.1)

(here and in the remaining section we will use Einstein’s sum convention
where there are sums over double indices).

Consider for example the case d = 2 and the two basis vectors ~E0 = 2~e0
and ~E1 = 2~e0 + 2~e1, displayed in Fig. 5.1. The transformation matrix is
then given by

T =
(

2 0
2 2

)

If one has a vector vµ given in coordinates of the basis ~Eµ, for calculation
of lengths, distances and angles one needs the metric tensor gµν . This
tensor is a constant (its entries does not depend on the actual point), but in
general it is not a diagonal matrix, because the edge basis ~Eµ in general is no
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orthonormal basis. The components of the metric tensor can be computed
by scalar product of the basis vectors:

gµν = ~Eµ · ~Eν = (Tµi~ei) · (Tνj~ej) =
= Tµ

iTν
j(~ei · ~ej) = Tµ

iTν
jδij = Tµ

iTν
i = (TT t)µν

(5.2)

In our example the metric tensor is given by the matrix

g = (TT t) =
(

2 0
2 2

)(
2 2
0 2

)
=
(

4 4
4 8

)

Using the metric tensor one can, e.g., calculate the distance between two
points given by their vectors vµ and wµ in coordinates of the edge vectors:

dist(v, w) =
√
vµwµ =

√
gµνvµwν

In our example, the distance between vertices v1 and v2, which is the length
of the vector ~E12 given by coordinates (−1, 1) in the edge basis, can be
calculated by

dist(v1, v2) = | ~E12| =

√√√√(−1 1
)(4 4

4 8

)(
−1
1

)
= 2

Geometry on neighboring simplices

In this section we show how geodesics and thus distances between points
in different simplices can be calculated. First we consider two neighboring
simplices, then we generalize this to two points in arbitrary simplices. We
use ~Eµ(σn) and gµν(σn) to denote the edge basis vectors and the metric
tensor in terms of these edge basis vectors in the d-simplex σn.
Let σ1 and σ2 be two neighboring simplices and let pµ ∈ σ1 and qµ ∈ σ1

be two points coordinatized with respect to the edge vectors. The geodesic
distance dist(p, q) between these two points is defined as

dist(p, q) = min
r∈σ1∩σ2

{dist(p, r) + dist(r, q)} =

= min
r∈σ1∩σ2

{√
gµν(σ1)pµrν +

√
gµν(σ2)rµqν

}
Intuitively that means that the distance between to points in neighboring
simplices is the minimum of the length of the two sub-pathes from each
point to the respective boundary of the simplex. Note that the coordinates
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of r must be given in terms of ~Eµ(σ1) for the first and in terms of ~Eµ(σ2)
for the second term.
In the following we give an example shown in Fig. 5.2, with edge basis

coordinates

~E1(σ1) = 2~e1 ~E2(σ1) = 2~e1 + 2~e1

~E1(σ2) = −2~e1 − 2~e2 ~E2(σ1) = −2~e1.

The aim is to calculate the distance between the points σ1 3 p = (p0, p1)
with respect to basis ~Eµ(σ1) and σ2 3 q = (q0, q1) with respect to basis
~Eµ(σ2). The transformation matrices in the two different simplices are given
by

T (σ1) =
(

2 0
2 2

)
T (σ2) =

(
−2 −2
−2 0

)
,

resulting in the metric tensors

g(σ1) =
(

4 4
4 8

)
g(σ2) =

(
8 4
4 4

)
.

A point r on the common boundary of σ1 and σ2 has coordinates (λ, 1−λ)t
with 0 ≤ λ ≤ 1 in both bases. The distances d(p, r) and d(r, q) are then
given by

d(p, r) =

√√√√(p0 p1
)(4 4

4 8

)(
λ

1− λ

)
= 2

√
p0 + p1(2− λ)

d(r, q) =

√√√√(λ 1− λ
)(8 4

4 4

)(
q0
q1

)
= 2

√
q0(λ+ 1) + q1

Minimizing the sum of both distances with respect to λ yields

λmin = (p0 + 2p1)q2
0 − p2

1(q0 + q1)
p1q0(p1 + q0)

and the minimal distance

d(p, q) = 2
√
p0 + 2p1 −

(p0 + 2p1)q2
0 − p2

1(q0 + q1)
q0(p1 + q0) +

+ 2
√

(p0 + 2p1)q2
0 − p2

1(q0 + q1)
p1(p1 + q0) + q0 + q1
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~E 2(σ
1)

~E1(σ1)

~E 1(σ
2)

~E2(σ2)

p r

q

Figure 5.2: Calculating the distance between
points in neighboring simplices.

For the special case p0 = p1, q0 = q1 we have λmin = 0.5 and d(p, q) =√
10(p0 + q0).
This procedure can be generalized for two points in arbitrary simplices

σ and σ′. Therefor one first has to find all possible paths σ → σ1 →
· · · → σk → σ′ of neighboring simplices that connect simplex σ and σ′.
Pathes with simplices occurring more than once can be neglected (because
they will always be longer as the path leaving out the detour). Then one
calculates for every path the length by introducing additional points in the
(d− 1)-dimensional boundaries, and minimizes the length with respect to
the position of the additional points. The geodesic distance is then the
minimum of these minimal lengths with respect to the possible pathes.

As a last point we want to calculate how the coordinates of a vector vµ(σ1)
with respect to the edge basis of simplex σ1 transform to the coordinates
of the vector vν(σ2) with respect to the edge basis of simplex σ2. Suppose
first that the edge basis vectors have coordinates in terms of the same
orthonormal basis ~ei(σ1) = ~ei(σ2) and suppose that the considered vector
has the coordinates vi with respect to ~ei.

vµ(σ1) = T (σ1)µivi ⇒ vi = T−1(σ1)µivµ(σ1)
vν(σ2) = T (σ2)νivi ⇒ vν(σ2) = T (σ2)νiT−1(σ1)µivµ(σ1)

In general the orthonormal basis vectors of the neighboring simplices need
not to be parallel, but can be transformed into each other by a rotation.
Suppose that ~ei(σ2) = S(σ1 → σ2)ij~ej(σ2) with det(S) = 1, then we have
the following relation between the coordinates of the same vector:

vµ(σ1) = T (σ1)µivi
⇒ vi = T−1(σ1)µivµ(σ1)

vν(σ2) = T (σ2)νiS(σ1 → σ2)ijvj
⇒ vν(σ2) = T (σ2)νiS(σ1 → σ2)ijT−1(σ1)µjvµ(σ1)
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5.1. General relativity without coordinates - The Regge formalism

The resulting transformation matrix is

V (σ1 → σ2)νµ := T (σ2)νiS(σ1 → σ2)ijT−1(σ1)µj (5.3)

This can be again generalized to points in non-neighboring simplices by
simply transporting stepwise through the simplices along the path of the
transport.

Closed pathes in simplicial complexes

In this section we will show that there is a deficit angle if transporting a
vector along a path encircling a (d− 2)-dimensional simplex. First we start
with a simple example in d = 2 dimensions and then we generalize it to
arbitrary dimensions and geometries.
Suppose that there is a vertex with incident triangles σ1, . . . , σk, and

that triangle σi has an interior angle of φi at the considered vertex. We
choose the edge basis so that ~E2(σi) and ~E1(σi+1) are the basis vectors at
the common edge of the triangles σi and σi+1 (with σk+1 := σ1). In each
triangle we choose the orthonormal basis so that ~e1(σi) ‖ ~E1(σi) and so that
~e1(σi) and ~e2(σi) form a right-hand system.

Let vµ(σ1) be an arbitrary vector given in the edge basis coordinates of
σ1. We transport the vector along a path

σ1 → σ2 → · · · → σk → σ1

Applying multiple times Eq. (5.3) for the parallel transport of a vector
between neighboring simplices we get:

v′µ(σ1) =T (σ1)µa1S(σk → σ1)a1
b1T−1(σk)b1

ν1

T (σk)ν1
a2S(σk−1 → σk)a2

b2T−1(σk−1)b2
ν2

. . .

T (σ2)νk−1
akS(σ1 → σ2)ak

bkT−1(σ1)bk
νkvνk

Note that all transformation matrices T cancel with their inverses, except
for the first and the last transformation matrix. The orthonormal basis
transformation matrices S(σi → σi+1) = S(φi) are rotations that depend
only on the interior angle φi and not on the simplex itself. Since for rotations
S(φi)S(φj) = S(φi + φj), the equation becomes

v′µ(σ1) = T (σ1)µa1S(φk)a1
a2S(φk−1)a2

a3 . . . S(φ1)ak
bT−1(σ1)b

νkvνk

= T (σ1)µaS(φ1 + φ2 + · · ·+ φk)abT−1(σ1)b
νkvνk

= T (σ1)µaS(2π − ε)abT−1(σ1)b
νkvνk
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Figure 5.3: Example for the deficit angle in a two-dimensional triangulation.
(a) Part of a two-dimensional triangulation consisting of the maximal simplices
σ1 = {012}, σ2 = {023}, σ3 = {034} and σ4 = {014}, each edge having length 1. (b)
Cutting along one edge the four maximal simplices can be drawn into a flat plane
and a vector (red) can be parallel transported along a path σ1 → σ2 → σ3 → σ4
without changing the direction in the plane. (c) To transport the vector parallel
along a path σ4 → σ1, one has to cut along another edge. Redrawing the simplex
σ4 rotates also the contained vector. Altogether the vector is rotated by an angle
of ε, which is exactly the deficit angle of the triangulation at vertex 0.

In this equation
ε := 2π −

∑
i

φi (5.4)

is the deficit angle of the revolved vertex, which is the difference between
the full angle and the sum of the incident angles of the incident triangles. So
we get v′a(σ1) = S(2π − ε)abvb(σ1), which means that the vector is rotated
with the deficit angle if transported around the edge. An example for this
behavior can be found in Fig. 5.3.
From differential geometry it is known that curvature is related with

changes of the angle of vectors within closed parallel transports. One can
show that all closed parallel transports that do not revolve a vertex do not
alter the angle of a vector. (Intuitively, one can always draw the simplices
in a common plane, so that one has again the geometry of R2.) This means
that the curvature of a two-dimensional triangulation is located only at the
vertices, and not on the edges or the triangles. Thus the curvature is a
distribution with support of the vertices.
For higher dimensions one has a similar situation. One can always glue

two d-simplices using a common (d− 1)-simplex so that the resulting object
can be embedded into the Rd. This is not possible if gluing several d-
simplices sharing a common (d− 2)-simplex, in general there will be again
a deficit angle associated with every (d − 2)-simplex. Parallel transports
along closed curves around such (d−2)-simplices will then lead to a rotation
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5.1. General relativity without coordinates - The Regge formalism

Figure 5.4: Setup for identifying the Rie-
mann tensor with the quantities of a three-
dimensional triangulation. We consider a closed
path revolving an area ~Σ = Σ~n with normal
vector ~n. Within the area we have bones with
density ρ and deficit angle εb for each bone. The
bones have a direction ~u.

~u

~n

~Σǫ b
, ρ

of the transported vector, and one can conclude that the curvature in d-
triangulations is a distribution with support on the (d− 2)-simplices. These
(d− 2)-simplices are then often denoted as bones.

5.1.2 The Riemann curvature tensor

In the last section we concluded that the curvature in a d-dimensional
simplicial manifold is located at the (d−2) simplices. Using this information
we will compute in this section an expression for the Riemann curvature
tensor in a certain limit, following Ref. [338]. This limit will be compared
later on with the Einstein-Hilbert action on the simplicial complex to get
the discretized Regge action of general relativity.
For simplicity we will restrict first to the 3d case. Consider a bunch of

N parallel bones (edges) with deficit angle εb and a direction given by the
normal vector ~u. We want to transport a vector ~A around a loop ~Σ = Σ~n
with area Σ and normal vector ~n surrounding the parallel bones. Let ρ
be the density of bones in space, and assume εb and ρ can be treated as
constants. An image of the situation can be found in Fig. 5.4.
After the transport the vector ~A is rotated by

δ ~A = ~A′ − ~A = N · εb(~u× ~A)

The cross product originates from the fact that only the components of
the vector that are orthogonal to the bones have a non-vanishing rotation
when performing a parallel transport around the bones. The number N of
revolved bones can be calculated using the density and the area of the loop
by

N = ρ(~u · ~Σ),

taking into account the angle between the normal vectors of the loop and
the bones. So in index notation the rotation of the vector can be calculated
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as
δAµ = ρεbεµανu

αAνuσΣσ. (5.5)

From differential geometry we know that the same quantity can be
calculated using the Riemann curvature tensor R:1

δAµ = RνµαβΣαβAν = Rνµαβ |g|−1/2εαβσΣσA
ν (5.9)

Comparing the sides of the Eqs. (5.5) and (5.9) leads to

εαβσ|g|−1/2Rνµαβ
!= ρεbεµανu

αuσ.

Use Eq. (5.6a) on the right side to get

εαβσ|g|−1/2Rνµαβ = |g|−1/2ρεbuνµu
σ.

Rewriting uσ using Eq. (5.7a) yields

εαβσRνµαβ = |g|−1/2ρεbuνµε
αβσuαβ.

From Tαβε
αβσ = Sαβε

αβσ it follows that Tαβ = Sαβ for two arbitrary
antisymmetric tensors T and S (which can be seen by expanding both sides
with εµνσ and using Eq. (5.8a)). Using this fact together with Rνµαβ being

1 Here and in the following we use the definition

Bαβ := |g|1/2εαβγB
γ = −Bβα (5.6a)

for a vector B, where |g|1/2 is the square root of the determinant of the metric. Note
that the Levi-Civita symbol εαβγ is not a tensor, but a tensor density, and so is Bαβ ,
and thus the transformation law for a covector is

Bαβ := |g|−1/2εαβγBγ . (5.6b)

Considering these two equations component-wise yields the inverse transformations

Bγ = |g|−1/2εαβγBαγ (5.7a)

Bγ = |g|1/2εαβγB
αγ . (5.7b)

Note that the well known formulas for contracting indices of the Levi-Civita remain
unchanged

εαβγε
αβσ = 2δσγ (5.8a)

εαβγε
αµν =

(
δµβγ

ν
β − δνβγµβ

)
. (5.8b)
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antisymmetric in the last two indices, as well as uαβ by its definition (5.6a),
it follows for the Riemann curvature tensor that√

|g|Rµναβ = ρεbuµνuαβ. (5.10)

The Ricci tensor can be derived by contracting the Riemann tensor with
the metric tensor by√

|g|Rµν :=
√
|g|gαβRαµβν = ρεbg

αβuαµuβν ,

and the Ricci scalar can be calculated by contracting the Ricci tensor again
with the metric tensor by√

|g|R :=
√
|g|gµνRµν = ρεbg

αβgµνuαµuβν = ρεbuαβu
αβ.

Insert here the definitions (5.6) to get√
|g|R = ρεbεαβγu

γεαβσuσ,

and use (5.8a) as well as uγuγ = 1 due to uγ being a unit vector to obtain√
|g|R = 2ρεb. (5.11)

for the Ricci scalar in the considered limit. This will be the basic ingredient
for formulating the discretized version of the Einstein-Hilbert action.
Friedberg and Lee [177] showed explicitly in 1984 that for a bone b that

the Ricci scalar is given by the distribution√
|g|R = 2εbδ(x1)δ(x2),

if transforming the coordinate system such that x1 and x2 are perpendicular
to the bone b, and b is located in the origin.

5.1.3 Discrete Einstein equations

The Einstein-Hilbert action SEH of (continuous) general relativity for space-
time without matter is given by

SEH = 1
16πG

∫
M

ddx
√
|det g| (R− 2Λ) ,

where Λ denotes the cosmological constant (which corresponds to an energy
density that is assigned to empty space). For simplicity we restrict to the
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case Λ = 0 first. Because the Ricci scalar (5.11) was only derived in a
certain limit, one cannot directly insert it into the action. Instead one has
to derive a discrete version of the action from first principle and compare it
with the usual Einstein-Hilbert action in the considered limit.

Since the curvature vanishes outside of the (d−2)-simplices σ(d−2) (bones),
so the action should be an additive function of the bones:

S =
∑
b∈B

F
(
σ

(d−2)
b

)
where F is the same function for all bones, and B denotes the set of all bones
in the triangulation. One can assume that the curvature has a constant
density over the bone, so the function F should be proportional to the
hyperlength V

(
σ

(d−2)
b

)
= V

(d−2)
b of the bone,

F
(
σ

(d−2)
b

)
= V

(
σ

(d−2)
b

)
· f (εb) ,

and depend furthermore only on the deficit angle εb of the bone b, because
no other quantity influences the curvature induced by the bone. If there
are two bones with identical shape and identical location the deficit angle
is additive, so ε = ε(1) + ε(2), and so it is reasonable to assume that
f
(
ε(1) + ε(2)

)
= f

(
ε(1)
)

+ f
(
ε(2)
)
. So f is linear and one can write

f(ε) = Cε with C being a constant that needs yet to be calculated. The
total action is then

S = C
∑
b∈B

V
(d−2)
b εb.

By comparing this action with the Einstein-Hilbert action in the previously
considered limit

√
|g|R = 2εbρ one gets C = 1/8πG. So the resulting action

is
SRegge = 1

8πG
∑
b∈B

V
(d−2)
b εb, (5.12)

yet for vanishing cosmological constant Λ = 0.
For completeness we include now a non-vanishing cosmological constant

Λ 6= 0. Since the curvature is located at the (d−2)-dimensional simplices, but
the integration for the action is over the complete d-dimensional manifold,
the metric and therewith its determinant is constant except on the bones,
which a set of measure 0 with respect to M . One can always choose the
length of the basis vectors in each maximal simplex such that the absolute
value of the determinant of the metric is 1, so that we can simplify the
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cosmological constant term

SΛ = −2 1
8πG

∫
M

ddx
√
|det g|Λ = −2Λ

∑
s∈S

V (d)
s ,

where S is the collection of maximal simplices. So the complete Regge
action is

SRegge = 1
8πG

∑
b∈B

V
(d−2)
b εb − 2Λ

∑
s∈S

V (d)
s

 , (5.13)

where the first term corresponds to the contribution of the curvature of
the bones, and the second term corresponds to the contribution of the
cosmological constant (energy density of the vacuum).
As a next step we will use the variational principle on the Regge action

(5.13) with Λ = 0 for calculating the discrete equations of motion, which
can be found by maximizing the action by setting δS = 0. Because for a
fixed triangulation the metric of the space is determined completely by the
edge lengths, one can treat the edge lengths as the dynamic variables and
calculate the variation of the action in terms of the edge lengths by

δS = 1
8πG

∑
b∈B

(εbδVb + Vbδεb) .

One can show that the second term vanishes (see Ref. [338] for details),
which is the discrete analog to the Palatini identity

∑
b∈B

Vbδεb = 0 ⇔
∫
M

√
|det g|gαβδRαβddx = 0,

so we have to consider only the first term.
If E denotes the set of edges (1-simplices) of the triangulation, the |E| not

necessarily independent equations of motions in d dimensions are

∑
b∈B

εb
∂Vb
∂le

= 0 ∀e ∈ E . (5.14)

So one has to compute the derivative of the (d − 2)-volume of the bones
with respect to the length of the edges.

Similar to the continuum version of the Einstein equations

Rµν −
1
2gµνR = 0,

281



5. Triangulations as fluctuating space-(times)

where Rµν is the Ricci curvature tensor, the discrete equations of motion
(5.14) do not describe a time-evolution of the (edge lengths) of the triangu-
lation, because the underlying manifold describes space and time at once.
The equations of motion (5.14) describe rather conditions that have to be
fulfilled for the triangulation so that it can describe a valid spacetime.

Equations of motion in d = 2 In two dimensions, the maximal simplices
are triangles and the bones are vertices, whose can be assigned a non-
vanishing 0-volume c. But this 0-volume does obviously not affect the
volume of the triangles, so all Regge equations of motion (5.14) are fulfilled
trivially. This means that every valid simplicial 2-manifold is also a valid
spacetime, without restrictions on the edge lengths.
Note that also in continuous general relativity a spacetime dimension

d = 2 is a pathological case, in this situation the energy-momentum tensor
has to vanish, which means that there cannot exist any matter in such a
dimension (but curvature can exist) [119].

Equations of motion in d = 3 In three dimensions the bones are exactly
the edges, and ∂V 1

b /∂le = δb,e, so the equations of motions become εb = 0 ∀b,
so there is only the flat solution in d = 3 dimensions. The result that there
are only flat spacetimes is also valid in the continuum theory [119].

Equations of motion in d = 4 In four dimensions the bones of the
triangulation are the triangles, so one has to calculate the derivative of the
area of a triangle with respect to the length of one side. Let A be the area
of the triangle with lengths a, b and l, and denote with θ the angle opposite
to side l. The derivative of the area with respect to l (leaving a and b fixed)
is then

∂A

∂l
= 1

2ab
∂ sin(θ)
∂l

= 1
2ab cos(θ)∂θ

∂l
.

One can express θ in terms of l:

l2 = a2 + b2 − 2ab cos(θ) → θ = arccos
[ 1

2ab(a2 + b2 − l2)
]

Using this formula one can calculate the derivative:

∂θ

∂l
= (−1)√

1− cos2(θ)
· −2l

2ab = l

ab · sin(θ) .

282



5.1. General relativity without coordinates - The Regge formalism

So the derivative of the area with respect to the length is,

∂A

∂l
= 1

2 l cot(θ)

and the equations of motions become∑
b∈B(e)

εb cotαb,e = 0 ∀e ∈ E , (5.15)

where αb,e is the angle inside the triangle (bone) b opposite to edge e, and
where B(e) denotes the set of all triangles that are incident with edge e.
Note that all derived equations of motions are all for the case of pure gravity.
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5. Triangulations as fluctuating space-(times)

5.2 Fluctuating geometry - Dynamical
triangulations

The basic idea of the dynamical triangulation model is to replace the con-
tinuous Euclidean path integral over all possible geometries of a manifold
weighted with the Einstein-Hilbert action with a sum over all possible
triangulations of a manifold weighted with the Regge action of this triangu-
lation. In contrast to other models quantizing the Regge model, where the
edge lengths as dynamical variables are quantized on a fixed triangulation,
the dynamical triangulation model fixes all the edge lengths and uses the
triangulation itself as dynamical variable.
In this section we first give the definition of the dynamical triangulation

model. Afterwards we derive the action of the model which depends only
on the number of d- and (d − 2)-simplices in the triangulation and solve
the model analytically in two dimensions. Furthermore we present some
important results obtained using the model of dynamical triangulations,
and give some problems that are related to both the simulational setup
used in literature and ot the actual definition of the model. The section
is concluded by remarks why multicanonical simulations are difficult to
perform on dynamical triangulations for d > 2.

5.2.1 Definition of the dynamical triangulation model

Roughly speaking there are two different ways to go from a classical theory
to a quantum theory. The first possibility is denoted as canonical quantiza-
tion, going back to Paul Dirac 1925, where one has to find the canonical
conjugated variables of the theory, define them as operators and replace the
Poisson brackets with the commutator, carefully dealing with constraints
(see e.g., Ref. [388] and the references therein for details). The second one
is to use a path-integral formulation, which goes back to Richard Feynman
in 1948, with precursors going back to Wiener and Dirac. The basic idea
is to identify the propagator 〈xf | exp(−iHt) | xi〉, which is the quantum
mechanical probability that a particle initially located at position xi will be
measured after time t at position xf , as the following functional integral

〈xf | exp(−iĤt) | xi〉 =
∫

x(0)=xi,x(t)=xf
Dx exp(iS[x]),

where x : R→ Rd is the path of a point particle (mapping time to a position
in space), and S[x] is the action evaluated at path x. The integration takes
into account all pathes that agree with the boundary conditions x(0) = xi
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and x(t) = xf , and weights every path with its action. The considered
standard path integral formulation is for Lorentzian signature of the metric.
An Euclidean version of the path integral, which is also used in statistical
physics, can be obtained by using an imaginary time τ = it, so the path
integral becomes

〈xf | exp(−Ĥτ) | xi〉 =
∫

x(0)=xi,x(t)=xf
Dx exp(−S[x]),

The connection to statistical physics can be made as follows: Suppose that
the Hamilton operator Ĥ has the eigenbasis |n〉, and denote by En the
respective eigenvalue. Set xi = xf = x and integrate over all x∫

dx 〈x | exp(−Ĥτ) | x〉 =
∫

dx
∑
n

〈x | n〉 〈n | exp(−Ĥτ) | x〉 =

=
∑
n

exp(−Ênτ)
∫

dx 〈x | n〉 〈n | x〉 =

=
∑
n

exp(−Ênτ)

The last term is exactly the partition function for τ = β, so the partition
function is given by the path integral

Z(τ) =
∫

dx
∫

x(0)=x,x(τ)=x
Dx exp(−S[x]),

where we only take into account periodic pathes with period τ .
The path integral can formally also be used for quantizing the continuum

version of general relativity, which is in the Euclidean formulation given by

Z =
∫
DM [g] exp(−SEH(g))

Here the metric g takes the role of the configuration variable x, and the
integration is with respect to all possible equivalence classes [g] of (pseudo
Riemannian) metrics on the manifold M . Here two metrics are considered
as equivalent if there is a diffeomorphism that maps the first to the second
metric, which is a corollary from the diffeomorphism invariance of general
relativity (the physical observables do not change if coordinates are trans-
formed by a diffeomorphism). It is also possible to consider all possible
metrics and define the partition function as

Z =
∫ DMg

Vol(Diff(M)) exp(−SEH(g)),
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where the measure DMg has to be divided through the size Vol(Diff(M))
of the diffeomorphism group to eliminate the unphysical degrees of freedom
of the metric introduced by integrating over all possible metrics, and not
over the equivalence classes.
The dynamical triangulation approach is now the following: Integrating

over all physical different geometries or equivalence classes of metrics [g] is
equivalent to integrating over all triangulations T (M) of the manifold M ,
and the Einstein-Hilbert action can than be replaced with the Regge action.∫ Dg

Vol(Diff(M)) exp(−SEH(g))→
∑

T ∈Triang(M)

1
CT

exp(−SRegge(T ))

(5.16)
The factor CT is the size of the automorphism group of the triangulation
T , which has the same implication as the volume of the diffeomorphism
group. It is a prior not clear which weights to assign to each triangulation
T ∈ Triang(M), but the best and reasonable guess is to assign a constant
weight to each triangulation. Note that the sum over T ∈ Triang(M) is
a sum over triangulations of a fixed piecewise linear structure M (which
equals a sum over fixed topology in low dimensions). Including all possible
piecewise-linear (or topological) structures is not possible, which will be
explained in Sec. 5.2.5.

Different to quantum Regge calculus, where the path integral is evaluated
for a fixed triangulation and all possible assignments of the edge lengths,
in the dynamical triangulation approach one uses a constant length a for
every edge length in the triangulation, but evaluates the path integral over
all possible triangulations of the manifold. Using constant edge lengths
leads to constant volumes of the vertices, which simplifies the Regge action
dramatically. In the next Sec. 5.2.2 it will be presented in detail that the
action in d dimensions can be written as

SDT(T ) = κd−2Nd−2(T )− κdNd(T ),

where Nk is the number of k-simplices of the triangulation, and κd and κd−2
are coupling constants (which correspond to inverse temperatures if one uses
the statistical interpretation of the Euclidean path integral). The coupling
constant κd−2 ∝ G−1 corresponds to the inverse of Newton constant G, the
coupling constant κd ∝ G−1(1 + cΛ) depends on both the Newton constant
and the cosmological constant Λ.
Using this in the path integral leads to the partition function

ZDT(κd−2, κd) =
∑

T ∈Triang(M)
exp (κd−2Nd−2(T )− κdNd(T ))
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neglecting the symmetry factor CT . This can be seen as a grandcanonical
partition function with system size N4 and energy N2, and the canonical
part can be split

ZDT(κd−2, κd) =
∑
Nd

exp(−κdNd)
∑

T ∈Triang(M,Nd)
exp (κd−2Nd−2(T ))

where Triang(M,N4) is the set of triangulations of manifold M with Nd

maximal simplices.
In Secs. 4.2 and 4.3 we found numerical hints that the number of trian-

gulations of the sphere scales exponentially with Nd in leading order. We
introduced the notation κ

(c)
d for the prefactor of the exponential scaling,

which is also the entropy density of triangulations. In contrast to our
previous calculations, we have now κd−2 6= 0, and the second part of the
partition function behaves as [41,111]∑

T ∈Triang(M,Nd)
exp (κd−2Nd−2(T )) Nd→∞−−−−→ exp

(
κ

(c)
d (κd−2)

)
,

where κ(c)
d (0) equals the previously considered constant κ(c)

d . In order to get
a meaningful continuum limit, the coupling constants κd and κd−2 may not
be chosen independently, but one has to use κd = κ

(c)
d (κd−2). For smaller

κd the partition function is ill-defined, and for larger κd one gets a finite
〈Nd〉, which does not allow for taking the thermodynamic limit.

5.2.2 The action of dynamical triangulations

In this section the action of dynamical triangulations is derived from the
Regge action (5.13), and we will show that is does only depend on the
total number of simplices. Consider a d-dimensional triangulation with Nk

k-simplices, 0 ≤ k ≤ d, and let all edges of the triangulation have equal
length a. So the k-volume V (σ(k)

i ) of a k-simplex is constant for all simplices
and will be denoted by Vk. So the Regge action (5.13) becomes

SRegge = 1
8πG

Vd−2

Nd−2∑
b=1

εb − 2ΛVd
Nd∑
s=1

1

 ,
Let c be the number of d-simplices (with all edge lengths equal to a) that

have to be placed around a (d − 2)-simplex so that the deficient angle is
ε = 0 (c = 6 for d = 2, note that c /∈ N for d > 2). Then

εb = π

c
(c−Nd(b))
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is the deficient angle at bone b if Nd(b) is the number of incident d-simplices
at bone b. Every d-simplex has

(d+1
d−1
)

=
(d+1

2
)
incident (d− 2)-simplices, so

Nd−2∑
b=1

Nd(b) =
(
d+ 1

2

)
Nd ⇒

Vd−2
8πG

Nd−2∑
b=1

εb = Vd−2
8G Nd−2 −

Vd−2
8cG

(
d+ 1

2

)
Nd

and the total action becomes:

SDT = Vd−2
8G Nd−2 −

Vd−2
8cG

(
d+ 1

2

)
Nd −

NdVdΛ
4πG

= Vd−2
8G Nd−2 −

[
Vd−2
8cG

(
d+ 1

2

)
+ VdΛ

4πG

]
Nd

=: κd−2Nd−2 − κdNd

(5.17)

Here κd−2 and κd are coupling constants, where κd−2 depends on the value
Newton constant G and κd depends on both the value of G and on the value
of the cosmological constant Λ.
The constant c, which is the number of d-simplices that needs to be

incident with an (d − 2)-simplex to get a vanishing deficit angle, can be
calculated using the dihedral angle arccos(d−1), so that we have

c = 2π
arccos(d−1) .

Furthermore the volume Vd of a d-simplex with edge length a is known to
be

Vd =
√
d+ 1
d!2d/2

ad,

so the action of dynamical triangulations can be written as

SDT =
√
d− 1ad−2

2−1+d/2(d− 2)!4G
Nd−2

− 1
4πG

[√
d− 1 arccos(d−1)d(d+ 1)ad−2

21+d/2(d− 2)!
+
√
d+ 1Λad
2d/2d!

]
Nd

Specializing for low dimensions yields

d = 2 SDT = 1
4GN0 −

[
1

8G +
√

3a2Λ
16πG

]
N2 (5.18a)

d = 3 SDT = a

4GN1 −
[

3a arccos(1/3)
4πG + a3Λ

24
√

2πG

]
N3 (5.18b)

d = 4 SDT =
√

3a2

16G N2 −
[

5
√

3a2 arccos(1/4)
16πG +

√
5a4Λ

384πG

]
N4 (5.18c)
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Figure 5.5: Fine-tuning in dynamical triangu-
lations
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Note that for d = 2 in Eq. (5.18a) the number N0 of vertices and the
number N2 of triangles are not independent, but connected by the Euler
characteristic χ of the surface. So there is only one dynamic quantity, and
one generalized inverse temperature, as explained in more detail in Sec. 5.2.3.

The action (5.17) will be used in a path integral formulation, and results
in the partition function

ZDT =
∑
T
eSDT =

∑
T
eκd−2Nd−2(T )−κdNd(T ) (5.19)

Here T is the set of all possible triangulations of a given underlying manifolds.
One can calculate this partition function analytically for d = 2 (compare
Sec. 5.2.3), but one has to use Monte Carlo simulations in higher dimensions,
because analytical results are unknown.

5.2.3 Analytical solution for dynamical triangulations in
two dimensions

In Eq. (5.18a) we saw that the action of dynamical triangulations in d = 2
is given by

1
8GN0 −

[
1

16G +
√

3a2Λ
32πG

]
N2

Note that the number N0 of vertices and the number N2 of triangles are not
independent, but connected for closed surfaces by the Euler characteristic
χ through

χ = N2 −N1 +N0
3N2 = 2N1

}
⇒ N0 = χ+ 1

2N2.

Remember that the two equations are the Dehn-Sommerville relations (4.6)
for two-dimensional triangulations, the second claiming that in a closed
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triangulation there are two triangles per edge, and three edges per triangle.
So the actual action becomes

SRegge = χ

4G −
√

3a2Λ
16πG N2 := χ

4G − κ2N2.

This can also be seen more directly: The Gauss-Bonnet theorem tells us
that in a two-dimensional closed manifold the deficit angles εv at vertices v
are connected with the Euler characteristic χ of the manifold by∑

v∈V
εv = 2πχ,

which can be used in Eq. (5.13) for eliminating the sum over deficit angles.
This leads to the same result as given before. The coupling constant or
generalized inverse temperature κ2 is also denoted as bare cosmological
constant.

Inserting the action into the partition function (5.19) of dynamical trian-
gulations yields

Z = exp
(
χ

4G

) ∑
T (M)

exp (−κ2N2)

In Sec. 4.2 it was shown numerically that the number of triangulations g(N2)
with N2 maximal simplices scales as

g(N2) ∝ eκcN2 with κc = log
(√

256
27

)
≈ 1.125

for N2 →∞, independent of the genus or the orientability of the surfaces.
The result is proven for triangulations of the 2-sphere S2 with χ = 2 [398].
The partition function then becomes

Z = exp
(
χ

4G

)∑
N2

g(N2) exp (−κ2N2) = exp
(
χ

4G

)∑
N2

exp ((κc − κ2)N2) .

Note that for κ2 ≤ κc the partition function diverges. For κ2 > κc the
partition function is a convergent geometric series, which results in

Z = exp
(
χ

4G

) ∞∑
N2=0

(exp(κc − κ2))N2 −
N2,min−1∑
N2=0

(exp(κc − κ2))N2


= exp

(
χ

4G

) exp ((κc − κ2)N2,min)
1− exp(κ2 − κc)

(5.20)
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Figure 5.6: Expectation value
〈N2〉 for two-dimensional dynam-
ical triangulations for different
approximations. Full solution
(5.21) (solid), neglecting the term
κ2N2,min ≈ 0 (dashed) and ap-
proximating 〈N2〉 ≈ (κ2− κc) for
κ2 ≈ κc (dotted).
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For κ2 ≈ κc the partition function becomes

Z = exp
(
χ

4G

) 1
κc − κ2

which is also the result if one replaces the infinite series with an integral
with respect to dN2 .

Since the partition function is known explicitly as function of κ2, expec-
tation values of observables can easily be calculated as derivatives of the
partition function. For the average number of triangles we get e.g.,

〈N2〉(κ2) = − ∂

∂κ2
logZ = exp(κc − κ2)

1− exp(κc − κ2) + κ2N2,min (5.21)

This quantity is displayed in Fig. 5.6 together with the approximations
κ2N2,min ≈ 0 and κ2 ≈ κc, which leads to

〈N2〉(κ2) ≈ 1
κ2 − κc

= − ∂

∂κ2
log

( 1
κ2 − κc

)
which is also the result if one derives the logarithm of the approximated
partition function.
One can also calculate the fluctuations in the number of triangles using

derivatives of the partition function by

VarN2(κ2) = ∂2

∂κ2
2

logZ = − exp(κc − κ2)
[1− exp(κc − κ2)]2 +N2,min

which is approximately

VarN2(κ2) ≈ − 1
(κc − κ2)2

for κ2N2,min ≈ 0 and κ2 ≈ κc.
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The discretisation length a, which is the length of all edges in the tri-
angulation, is an unphysical quantity, because it is just the discretisation
scale. So the results or expectation values obtained should not depend on
a. The only possibility to get this in our statistical setup is to obtain a
phase transition, where a statistical system becomes scale free. In this setup
the phase transition happens for λ→ λc, one can see that in this limit the
discretisation edge length a is not important. Since

κ2 =
√

3
4π

1
8GΛa2

we can introduce a renormalized coupling constant KR = a−2(κ2 − κc) and
take a continuum limit such that a→ 0, κ→ κc with KR fixed. Intuitively
this means that the number of triangles 〈N2〉 → ∞, but the area of a single
triangle becomes arbitrary small, while the area of the universe is kept
constant. This area can be calculated by

〈A〉 ∝ a2〈N2〉 = a2

κ− κc
= 1
KR

,

so KR can be interpreted as the inverse area of the universe. All other
physical quantities, e.g., the fluctuation of the area

VarA ∝ a4 VarN2 = − a4

(κ2 − κc)2 = − 1
K2
R

can then also be calculated in terms of the renormalized physical coupling
constant KR.

The model of two-dimensional dynamical triangulation can also be solved
if one takes into account the sub-exponential scaling behavior of the number
of triangulations of a surface. In Sec. 4.2 we saw that

g(N2) = Nγ
2 exp(κcN2),

with γ being a constant that depends only on the topology (orientability
and genus of the surface). Using this in the partition function yields [418]

Z :=
∞∑

N2=1
Nγ

2 [exp(κc − κ2)]N2 = Li−γ(κc − κ),

where Lic(x) is the polylogarithm of order c. The derivative of the polylog-
arithm is ∂ Lic(x)/∂x = Lic−1(x)/x [418], so the expectation value 〈N2〉 for
the number of triangles can be calculated as

〈N2〉 = − ∂

∂κ
logZ = Li−γ−1(κc − κ)

(κ− κc) Li−γ(κc − κ) = 1
κ− κc

− 2γ +O(κ− κc)
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So taking into account the sub-exponential scaling decreases the average
number of triangles, but if one considers again the physical relevant limit
a→ 0, κ→ κc with KR fixed, one gets for the area of the universe

〈A〉 = a2〈N2〉 = 1
KR
− a22γ a→0−→ 1

KR
.

This means that in the physical relevant limit the area does not depend on
the actual topology of the considered surface. Further calculations show
that this is also valid for the fluctuations of the area.

5.2.4 Results of the dynamical triangulation approach

In this section we present the results that were obtained using the dynamical
triangulation approach. Therefor we mainly follow the 1998 review paper
of Loll [280], but also include some new results.
Remember that dynamical triangulations have two free parameters,

namely κd−2 and κd, but that κd has to be chosen as the critical value
κcd(κd−2) that depends on κd−2, in order to get a converging partition func-
tion that allows for a thermodynamic limit. So there is only one controllable
parameter, the coupling constant κ2.
Already early simulations found that there is a critical value κc2(N4)

the depends on the number N4 of maximal simplices that separates a
crumpled phase for κ2 < κc2 and an elongated phase for κ2 > κc2 [3, 4, 27].
It was first suggested that the critical coupling constant κc2(N4)→∞ for
N4 →∞ [110,130], but later simulations for larger values of N4 showed that
κc2(N4) converges towards a constant value for N4 →∞ with a power law
|κc2(N4)−κc2(∞)| ∝ N−δ4 with δ = 0.47±0.03 and κc2(∞) = 1.336±0.006 [30].
An important question about this phase transition is whether it is a

continuous (second-order) or discontinuous (first-order) phase transition. A
continuous phase transition is feasible because it can lead to a flat ground
state [280]. As for the scaling of the critical point κ2(N4), also for the
order of the phase transition has been subject to a major discussion in
the literature. The very first calculations in Ref. [4] claimed the phase
transition to be first order, because a hysteresis in the average curvature was
found. Many successive studies argued for a second-order phase transition
using different methods, e.g., considering the Binder cumulant [14, 403], the
critical exponent of certain observables [3, 403], or the height of the peak
in the susceptibilities [30,32,110] (Note that in some of these simulations
some modifications were applied that are explained in the next paragraphs).
But examining the finite size scaling in all these studies is difficult due to
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the critical exponents being hard to determine [280]. So some time later
there were other studies with higher system sizes that found again that the
phase transition is in fact first-order [90,129], by calculating the distribution
of some observables and showing that there is a two-peak structure that
survives for N4 →∞. Recently there has been a further examination of the
phase structure in Ref. [345], where the author listed some mistakes that
were done in the previous simulations (compare also Sec. 5.2.5). But also
with a correct simulational setups, in Ref. [345] the phase transition was
found to be first-order.

For examining closer the structure of the two phases a convenient observ-
able is the expected effective dimension in the respective phases. One has
several possibilities to define length and dimension. A convenient choice for
measuring distance is the geodesic distance r between two maximal simplices,
which is the shortest path length in the dual graph of the triangulations
(the minimal number of hops to neighboring maximal simplices that has to
be done in order to go from the one to the other simplex). The geodesic
distance can be used for defining the fractal dimension of the triangulated
space [131], also denoted as Hausdorff dimension. If Ns(r) denotes the
number of simplices that have geodesic distance r or less from a given
maximal simplex s, and Vs(r) ∝ Ns(r) is the volume of the r-ball, then we
denote by 〈N(r)〉 and 〈V (r)〉 the averages over all maximal simplices s of
the triangulation. The fractal dimension df describes the scaling of 〈V (r)〉
in the power law

〈V (r)〉 ∝ 〈N(r)〉 ∝ rdf

Another dimensional measure is the spectral dimension, which is defined
using a random walk on the dual graph of the triangulation [39]. If ps(t)
is the probability that a random walker being initial at maximal simplex
s is back again at s after time t, the spectral dimension ds is the average
scaling exponent of this quantity

〈p(t)〉 = 1
Nd

Nd∑
s=1

ps(t) ∝ t−ds/2

In general both dimensional measures do not need to coincide.
The two different phases are commonly described as crumpled or hot

phase for κ2 < κc2(N4) and as elongated or cold phase κ2 > κc2(N4) [45, 345].
In the crumpled phase there is one highly connected cluster of maximal
simplices, and only a few clusters outside that have a size which is way
below the size of the main cluster. In the elongated phase there are several
clusters of comparable sizes, which are connected among each other only
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Figure 5.7: Phase diagram of 4d dynamical
triangulations. The coupling constant κ4 has to
be tuned to its critical value κc4(κ2) to obtain
the infinite-volume limit (compare Fig. 5.5 for a
detailed explanation). One observes that there
are two different phases: For low κ2 there is a
crumpled phase with one big cluster, for high
κ2 there is an elongated phase with several
clusters connected by small structures. At the
critical point one finds probably a first-order
phase transition according to literature.
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through very small structures [345]. The average curvature in the elongated
phase is positive in the elongated phase, but very small in the crumpled
phase [27]. The fractal dimension of the crumpled phase approaches∞, and
is approximately 2 in the elongated phase [345]. A qualitative plot of the
phase diagram can be found in Fig. 5.7.
For a closer examination, one can use methods of renormalization group

theory and calculate the renormalization flows. The standard approach is
to apply this to continuous phase transitions to obtain the continuum limit,
but it is also possible to consider first order phase transitions. For dynamical
triangulations, two different approaches for defining the renormalization step
were tried. The first is to cut baby-universes from the whole triangulation
[90, 105], but this has the disadvantage that it is not possible to apply
several steps successively. The second is a blocking procedure that consists
of removing vertices from the triangulation using a generalized removal
step [340,341].
There have also been tries to extend the model by several modifications.

One ansatz is to include higher derivative terms (e.g., ∝ R2 and ∝ RµνRµν)
into the Einstein-Hilbert and therewith the Regge-action, which introduces
the term [32]

∆S = κHD · cd ·
∑
b∈B

(
cd −Nd(b)
Nd(b)

)2

where cd denotes the (not necessarily integer) number of d-simplices that
have to be arranged around a (d−2)-simplex (bone) to have no deficit angle,
Nd(b) denotes the actual number of d-simplices incident with the bone b,
and κHD denotes the additional coupling constant. This is comparable
with the energy function that we introduced for lattice triangulations in
Chap. 3. For the considered parameter ranges in Ref. [32] no qualitative
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difference was found compared to the standard case κHD = 0. Another
possible modification is not to consider triangulations of the d-sphere, but
to use triangulations of other topologies. But again for this modification
no qualitative difference was found [91,93]. It is also possible to consider
triangulations with boundaries, introducing an additional boundary coupling
constant. In both three and four dimensions one gets additional phases that
are dominated by the boundary, but also the transitions between this phase
and the other phases are discontinuous [409,410].

Until now only vacuum solutions of Regge calculus and dynamical triangu-
lations were considered. Of course for a complete theory of quantum gravity
there has to be a possibility to couple the gravitational degrees of freedom
to some matter fields, and to take into account the back-reaction of the
matter fields on the geometry. In the approach of dynamical triangulations,
several Ansätze were tried. Coupling dynamical triangulations with Ising
spins and Gaussian fields did not induce qualitative differences to vacuum
gravity, even if one includes higher derivative terms in the curvature [14,32].
Also the use of Z2 spin variables cannot change the critical region between
the two phases [31]. The introduction of coupling to several U(1)-fields in
d = 4 led to a possible replacement of the branched-polymer phase with a
weakly coupling phase with fractal dimension of 4 [92], which also can be
understand in mean field theory [49]. But the considered system sizes are
to small to get reliable results [280].

5.2.5 Problems of the dynamical triangulation approach

There are also some problems related with the approach of dynamical
triangulations, which we will summarize in this section.
In Sec. 5.2.1 it was mentioned that it is not possible to include all trian-

gulations of all piecewise-linear structures (of the considered dimension d)
into the partition sum. The problem is that not fixing the piecewise-linear
(or, in low dimension equivalently, the topological structure) would imply
that more than exponentially many simplicial complexes with Nd maximal
simplices have to be taken into account in the sum (compare e.g., Cor. 2.3.2
and Cor. 2.3.5 in Ref. [77] for proof for d = 2 and d = 3). Formally written
this means that there is no constant C such that g(Nd) ≤ exp(CN2), which
induces that the entropy density grows with the system size (and does
not converge towards a constant value), so the thermodynamic limit is not
well-defined. Intuitively, it is irrelevant on how large the coupling constant
κd is chosen, the system is always driven to infinite system size due to
entropy. Fixing the topology or the piecewise-linear structure means that it
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has to be given as an input parameter into the theory or into the simulations,
but it would be more desirable if the (perhaps average) topology of the
universe would be an outcome of the theory.
As explained in Chap. 4 even if restricting to a certain piecewise linear

structure (like a sphere), it is not proven that there not more than expo-
nentially many spheres for d = 3 and d = 4, so the model may even be
ill-defined in the restricted version. In fact one can show that the number of
so-called locally constructable spheres (which is an actual subset of all sim-
plicial spheres [77]) grows only exponentially with the number of maximal
simplices [147], and one can limit the summation in the partition function
only to those locally constructable spheres. However, such a restriction
is very arbitrary, and there is no argument in favor for such a restriction.
There are simulations arguing for and against exponential bounds in three
and in four-dimensions [28,44,45,100,104,111,112], and also in Sec. 4.3 of
this thesis, but of course they can only give some clues and hints and no
strict mathematical proofs.

Using the Metropolis algorithm in the setup of dynamical triangulations
forces the restriction to a quasi-canonical ensemble. Directly restricting to
a fixed N4 is not possible because in general there is no set of canonical
ergodic moves. The usual cure to keep the simulation near a given N4 is
to introduce an additional potential γ(N4 − N4)2 that penalizes systems
near the desired N4, and to take the measurements only if the system is
at N4 = N4 The coupling constant γ is unphysical and has to be chosen
large enough that enough systems have N4 = N4, but small enough that
ergodicity is not violated. In Ref. [113] the system was forced to lie in the
range N4±∆N4, and for N4 no dependence of the expectation values of the
number of vertices and the average length on ∆N4 was found for N4 = 4000.
In Ref. [91] the parabolic penalty was used and a comparison between the
distribution of N0 was performed for an effective ∆N4 = 45 corresponding
to γ = 5 ·10−4 and ∆N4 = 14 corresponding to γ = 5 ·10−3 near the average
value N4 = 3.2 · 104, and no qualitative disagreement was found.2. The data
obtained by the systematic studies using Wang-Landau simulations in this
thesis for three-dimensional topological triangulations (presented in Sec. 4.3)
shows that there can be in fact a problem with ergodicity if introducing an
additional term. This differs from the two former considerations in literature,
because in Ref. [113] only very small triangulations were considered, and in

2 In fact, the authors of Ref. [91] claim that they considered both γ = 5 · 10−4 and
γ = 5 · 10−3, but they did not mention which one they use for the comparison with the
large deviation. So one has to conjecture that γ = 5 · 10−4 was used
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Ref. [91] the considered γ is larger than usual choices of γ (e.g., γ = 5 · 10−3

in Ref. [111]), so ergodicity breaking is weak. But also in the literature
there is the concern that the simulational setups of Refs. [93, 113] consider
too small system sizes [93,280].
Beside the problem of ergodicity, triangulation have to fulfill also the

stronger notion of computational ergodicity. Triangulations are computa-
tionally ergodic, if they are ergodic and there is a recursive function that
bounds the number of Pachner moves that is necessary to go from one to
the other triangulations. It was proven that the 4-sphere is not computa-
tionally ergodic [308]. This is strongly related with the question whether
the d-sphere S4 (or any other topology that is used in the simulation) is
recognizable, i.e., whether there exists an algorithm that decides whether the
triangulated space of an arbitrary input d-triangulation is homeomorphic
to the d-sphere. For d = 1 and d = 2 this is trivial, in the former case
one has to check that for each vertex there are two edges incident with
it and vice versa, for the latter one has to calculate the Euler character-
istic χ. In three dimension the question was solved only in the 1990s by
Rubinstein and Thompson [355, 356, 389], but it can be shown that this
algorithm is in the NP complexity class [359]. For d ≥ 5 it can be shown
that the d-sphere is not recognizable (§10 by S. P. Novikov in Ref. [405]),
and for d = 4 it is currently unknown whether the S4 is recognizable or not.
There are numerical studies that claim that the 4-sphere is recognizable
by performing simulated annealing on triangulated 4-spheres simplifying
triangulations to the boundary of the 5-simplex and obtaining that there
are no large barriers in N4 [29]. But one the one hand there are also such
studies for the 5-sphere [128], which is known to be non-recognizable, and
on the other hand the algorithm used for creating triangulations of the S4

in [29] is constructing spheres from the boundary of the 5-simplex, so it is
not astonishing that they can be simplified easily to the boundary of the
5-simplex again.

In the recent simulational study in Ref. [345] the following three possible
sources for errors were listed, especially for the setup of Refs. [3, 110]:

• The simulation time was measured not in terms of suggested steps as
usual in Monte Carlo simulations, but in terms of accepted steps, which
can be problematic because there are different acceptance probabilities
at different inverse temperatures.3

3 This can be understood in the following way: Consider a two-state system with energies
E1 = 0 and E2 = E. A standard Metropolis simulation with inverse temperature β � 0
will almost always stay in the state E1 and rejecting steps to E2. So the e.g., the average

298



5.2. Fluctuating geometry - Dynamical triangulations

• The use of a harmonic potential to keep the simulations near the
desired value of N4 can induce errors, as already mentioned in Sec. 4.3.
The authors of Ref. [345] suggested to simply cut the available energy
range.

• There is no systematic examination of the autocorrelation time.

Until now we listed only problems involving the simulational setup. Be-
side these there are also some results that make it questionable whether
dynamical triangulations are feasible as model for quantum geometry. Since
there is successor model called Causal Dynamical Triangulations (presented
in the next section) by some of the main contributors to the dynamical
triangulation setup, of course several problems of the latter are listed in
motivations for constructing the former approach, that may otherwise never
be mentioned in any papers of the main contributors.

The main problem associated with four-dimensional dynamical triangula-
tions is that the fractal dimension is df 6= 4 on large length scales, but df = 2
or df = ∞ depending on the considered phase. This is despite the fact
that one uses explicitly four-dimensional simplicial building blocks as input
parameter for the simulation. It was proposed that an additional non-trivial
measure term in the action (which introduces a third coupling constant) can
lead to a phase with fractal dimension four on large scales [268], but this
additional measure term together with the coupling constant cannot be mo-
tivated directly from the Einstein-Hilbert action or its discrete analogue, the
Regge action. Furthermore it was shown later on that the additional phase
shows features that are not compatible with an expanded universe [124].

An important problem is that the path integral used to define the model
of dynamical triangulations is an Euclidean path integral, whereas the
physical world we live in is a Lorentzian spacetime, so a Lorentzian path
integral should be used. The usual procedure for transforming an Euclidean
path integral into a Lorentzian one, the Wick-rotation, can only be applied
under certain very restrictive conditions (e.g., if the time- and the space-
components of the metric tensor do not mix, and the spatial components
are independent of time) [42]. The intuitive reason is that in a general
four-dimensional manifold there is no preferred direction of time [33]. So
it is unlikely that performing an Euclidean path integral as in dynamical
triangulations can be used at all to describe a Lorentzian spacetime (in
contrast to usual lattice QFT) [42].

energy is 〈E〉 = 0. If one takes only into account accepted steps, one misleadingly
calculates the average energy to be 〈E〉 = (E1 + E2)/2 = E/2.
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Figure 5.8: Change of the spatial topology in
the setup of dynamical triangulations. If one
tries to artificially impose a time-direction on
a manifold (here S2 if one includes the lower
and the two upper cups), it is possible that
the topology changes. If the time direction is
assumed to be from bottom to the top, for early
times we have the spatial topology S1, and for
late times we have the topology of two different
S1. Furthermore there are critical points where
one cannot define a causality structure (blue
corresponds to future, red to past, and grey to
unknown). This figure is adopted from [193,
p. 13].

Another problem that is related to the previous is that given an arbitrary
triangulation of, e.g., S3 it can be impossible to choose a time-direction
such that the spatial topology remains unchanged. Consider e.g., dynamical
triangulations defined on S2 as depicted in Fig. 5.8. Imposing an artificial
time direction can lead to a change in the topology, and there are critical
points where one does not have a valid causal structure (i.e., one cannot
define past and future).
A minor problem that we list for completeness is that it is argued in

Ref. [48] that the expectation value 〈R〉 of curvature should vanish in the
thermodynamic limit. But in the considered setup of dynamical triangu-
lations we have 〈R〉 > 0, also in the cases of the modified action and the
modified topology. Sometimes it is argued in literature that the volume
and the curvature contributions to the action mix during a renormalization
process, so that the curvature in fact vanishes [131].

5.2.6 Multicanonical algorithms for dynamical
triangulations

The results for dynamical triangulations presented in Sec. 5.2.4 were mainly
obtained using a Metropolis Monte Carlo algorithm. The problems of
the dynamical triangulation approach listed in Sec. 5.2.5 are sometimes
related with this particular choice of algorithm. One might suggest that
using multicanonical algorithms as the Wang-Landau algorithm can be
used for the numerical treatment of dynamical triangulations, since we
successfully applied it e.g., in Sec. 4.2 for calculating the entropy density
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κ
(c)
d of topological triangulations, a quantity that is of direct importance for

the dynamical triangulation approach. In this section we will show some
problems that occur if trying to use multicanonical methods on dynamical
triangulations in three and higher dimensions.
Using the standard Wang-Landau algorithm for calculating the density

of states (DOS) g(Nd, Nd−2) in terms of Nd and Nd−2 directly is computa-
tional expensive. To calculate canonical expectation values at Nd maximal
simplices on has to consider an interval Nd ∈ [Nd −∆Nd, Nd + ∆Nd] with
high enough ∆Nd to avoid problems with ergodicity as described in Sec. 4.3.
For each possible Nd there are a huge number of possible Nd−2, and for each
pair their is a bin of the DOS to be calculated. As calculated in Sec. 2.3.2
the calculation time for the Wang-Landau algorithm scales as b log b, where
b is the number of energy bins. So it is hard to use the Wang-Landau
algorithm for calculating g(Nd, Nd−2) in a reasonable computation time.
One possible cure is to use the replica exchange version of the Wang-Landau
algorithm [404], because here one can subdivide the density of states without
violating the ergodicity, because a certain replica can actually reach every
possible value of (Nd, Nd−2) through replica exchange steps.

Since the DOS g(Nd, Nd−2) is not directly accessible numerically, one can
try to split the calculations into two parts. Note that the partition function
is given by

Z(κd, κd−2) =
∑

T ∈Triang(M)
exp(−κdNd(T ) + κd−2Nd−2(T )

=
∑
Nd

exp(−κdNd)
∑

T ∈Triang(M,Nd)
exp(κd−2Nd−2(T )).

The second part of the partition function can be interpreted as canonical
partition function Z(Nd, κd−2) for fixed Nd. This is used by the usual
Metropolis simulations by restricting the simulation to a certain quasi-
canonical range around Nd, but therefor a fine-tuning of the parameter κd
to its critical values κcd(κd−2) is necessary as described above. But also a
multicanonical approach is possible. First the integrated DOS g(Nd) =∑
Nd−2 g(Nd, Nd−2) can be calculated using the Wang-Landau algorithm as

described in Chap. 4. Then this DOS can be used for a combined sampling
which is flat in Nd and Metropolis-like in Nd−2, so that the actual sampling
probability becomes

P (Nd, Nd−2) ∝ 1
g(Nd)

exp(κd−2Nd−2),
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which can be used for calculating acceptance probabilities (Note that in
practice one has to restrict the range of possible Nd to an interval big enough
so that the ergodicity holds, and that one only takes measurements for
Nd = Nd. This works for κd−2 ≈ 0, but fails for other values of this coupling
constant. The reason is the following: The integrated DOS g(Nd) is the
DOS for simple sampling in Nd−2. Using a high coupling constant κd−2
drives the system to high or low Nd−2, which effectively changes the DOS4.
This means that in the simulations the system is driven to the boundaries
of the interval in Nd, which could be in principle corrected by modifying
the coupling constant κd, but this corresponds to a fine-tuning procedure
one would like to avoid.
The only time a multicanonical algorithm was applied in the setup of

dynamical triangulations was in Ref. [220] for d = 3. Unfortunately this
work was not recognized in the literature about triangulations as spacetime
models. The main problem of this paper is that they claim to use a very
small interval in N3 for their calculations. This reduces the number of bins
in the DOS and speeds up the calculation, but also the ergodicity of the
Pachner moves is probably violated (as shown in Sec. 4.2).

4 For the same reason the critical coupling κcd(κd−2) is not only a function of the system
size, but also on the coupling constant κd−2 used
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5.3 Fluctuating spacetimes - Causal Dynamical
Triangulations

In Sec. 5.2.5 it was presented that several problems occur within the approach
of dynamical triangulations. Beside all the problems that are related to
the simulational setup, one cannot observe any structures that look like
the universe we are living in on large length-scales. Furthermore, there can
be severe problems with causality, because there are a lot of triangulations
where it is not possible to define a proper time direction. There have been
several tries to modify the setup or the action of dynamical triangulations
to solve this physical problems, e.g., by including higher derivative or non-
trivial measure terms into the action, or by coupling the action to matter
(compare Sec. 5.2.4 for details and references), but none of them lead to a
real solution of the problems.

The key ingredient to solve some of the problems goes back to an idea of
Claudio Teitelboim [385,386] and was adopted to dynamical triangulations
first 1998 in Ref. [42]. The idea is in order to have a properly defined path
integral to only include single pathes that obey causality. Transfered to the
dynamical triangulation approach this means that only causal triangulations,
i.e., triangulations with a valid causal structure, should contribute to the
partition function. The implementation of this idea in fact lead to a solution
of some of the problems that arise in the dynamical triangulation approach.
In this section we first define a causal triangulation and formulate the

partition function of the model called causal dynamical triangulations
(CDT). Then we give a short introduction about the existing literature and
present the most important results of the CDT approach. To be able to use
Markov chain Monte Carlo simulations within this approach we afterwards
describe the how to define causality preserving flips and to construct small
causal triangulations. The next step is to modify the action of dynamical
triangulations to take into account the Lorentzian signature of the metric
and the artificial break of symmetry between space-like and time-like links.

Using Wang-Landau simulations it is possible to calculate the density of
states of causal triangulations of one slice. We will present how this density of
states can be used for calculating a transfer matrix and to directly calculate
the limit of infinite time slices. This exact transfer matrix approach will be
applied numerically to (2 + 1)-dimensional causal dynamical triangulations,
where there is strong evidence for a second order phase transition that
is claimed to be needed for defining a valid continuum limit, but only in
one phase of the discontinuous phase transition used fro fine-tuning. We
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conclude this section by describing some remaining problems of the causal
dynamical triangulation approach and presenting a summary and an outlook
on work that can be done with our methods in the setup of causal dynamical
triangulations.

5.3.1 Causal dynamical triangulation setup

In this section we present how the already considered approach of dynamical
triangulations (DT) can be modified to get a causal version thereof. We
present the basic ideas of this new causal dynamical triangulation (CDT)
approach and list the main differences to the standard approach of DT.

Remember that the model of dynamical triangulations was defined as an
(Euclidean) path integral over all possible discretized versions of a given
manifold (which are the triangulations), each of them weighted with the
Regge action. This definition leads to the partition function (5.16) of
dynamical triangulations

ZDT(κd−2, κd) =
∑

T ∈Triang(M)

1
CT

exp (−SDT(T , κd−2, κd)) ,

where T ∈ triang(M) is an arbitrary triangulation of a given manifold M ,
and SDT(T , κd−2, κd) is the action (5.17) of dynamical triangulations that
depends on topological quantities of the triangulation T (namely the number
Nd of d-dimensional and the number Nd−2 of (d− 2)-dimensional simplices)
and on some coupling constants κd and κd−2, and CT is a symmetry factor
that can be set to one in almost all situations. One can use analytical cal-
culations or Monte Carlo simulations to find expectation values with regard
to this partition function, in order to draw conclusions about the generated
spacetime. But also with some modifications there are several problems
(presented in Sec. 5.2.5) in the approach of dynamical triangulations that
could not be solved.
Two of the main problems associated with the DT approach are that

it is defined purely within Euclidean signature, and that there can occur
configurations that violated causality. The latter might not be a problem
at all, because one can conjecture that these strange configurations are of
measure zero with respect to the other configurations, and do not contribute
to the partition function at all. But the Euclidean signature can probably
not be turned to a Lorentzian signature of the whole spacetime even if
considering the ensemble of all triangulations (at least this cannot be
observed in the simulations).
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One possible refinement that can cure these problems is commonly known
as causal dynamical triangulations (CDT) approach, which considers causal
triangulations or equivalently a foliation of the underlying spacetime mani-
folds. It goes back mainly to the work of Jan Ambjørn, Renate Loll and
Jerzy Jurkiewicz starting in 1998 (see e.g., Refs. [35, 42] for some early
original papers, and [38,281] for some reviews), but they claim that their
idea goes back to Claudio Teitelboim [385, 386] in 1983. He argues that
history as well as causality have to be implemented into the single pathes
of a path integral formulation of quantum gravity, which means that for
the path integral one considers only such pathes or spacetimes where every
spatial geometry is either in the past or in the future of every other spatial
geometry.
This led to the idea to replace the Euclidean path integral over all

possible triangulations T ∈ triang(M) of an arbitrary manifold M with the
Lorentzian path integral over triangulations respecting the causal structure
of a manifold M = Σ× I, where Σ is the underlying manifold of a single
spatial slice and I is the manifold describing the topology of the time
coordinate, which can be an open interval ⊂ R or the closed 1-sphere S1:

ZCDT(~κ) =
∑

T ∈cTriang(Σ×I)
exp (iSCDT(T , ~κ))

where cTriang(Σ× I) is the set of triangulations admitting a proper causal
structure, and SCDT(T , ~κ) is the action of the causal triangulation T (de-
scribed in details later) that depends furthermore on a set ~κ of coupling
constants. A common choice for the spatial manifold is the (d− 1)-sphere
Σ = Sd−1. Since a triangulation consists of a finite number of vertices,
there is also only a finite number T of spatial slices that can be indexed by
natural numbers Σ0, . . .ΣT−1.
Before we give conditions whether a triangulation is a causal one, we

first introduce some technical definitions. An edge is called space-like, if
the constituting two vertices lay in the same spatial slice Σt. Otherwise
it is called time-like, which implies that the constituting vertices lay on
different spatial slices. A simplex is called space-like, if all of its one-
dimensional subsimplices (edges) are all space-like, otherwise it is called
time-like. We define a 0-simplex to be space-like, although there are no
edges as subsimplices, but the previous definition implies that for a space-
like simplex all constituting vertices live in the same spatial slice, which is
trivially fulfilled for a vertex.
A triangulation is now defined to admit a proper causal structure, if for

each vertex one can choose a unique time coordinate (w.l.o.g. ∈ Z), so that
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Figure 5.9: Example of valid causal triangulation (left), and examples of tri-
angulations (middle and left) violating the causality structure, both in (1 + 1)
dimensions. In the middle triangulation the blue vertex cannot be assigned a valid
time coordinate (because it lies between two spatial slices). In the left triangulation
the spatial triangulation at time coordinate t = 2 is not a triangulation of the
spatial manifold S1.

each vertex at time coordinate t is only connected with vertices with time
coordinates t and t±1. (The time coordinate t of a vertex corresponds to the
index of the spatial slice Σt) Furthermore all space-like simplices consisting
of vertices with the same time coordinate form a valid triangulation of Σ.
So it is, e.g., not allowed to have simplices that consist of vertices which are
located on more than two spatial slices, or on two spatial slices that are no
direct neighbors5. Examples for valid and non-valid causal triangulations in
(1 + 1) dimensions can be found in Fig. 5.9.

Since by this definition simplices contain only vertices from two neighbor-
ing spatial slices, a time-like k-simplex can be classified further by specifying
how many of its vertices live in the different spatial slices, so we denote by
(k, k)-simplex a k-simplex (k = k + k − 1) with k vertices located in the
one spatial slice, and k vertices located in the other spatial slice. Since the
order of the spatial slices is not important, we define that k ≥ k. Using this
scheme a space-like k-simplex can be denoted as (k + 1, 0)-simplex.

In addition to the structure of the triangulation also the structure of the
simplicial building blocks is changed in the CDT approach. Remember that
in the DT approach all edge lengths were fixed to a constant value a. Due to
the Lorentzian signature of the metric space-like edges must have a positive
spacetime interval `2space > 0, whereas time-like edges must have a negative
spacetime interval `2space < 0. In the CDT approach one also allows different
absolute values for the spacetime interval for time-like and space-like edges,
which describes an imbalance between space and time direction. Usually

5 In this section we denote as spatial slice a (d − 1)-dimensional triangulation of the
spacetime (d− 1)-manifold Σ, and as (time) slice the d-dimensional triangulation of
two neighboring spatial slices and the d-dimensional space inbetween
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one sets `2space = a2 for space-like edges, and `2time = −αa2 for time-like
edges. The parameter α then becomes important for the Wick rotation.

5.3.2 Important results in causal dynamical triangulations

In this section we give a short overview about the existing literature and
results within the causal dynamical triangulation (CDT) approach. For a
first impression about CDT there is a popular science review [40] presenting
the basic concepts, and scientific review papers [38,281] for literature review
and the basic results.
In 1998 Jan Ambjørn and Renate Loll for the first time introduced

causality into the dynamical triangulation (DT) approach and were able to
solve causal dynamical triangulations analytically in (1 + 1) dimensions [42].
Later on it was shown that there is a one-to-one correspondence between
DT and CDT if one allows for changes in the spatial topology (which is
normally excluded to prevent the formation of baby universes) in the latter
approach [15,43]. CDT in (2 + 1) and (3 + 1) dimensions was first treated
in Refs. [35] and [36], respectively.
Due to the split of the considered space in one time and several space

directions it is easier to find mathematical results about the extensivity of
causal triangulations. It was found in Ref. [148] that (2 + 1)-dimensional
causal triangulations are extensive in terms of the number of 3-simplices,
and that (3 + 1)-dimensional causal triangulations are extensive in terms of
the number of 4-simplices if there are exponentially many 3-spheres (which
is still an open questions, see Sec. 4.3).
Due to causal dynamical triangulations being solvable analytically in

(1 + 1) dimensions, proofs and extensions were performed mainly in this
dimensionality. There were, e.g., several tries to include a coupling between
matter and geometry into the theory [22–24,46, 81] (the coupling in (3 + 1)
dimensions was examined numerically only in Ref. [246]). Furthermore, in
Refs. [282,283] it was shown that in (1+1)-dimensions including a sum over
all possible topologies of the manifold into the partition function is possible
and does, in contrast to Euclidean dynamical triangulations, not lead to
an over-exponential scaling of the number of triangulations in terms of the
system size, which seems to be a really good result, because one does not
have to artificially input a certain topology from the beginning. But note
that there is a fundamental difference between the notion of summing over
all topologies in the two setups, although they are both two-dimensional: In
DT this means summing over all possible 2-manifolds, whereas in CDT this
notion means summing over all possible 1-manifolds M1 and using I ×M1
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as underlying manifold of the causal triangulation6. Furthermore, it is
definitely not possible to include a sum over the topologies into the partition
function of CDT in more than two dimensions, because then already the
number of triangulations of the spatial slices grows faster than exponential.
The discovery of the phase structure and the analysis of the transitions

between the phases was a big success in (3+1)-dimensional causal dynamical
triangulations [25, 26]: It was found that in the two-dimensional parameter
space (κ1, ∆ after fine-tuning κ3 → κ

(c)
3 (κ1,∆) one can find three different

phases. The first is dominated by triangulations where the three-volume
V3(t) ∝ N3(t) of the spatial slices has only a finite value at one time-
coordinate t0, and all other three-volumes almost vanish. To the second
phase there contribute mainly triangulations where the three-volume V3(t)
has peaks at some time-coordinates t1, . . . , tk, but the spatial slices with
non-vanishing three-volume are separated by spatial slices with vanishing
volume. Clearly, on large scales these phases or a transition do not describe
the spacetime we live in. But there is a third phase, which is denoted as
extended phase, where most or all time slices have a non-vanishing three-
volume. The transition between the one-slice and the extended phase is
continuous (or second order), the transition between the multiple-slice and
the extended phase is discontinuous (or first order).

Furthermore there are hints that between the one-slice and the extended
phase there is another phase which is denoted as bifurcation phase [19].
In this phase the spectral dimensions is believed to be greater than four,
furthermore one use an effective transfer matrix approach to derive an
effective action. In this effective action one can observe from the sign of
the kinetic and the potential distribution that the signature of the metric
changes from Lorentzian to Euclidean signature [16].
One of the important features of (3 + 1)-dimensional CDT is that the

extended phase has a fractal dimensions four on large scales and fractal
dimension two on small scales. Remember that for ordinary dynamical
triangulations only phases with Hausdorff dimension two or ∞ were found
(compare Sec. 5.2.4 and the references therein), so our actual macroscopic
spacetime (which has (at least) four dimensions) could not be described. The
first numerical measurements of the Hausdorff dimension were performed
in [36, 39]. Note that the measured Hausdorff dimensions depend on the
actual value of the coupling constants used [123], and that for most coupling

6 Note that the spatial topology in one dimension is given only by the number of
components, where every component is a ring and posses only one triangulation with
given number of maximal simplices (edges).
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constants the spectral dimension at high energy (or short length scales)
becomes 3/2 rather than 2. But d = 3/2 is exactly the dimension that one
needs to fulfill the asymptotic safety scenario [123].

The asymptotic safety scenario [416] states that there is a possibility for
renormalize the in general non-renormalizable theory of general relativity.
The standard procedure of perturbative renormalization applied to field
theories fails for general relativity in three or more spacetime dimensions,
because one needs an infinity number of tunable coupling constants to cancel
diverging terms, which implies that the perturbativly quantized theory is not
predictive. The asymptotic safety scenario claims that the theory becomes
predictive if the renormalization flow of a finite number of coupling constants
approaches an ultraviolet fix-point, which is a second-order transition in a
lattice theory as DT or CDT. There is one big problem associated with the
scenario of asymptotic safety [59,367]: One can argue that the entropy of
a renormalizable theory in regime of high energies scales as S ∝ E(d−1)/d),
whereas in general relativity one expects that the high energy states are
dominated by black holes, whose entropy scales as S ∝ E(d−2)/(d−3) (d is the
dimension of the spacetime). For d = 4 these two equations disagree, only
for d = 3/2 the two entropies scale with the same power law S ∝ E1/3. Since
high energy scales correspond to small length scales, one can argue that the
asymptotic safety scenario in fact holds, but that the fractal dimension of
the spacetime depends on the length scale, with d = 3/2 for E →∞.

So one might argue that due to this results causal dynamical triangulations
is a theory in which the asymptotic safety scenario holds. Unfortunately the
fractal dimensions in [123] were measured inside the extended phase, and not
on a second-order phase transition between two phases, which is necessary
for a non-trivial fix-point. Also note that a scale-dependent dimension
implies very strong consequences like a non-constant speed of light or a
broken Lorenz invariance (see Ref. [125] and the references therein).

Another property of the extended phase in the (3 + 1)-dimensional CDT
approach is that the extended phase exhibits a de-Sitter-like structure
[21,37]. By de-Sitter space one denotes an elliptic spacetime with Lorentzian
signature and constant positive curvature (sphere), but without matter. It
has the same relation to the sphere as the Minkowski spacetime to Euclidean
space. Note that there are some conceptional problems that are related
with the analysis in Ref. [21] that will be presented later. Furthermore,
similarities between the phase diagram of Hořava-Lifshitz gravity [221]
(which also relies on a broken symmetry between space and time, which is
recovered in a continuum limit) and of the phase diagram of CDT have been
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5. Triangulations as fluctuating space-(times)

Figure 5.10: Minimal causal tri-
angulation of S1 × S1 with two
time slices and three spatial slices,
composed of two one-slice trian-
gulations (5.23). Embedding into
a plane (left), where the edges
to the left and to the right are
continued to the other side, and
onto the boundary of a cylinder
(right).

found [20], which can possibly lead to a mutual exchange of ideas between
the two theories.

5.3.3 Constructing causal triangulations - small
triangulations and flips

To apply Markov chain Monte Carlo simulations also to the model of
causal dynamical triangulations, one has to construct at least one valid
causal triangulation and to define ergodic moves that transform causal
triangulations into each other, as already done before for embedded and
topological triangulations. In this section we construct such small causal
triangulations for (1 + 1)- and (2 + 1)-dimensional manifolds with spatial
manifold Σ = S1 and Σ = S2. It is enough to construct a triangulation of
one time slice (which equals two spatial slices and the spacetime portion
inbetween), if the two boundary spatial triangulations are equal, because
T -slice triangulations (with open and periodic boundary conditions) can
then be constructed by stacking these small triangulations. For (2 + 1)
dimensions we explicitly count the number of some small triangulations to
have a normalization for our counting algorithm. Furthermore we define a
restriction of the Pachner moves defined in Sec. 4.1.2, the so-called causal
Pachner moves, that allow to transform causal triangulations into causal
ones.

Small triangulations in (1 + 1) and (2 + 1) dimensions

We start by constructing the minimal causal triangulation of a time slice
in (1 + 1) dimensions. The minimal triangulation of the spatial manifold
Σ = S1 is given by three vertices and edges between each two of the vertices,
so the minimal triangulation of the time slice has at least six vertices. Such
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5.3. Fluctuating spacetimes - Causal Dynamical Triangulations

a minimal causal triangulation is given by

T = {{0, 1, 3}, {1, 2, 4}, {0, 2, 5}, {1, 3, 4}, {2, 4, 5}, {0, 3, 5}} ∪ subsimplices
(5.22)

and is displayed Fig. 5.10. This is up to isomorphism the only triangulation
of a time slice with six maximal simplices.
In (2 + 1)-dimensions the construction of a valid small triangulation

becomes slightly more involved. The idea is the same as for the (1 + 1)
dimensional case, one constructs a triangulations that links two minimal
triangulation of the spatial S2 slices (which are the boundary of a 3-simplex).
We index the vertices of the first S1-triangulation by 0, . . . 3, and the vertices
of the second one by 4, . . . 7. The two minimal S2-triangulations are given
by

T = {{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}} ∪ subsimplices
T = {{4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}} ∪ subsimplices

To construct the causal triangulation inbetween, we consider first the prisms
that are given by the triangles {i1, i2, i3} and {i1 + 3, i2 + 3, i3 + 3}. Such
as prism can be triangulated using
• one (3, 1)-simplex consisting of the triangle {i1, i2, i3} and a vertex
j ∈ {i1 + 3, i2 + 3, i3 + 3},
• one (3, 1)-simplex consisting of the triangle {i1 + 3, i2 + 3, i3 + 3} and
a vertex j ∈ {i1, i2, i3} \ {j − 3},
• and the (2, 2)-simplex consisting of the vertices {i1, i2, i3} \ {j − 3}
and {i1 + 3, i2 + 3, i3 + 3} \ {j + 3}.

The choice of the triangulation of the prism can perhaps be understood
better if one twists the prism as depicted in Fig. 5.11, then the choice of the
triangulation corresponds to the choice of one of the three inner diagonals
of the twisted prism. Altogether there are four prisms (one for each pair
of triangles in the boundary), and one has to choose j and j such that the
triangulations can be matched (this means, if there is an edge between two
vertices in the triangulation of one prism, this edge has also to be present in
the triangulations of the other prisms containing these two vertices). Using
this algorithm, one can, e.g., construct the following minimal triangulation
of S2 × I with one time and two spatial slices (see Fig. 5.12).
T = {{0125}, {0245}, {2456}, {0135}, {0357}, {0457},

{1235}, {2357}, {2567}, {0237}, {0247}, {2467}} ∪ subsimplices.
(5.23)
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Figure 5.11: Triangulation of a
(twisted) prism bounded by two
spatial triangulations, which is
one of the four building blocks
of the smallest triangulation of
S2 × I with two spatial slices.
The red edges are space-like, the
black edges are space-like, the
three different triangulations cor-
respond to a choice of the inner
diagonal.
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Figure 5.12: Smallest possible
(2 + 1) causal triangulation given
in Eq. (5.23). The spatial trian-
gulations are split into the four
triangles constituting them, also
the causal triangulations decom-
poses in causal triangulations con-
necting two spatial triangulations.
All vertices with the same number
have to be considered as equal.

Causal Pachner moves

As for the approach of dynamical triangulations (DT) also causal dynamical
triangulations (CDT) use flips to generate all possible triangulations of the
manifold S1 ×M. Since the causal structure of the triangulation must
not be violated, only flips which leave the causal structure independent
are allowed. This implies that one cannot insert vertices into maximal
simplices, because these join two neighboring time slices, and the additional
vertex could not be assigned a time slice. Furthermore it is not allowed to
perform flips that insert edges between two time slices that are not neighbors.
Altogether there are two different types of flips that can be executed, which
will be denoted as causal Pachner moves, because they are the subset of the
Pachner moves that conserve the causality structure of the triangulation.
The first type are flips generated by time-like k-simplices, here both the

positive and the negative circuit points must be located on two neighboring
time slices. This leads to (d − k + 1 → k + 1)-flips with 1 ≤ k ≤ d − 1.
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5.3. Fluctuating spacetimes - Causal Dynamical Triangulations

Figure 5.13: The possible flips
in two-dimensional Causal Dy-
namical Triangulations (CDT).
Top: (2, 2)-flip mediated by a
time-like edge. Bottom: (2, 4)-
flip and the inverse (4, 2)-flip me-
diated by a space-like edge. In
principle this is an insertion (1, 2)-
flip or deletion (2, 1)-flip in the 1-
dimensional time slice, extended
with two zero points to higher di-
mensions.

0 1 2

3 4 5

6 7 8

↔

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

↔

0 1 2

3 4 5

6 7 8

9

The case k = d is excluded, because this would insert a vertex between two
time slices and break the causality structure. The case k = 0 is excluded,
because there is no time-like 0-simplex since one point can only be located
in a single time slice.

The second type are flips generated by space-like k-simplices. These flips
are treated as (d − k → k + 1)-flips in the (d − 1)-dimensional time slice,
and handling the maximal simplices of the generating k-simplex in terms
of the notion of a degenerated flip in Def. 3.15. (If there is more than one
point in a maximal simplex of the generating k-simplex in a neighboring
time slice the flip is not executable). This leads to (2d− 2k → 2k + 2)-flips
with 0 ≤ k ≤ d− 1. The case k = d is trivially excluded because there is no
d-simplex fully contained in a single time slice.
In Fig. 5.13 one can see the (2 → 2)-flip (generated by a time-like 2-

simplex), and the (2→ 4)-flip (generated by a space-like 1-simplex) together
with its inverse (4 → 2)-flip (generated by a space-like 0-simplex) in a
(1 + 1)-dimensional causal triangulation.

In Fig. 5.14 one can see the possible flips in (2 + 1)-dimensional CDT.
There are three flips that are induced by flips in a spatial slice, the (2→ 6)-
flip induced by a spatial (1→ 3)-flip, its inverse, the (6→ 2)-flip induced by
a spatial (3→ 1)-flip, and the (4→ 4)-flip induced by a spatial (2→ 2)-flip.
Furthermore there are two flips generated by time-like simplices, first the
(2 → 3)-flip generated by a spatial edge, and its inverse, the (3 → 2)-flip
generated by a spatial triangle.
An important open question is whether the causal Pachner moves are

ergodic, i.e. whether every triangulation of a given spacetime foliation can
be transformed into every other triangulation of the same structure by a
finite number of causal Pachner moves. Ergodicity is proven for triangula-

313
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Figure 5.14: All possible flips in (3+1)-dimensional causal dynamical triangu-
lations. From left to right: (2 → 6)-flip (induced by a spatial (1 → 3) flip),
(4→ 4)-flip (induced by a spatial (2→ 2)-flip) and (2→ 3)-flip. The red edges are
space-like edges, the black edges are time-like edges.

tions of two- and three-dimensional manifolds, for triangulations of higher
dimensional manifolds Pachner moves are only ergodic for manifolds with
the same PL structure (compare Sec. 4.1). But it is not clear a prior whether
a restriction to causal Pachner moves is ergodic for causal triangulation,
because in principle two different causal triangulations could be linked by a
third triangulation that is not causal. It was discussed in Sec. 4.3 why the
question of ergodicity is difficult to answer for topological triangulations. In
Euclidean dynamical triangulation the question of ergodicity has been con-
sidered numerically in the literature (compare Refs. [91,113] and Sec. 5.2.5),
but in contrast ergodicity was not addressed in the literature about causal
dynamical triangulations until know. So the ergodicity of causal Pachner
moves has to be seen as a working hypothesis and must be examined in
greater details in future work.

If doing Markov chain Monte Carlo simulations with causal Pachner moves
on causal triangulations, for calculating the ratio of selection probabilities
one has to take into account that triangulations are defined only up to
isomorphy, so two triangulations have to be treated as equal if there is
a vertex permutation that maps one onto the other. The problem was
described in detail in Sec. 4.1.4 for topological triangulations, and most of
the results from this section also apply to causal triangulations. In fact, the
situation is a bit simpler in the causal setup, because one has to take into
account only permutations that keep the time slice of each vertex invariant.

A bit larger triangulations in (2 + 1)-dimensions

As next step we construct the triangulations of S2×I that can be constructed
from the smallest triangulation (5.23) within one causal Pachner move.
These triangulations and their numbers can be used for testing the algorithms
for creating and executing flips defined later. The smallest triangulation
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(5.23) consists of eight (3, 1)-simplices and four (2, 2)-simplices, and there
are two different types of possible moves: The (2 → 3)-move, and the
spatial-induced (1→ 3) move (which would be a (2→ 6)-move if the spatial
slice would not be the boundary of the triangulation).

For each of the (2, 1)-triangles one can define a (2→ 3)-flip that transforms
one (3, 1) and one (2, 2)-simplex into another (3, 1)-simplex and two (2, 2)-
simplices:

{0125}, {0245} → {0124}, {0145}, {1245} (5.24a)
{0245}, {2456} → {0246}, {0256}, {0456} (5.24b)
{1235}, {2357} → {1237}, {1257}, {1357} (5.24c)
{2357}, {2567} → {2356}, {2367}, {3567} (5.24d)
{0357}, {0457} → {0345}, {0347}, {3457} (5.24e)
{0135}, {0357} → {0137}, {0157}, {1357} (5.24f)
{0237}, {0247} → {0234}, {0347}, {2347} (5.24g)
{0247}, {2467} → {0246}, {0267}, {0467} (5.24h)

By calculating the number of incident edges and tetrahedra at each vertex
after these flips, one can check that the flips (5.24a) and (5.24d) lead to
different triangulations, whereas (5.24b) and (5.24h) (by interchanging the
vertex labels 0↔ 2 and 4↔ 6), (5.24c) and (5.24f) (by interchanging the
vertex labels 1 ↔ 3 and 5 ↔ 7), as well as (5.24e) and (5.24g) lead to
isomorphic triangulations (by interchanging the vertex labels 0 ↔ 3 and
4↔ 7). This leads to the following non-isomorphic triangulations with eight
(3, 1)-simplices and five (2, 2)-simplices:

T1 = {{0124}, {0145}, {1245}, {2456}, {0135}, {0357}, {0457},
{1235}, {2357}, {2567}, {0237}, {0247}, {2467}} (5.25a)

T2 = {{0125}, {0246}, {0256}, {0456}, {0135}, {0357}, {0457},
{1235}, {2357}, {2567}, {0237}, {0247}, {2467}} (5.25b)

T3 = {{0125}, {0245}, {2456}, {0135}, {0357}, {0457},
{1237}, {1257}, {1357}, {2567}, {0237}, {0247}, {2467}} (5.25c)

T4 = {{0125}, {0245}, {2456}, {0135}, {0357}, {0457},
{1235}, {2356}, {2367}, {3567}, {0237}, {0247}, {2467}} (5.25d)

T5 = {{0125}, {0245}, {2456}, {0135}, {0345}, {0347}, {3457},
{1235}, {2357}, {2567}, {0237}, {0247}, {2467}} (5.25e)
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Due to the fact that every vertex of the boundary triangulations has
different incidence numbers, each (1→ 3)-insertion move into one of the 8
boundary triangles (4 at each spatial boundary slice) produces a different
triangulation, so the number of triangulations with 10 (3, 1)-simplices and 4
(2, 2)-simplices after these steps is 8.

5.3.4 The action of causal dynamical triangulations

In this section we follow closely the approach of [34] to derive the action of
three- and four-dimensional causal dynamical triangulations. In Sec. 5.3.1
we introduced an asymmetry between space-like with spacetime interval a2

and time-like edge lengths with spacetime interval −αa2. This modification
implies that the volume of a k-simplex does not only depend on the total
number (k+ 1) of its generating points, but on the number of points in each
of the two neighboring time slices a simplex connects (the causal structure
of the simplex). A k-simplex which has a points in the first time slice and
b points in the second time slice is denoted as (a, b)-simplex. Since the
direction of the time coordinate is arbitrary, we assume w.l.o.g.that a ≥ b.
The volume of a (a, b)-simplex will be denoted by Va,b, and the number of
(a, b)-simplices in a triangulation will be denoted by Na,b, both defined for
a ≥ b. Of course we can related by

Nk =
b(k+1)/2c∑

i=0
Nk−i+1,i

the number Nk of all k-simplices with the number of k-simplices with
specified causal structure.
To derive the action of the CDT model, we start with the usual Regge

action (5.13)

SRegge = 1
8πG

∑
b∈B

σ
(d−2)
b V

(d−2)
b εb − Λ

∑
s∈S

V (d)
s

 .
Here b ∈ B denotes a (d − 2)-simplex in the set B of all (d − 2)-simplices
(bones), and s ∈ S denotes a d-simplex in the set S of all maximal simplices.
V

(d)
s denotes the d-dimensional volume of the simplex s (by definition we

choose all volumes to be real and positive), and εb denotes the deficit angle
associated with the bone b. Note that there is an additional sign factor
σ

(d−2)
b ∈ {1,−i} that arises if we use a Lorentzian metric in the Regge

action, compare Ref. [373, B1]. The details of the calculation of σ(d−2)
b will
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be presented later. Introducing the causal structure and using that the sign
and volume of a simplex and the sign do only depend on its causal structure,
the action becomes

S = 1
8πG

b(d−1)/2c∑
i=0

σd−i−1,iVd−i−1,i
∑

b∈Bd−i−1,i

εb − Λ
b(d+1)/2c∑

j=0
Nd−j+1,jVd−j+1,j

 ,
where Ba,b with a+ b = d− 1 denotes the set of bones with causal structure
(a, b).

Remember that in the derivation of the action of DT the next step was to
reexpress the deficit angle εb at bone b with the number of maximal simplices
incident with b. For CDT this is slightly more complicated, because first
the deficit angle depends on the number of simplices with a certain causal
structure, and second the dihedral angle of the maximal simplices does also
depend on their causal structure. So denote by θ(d−j+1,j),(d−α,α)(d−β,β)

d−i−1,i be
the dihedral angle of a (d−j+1, j)-simplex located at an incident (d−i−1, i)-
simplex, which is formed by the intersection of a (d− α, α) and a (d− β, β)
simplex. Mind that α, β ∈ {i, i+1}, otherwise the (d−i−1, i)-simplex cannot
be a subsimplex of the (d − α, α) or the (d − β, β)-simplex. Furthermore
the order of the (d− α, α) and (d− β, β)-simplex is not important, so there
are only the following three possibilities for choosing the pair (α, β),

(α, β) = (i, i) (α, β) = (i, i+ 1) (α, β) = (i+ 1, i+ 1).

Furthermore we have the condition α ≤ j and β ≤ j, because the simplices
must be subsimplices of the maximal (d− j + 1, j)-simplex. For example
θ

(2,1),(1,1)(2,0)
1,0 is the angle within a (2, 1)-triangle (consisting of one space-like
edge and two space-like edges) at a vertex that is common to a space-like
and a time-like edge.

So the deficit angle εb can be written as sum over the number of simplices
of a certain kind times the associated internal angle as

εb = 2π −
b(d+1)/2c∑

j=0

∑
α,β∈{i,i+1}

α≤β

N
(d−α,α)(d−β,β)
d−j+1,j (b) · θ(d−j+1,j),(d−α,α)(d−β,β)

d−i−1,i

where N (d−α,α)(d−β,β)
d−j+1,j (b) is the number of (d− j + 1, j)-simplices incident

with the bone b, where b is the common subsimplex of a (d− α, α) and a
(d− β, β)-simplex.
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For the next step of the calculation the simplex incidence numbers
n

(d−j+1,j),(d−α,α)(d−β,β)
d−i−1,i are introduced, which are the number of (d−i−1, i)-

subsimplices of an arbitrary maximal (d−j+1, j)-simplex, which are common
to a (d−α, α) and a (d−β, β)-subsimplex of the maximal simplex. To calcu-
late these numbers in full generality is difficult, but for a given dimension d
the values can be calculated by constructing a simplicial complex consisting
of the considered maximal simplex and all subsimplex and inspecting how
many (d − 2)-simplices of each type are common to the certain types of
(d− 1)-simplices. The numbers will be calculated later separately for each
considered dimension. More easily one can calculate the values

n
(d−j+1,j)
d−i−1,i :=

∑
α,β∈{i,i+1}

α≤β

n
(d−j+1,j),(d−α,α)(d−β,β)
d−i−1,i ,

which are the numbers of (d − i − 1, i)-simplices that are incident with a
(d− j + 1, j)-simplex, without considering the types of the (d− 1)-simplices
that constitute the (d− 2)-simplex. If d− i+ 1 6= i, one can choose d− i− 1
of the d− j+ 1 points of supersimplex on the one time slice and i of j points
on the other time slice, or vice versa. If d − i + 1 = i, both possibilities
equal the same case. So

n
(d−j+1,j)
d−i−1,i =

(
d− j + 1
d− i− 1

)(
j

i

)
+
(
d− j + 1

i

)(
j

d− i− 1

)
(1− δd−i−1,i)

From this we can deduce that∑
σ(d−i−1,i)

Nd−j+1,j
(
σ(d−i−1,i)

)
= n

(d−j+1,j)
d−i−1,i Nd−j+1,j

This can be used for cross-checking the calculated numbers in Eqs. (5.51),
(5.54) and (5.57).

By using the simplex incidence numbers, the sum over the bones can be
eliminated from the action by∑

b∈Bd−i−1,i

N
(d−α,α)(d−β,β)
d−j+1,j (b) = n

(d−j+1,j),(d−α,α)(d−β,β)
d−i−1,i Nd−j+1,j ,

where on the left hand of the equation one sums the number of maximal
simplices of a certain causality structure incident with a certain bone over
all bones, and on the right hand side one multiplies the number of maximal
simplices with the number of bones of the correct type incident with such a
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maximal simplex. Both numbers are equal, as in the derivation of the DT
action. Using this in the action yields

SCDT = 2
8G

b(d−1)/2c∑
i=0

σd−i−1,iVd−i−1,iNd−i−1,i

− 1
8πG

b(d−1)/2c∑
i=0

σd−i−1,iVd−i−1,i

b(d+1)/2c∑
j=0

∑
α,β∈{i,i+1}

α≤β

[nθ](d−j+1,j),(d−α,α)(d−β,β)
d−i−1,i Nd−j+1,j

− Λ
8πG

b(d+1)/2c∑
j=0

Nd−j+1,jVd−j+1,j

where we used the short notation

[nθ](d−j+1,j),(d−α,α)(d−β,β)
d−i−1,i := n

(d−j+1,j),(d−α,α)(d−β,β)
d−i−1,i θ

(d−j+1,j),(d−α,α)(d−β,β)
d−i−1,i

Sorting with respect to the Nm,n gives

SCDT = 1
4G

b(d−1)/2c∑
i=0

σd−i−1,iVd−i−1,iNd−i−1,i −
1

8πG

b(d+1)/2c∑
j=0

cd,jNd−j+1,j

cd,j = ΛVd−j+1,j +
b(d−1)/2c∑

i=0
σd−i−1,iVd−i−1,i

∑
α,β∈{i,i+1}

α≤β

[nθ](d−j+1,j),(d−α,α)(d−β,β)
d−i−1,i .

(5.26)

In order to calculate the correct action of causal dynamical triangulations,
two things have to be done:

• The geometric quantities, the volume Vd−i±1,i of the different d and
(d− 2)-simplices, the sign factor σd−i−1,i and the angles θ(d−j+1,j),...

d−i−1,i
must be calculated.

• The topological quantities, the numbers Nd−i±1,i of different d and
(d− 2)-simplices, can be linearly dependent. These dependencies have
to be found, in order to capture only the relevant degrees of freedom
in the action.

Both tasks will be performed in the next sections.
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5. Triangulations as fluctuating space-(times)

Geometric quantities - Volumes, angles and signs

In order to calculate the action we need to calculate the volumes of the
different types of simplices and the deficit angles. We assume that space-like
edges have a length of `2space−like = a2, and time-like edges have a length of
`2time−like = −αa2. In general calculating volumes and angles in a Lorentzian
spacetime can be more subtle than in Euclidean space, here we follow the
considerations of Ref. [373, B3], which were also used in Ref. [34].
For a systematic way of calculating we embed the simplices into an

R×Rd−1 with flat Minkowski metric ηµν , so that the scalar product of two
vectors is defined as

〈•, •〉 : Rd ×Rd → R, 〈u, v〉 = ηµνu
µvν = −u0v0 + u1v1 + · · ·+ ud−1vd−1

In the Euclidean case one can use the scalar product to calculate the cos of
an angle θ(u, v) between two vectors u and v by

cos (θ(u, v)) = 〈u, v〉√
〈u, u〉 〈v, v〉 ,

but one the one hand the sign on the right hand side is arbitrary, and on the
other hand also the angle θ(u, v) is determined by cos (θ(u, v)) only up to a
sign [373]. Note that in Lorentzian spacetime angles can even be imaginary.
To resolve the ambiguities, there remains the following possibility [373]:

The angle θ(u, v) between two vectors u and v is determined by

cos (θ(u, v)) = 〈u, v〉√
〈u, u〉 〈v, v〉

sin (θ(u, v)) =

√
〈u, u〉 〈v, v〉 − 〈u, v〉2√
〈u, u〉 〈v, v〉

(5.27)

and we postulate that 0 ≤ Re (θ(u, v)) ≤ π. The resulting angles are than
in fact additive, and reveal the correct contribution to the action [373].
Furthermore we need a generalization of the vector product that assigns

(d− 1) vectors in d dimensions a vector that has a vanishing scalar product
with all its arguments (this is the generalization of orthogonality). This
vector product is defined by the property

〈u, v1 × v2 × · · · × vd−1〉 = εµν1ν2...νd−1u
µvν1

1 v
ν2
2 . . . v

νd−1
d−1 ,

where εµν1ν2...νd−1 is the Levi-Civita symbol (which is 1 if µν1 . . . νd−1 is an
even permutation, -1 if it is an odd permutation and zero otherwise) and
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5.3. Fluctuating spacetimes - Causal Dynamical Triangulations

the i-th coordinate of v1 × v2 × · · · × vd−1 can be found by using the basis
vector ei as vector u. In two dimension the vector product takes only one
argument, and we have

× : R3 → R
3,×u =

(
u2
u1

)
, (5.28)

which is just an interchange of the coordinates. In three dimensions the
vector product has the usual form

× : R3 ×R3 → R
3, u× v =

u2v3 − u3v2
u1v3 − u3v1
u2v1 − u1v2

 , (5.29)

but note that there are some differences to the usual Euclidean form due to
the Lorentzian signature. In four dimensions we have × : R4×R4×R4 → R4,
with the single components given by

(u× v × w)1 = u2(v3w4 − v4w3) + u3(v4w2 − v2w4) + u4(v2w3 − v3w2)
(u× v × w)2 = u1(v3w4 − v4w3) + u3(v4w1 − v1w4) + u4(v1w3 − v3w1)
(u× v × w)3 = u1(v4w2 − v2w4) + u2(v1w4 − v4w1) + u4(v2w1 − v1w2)
(u× v × w)4 = u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1)

(5.30)

The vector product can be used for calculating the angle between two
hyperplanes ((d − 1)-dimensional linear subspaces), between this angle
equals the angle between the two associated normal vectors, which can be
calculated using the vector product. Note that for three dimensions also the
2-volume spanned by the two vectors and in four dimensions the 3-volume
spanned by the three vectors is encoded in the length of the resulting vector
product.

Geometry in Lorentzian spacetime Using Eq. (5.27) for calculating
angles between vectors in Lorentzian spacetime can lead to difficulties.
Consider e.g., a (1+1)-dimensional spacetime and the vectors

v1 =
(

0
1

)
v2 =

(
λ
1

)
v3 =

(
1
0

)

where v1 is a space-like vector, v3 is time-like and v2 is space-like for |λ| < 1
and time-like for |λ| > 1. In the following we restrict to the case λ > 0.
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5. Triangulations as fluctuating space-(times)

Using Eq. (5.27) for calculating the angles θ12 between v1 and v2 and θ23
between v2 and v3 results in

cos(θ12) = 1√
1− λ2 sin(θ12) = iλ√

1− λ2

cos(θ23) = −λ√
λ2 − 1

sin(θ23) = i√
λ2 − 1

Calculating the angles θ12 or θ23 using real analysis is not possible, the
arguments of the inverse trigonometric functions are either real but larger
than one, or even imaginary. We can solve the issue by using complex
analysis, where the inverse trigonometric functions are defined for the whole
complex plane and can be written using the (imaginary logarithm) as

arcsin(z) = −i log(iz +
√

1− z2)
arccos(z) = −i log(z + i

√
1− z2)

So for imaginary arguments we have

arcsin(i · x) = −i log(−x+
√

1 + x2)
arccos(i · x) = −i log(x+

√
1 + x2) + π(2n+ 1/2)

(using log(ix) = log(x) + iπ(2n+ 1/2) with n ∈ Z chosen arbitrarily), while
for real arguments x > 1 we get

arcsin(x) = −i log(x+
√
x2 − 1) + π(2n+ 1/2)

arccos(x) = −i log(x−
√
x2 − 1)

for x > 1. In principle it is not important which inverse trigonometric
function we use for calculating the actual angle, so we will use the one
without the branching ambiguity whenever possible.

In Lorentzian spacetime one has also pay attention to the sign of a
deficit angle that contributes to the action. A space-like deficit angle has
to contribute positively to the action, and a time-like deficit angle has to
contribute negatively to the action (intuitively this is because a space-like
angle corresponds to a rotation, while a time-like angle corresponds to a
boost, compare Refs. [34,373] for detailed discussion.) So a space-like defect
as well as a time-like excess contribute positively, while a space-like excess
as well as a time-like defect contribute negatively.
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5.3. Fluctuating spacetimes - Causal Dynamical Triangulations

Figure 5.15: Embedding of a (2, 1)-simplex
into the R1+1 with Minkowski metric ηµν . The
coordinates of the points xi, i = 1, 2, 3 can be
chosen according to

x1 = (0,−a/2)t

x2 = (0, a/2)t

x3 = (h, 0)t

where h can be calculated e.g., from the squared
length −h2 + a2/4 = −αa2 of the time-like
vector −−→x1x3.

ℓ2
space = a2

ℓ2 h
=

−
h

2

ℓ
2 tim

e
=

−α
a

2 ℓ 2tim
e =

−
α
a 2

x1 x2

x3

This can be realized by choosing the sign σd−1−i,i of a (d− 1− i, i)-bone
correctly. In Ref. [373] the following procedure was proposed: Let ω be
a tensor associated with the bone (which encodes also the volume), and
let θ be the deficit angle at the bone. Then the contribution to the action
is iS = |ω|θ, so S = −i|ω|θ = σd−1−i,iVd−1−i,iθ, where |ω| = (〈ω, ω〉)1/2

and the scalar product is defined for higher rank tensors as for vectors by
e.g., 〈ω, ω〉 := ωµνω

µν for rank-2 tensors. The actual calculation of the sign
factors will be done in the following sections for each relevant type of bone.
Note that the sign factors are Lorentz scalars, i.e., they do not depend
on the actual choice of the coordinates of the considered bones, but only
on their causal type. So it is enough to calculate the sign factor for one
example of the respective bone type.

Zero- and one-dimensional simplices The volume of a (1, 0)-simplex
(vertex) is set to V1,0 := 1, volume of the time-like and space-like simplices
can easily be deduced from the edge length assignments:

V2,0 = a V1,1 =
√
αai

Two-dimensional simplices The volume of a (3, 0)-simplex (space-like
triangle) is the area of an equilateral triangle with edge length a, so V3,0 =√

3a2/4, and all angles at all points are π/3, as in the usual setup of
dynamical triangulations.
For the (2, 1)-simplex, which is a triangle with two sides having length

`2time = −αa2 and one side having length `2space = a2, we can choose the
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5. Triangulations as fluctuating space-(times)

following coordinates:

x1 =
(

0
−a/2

)
x2 =

(
0
a/2

)
x3 =

(
h
0

)

The quantity h has to be chosen so that −h2 + a2/4 = `2time since |−−→x1x3|2 =
−αa2, so h = a

√
4α+ 1/2, as depicted in Fig. 5.15. The volume of the

(2, 1)-simplex can then be calculated using a common formula for the area
of a triangle, e.g., by using half the length of the vector product of two
adjacent edges extended to the R3. The resulting volume is

V2,1 = a2

4
√

4α+ 1 (5.31)

The angle between two time-like edges (e.g., the time-like vectors −−→x3x1 =
(−h, a/2)t and −−→x3x2 = (−h,−a/2)t) can be calculated using (5.27) by

cos
(
θ

(2,1),(1,1)(1,1)
(1,0)

)
= −h

2 − a2/4
−αa2 = 2α+ 1

2α

sin
(
θ

(2,1),(1,1)(1,1)
(1,0)

)
=
√
−αa4 − a4/4
−αa2 = −i4α+ 1

2α

(5.32)

as well as the angle between a time-like and a space-like edge (e.g., the
angle between the space-like vector −−→x1x2 = (0, a)t and the time-like vector
−−→x1x3 = (h, a/2)t), which is given by

⇒ cos
(
θ

(2,1),(2,0)(1,1)
(1,0)

)
= a2/2
a ·
√
−αa2 = −i

2
√
α

⇒ cos
(
θ

(2,1),(2,0)(1,1)
(1,0)

)
=
√
−αa2 − a2/4
a ·
√
−αa2 =

√
4α+ 1

4α

(5.33)

The sign of the contribution of the bone volume cannot be derived with the
previously described method, because in (1 + 1) dimensions the bones do
not have a well-defined volume. The sign will be derived later in the actual
formulation of the action in (1 + 1) dimensions.

Three-dimensional simplices The volume of the space-like (4, 0) sim-
plex can calculated as in Euclidean signature.
For the (3, 1) simplex that consists of three space-like edges and three

time-like edges, we can choose the following coordinates for the vertices:

x1 =

 0
−
√

3a/6
−a/2

x2 =

 0
−
√

3a/6
a/2

x3 =

 0√
3a/3
0

x4 =

h0
0
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Figure 5.16: Embedding of a (3, 1)-simplex
into the R1+2 with Minkowski metric ηµν . The
coordinates of the points xi, i = 1, 2, 3, 4 can be
chosen according to

x1 = (0,−
√

3a/6,−a/2)t

x2 = (0,−
√

3a/6, a/2)t

x3 = (0,
√

3a/3, 0)t

x4 = (h, 0, 0)t

where h can be calculated from the squared
length |−−→x3x4| of a time-like vector to be −h2 +
a2/3 = −αa2.

ℓ2space = a
2

ℓ2 h
=

−
h

2

ℓ
2 tim

e
=

−α
a

2 ℓ 2tim
e =

−
α
a 2

x1 x2

x3

x4

where h = a
√

(3α+ 1)/3 can be calculated from the length of a time-like
vector Fig. 5.16.

The volume can be calculated using the determinant

V3,1 = 1
3!

∣∣∣∣∣∣∣
−h −h −h

−
√

3a/6 −
√

3a/6
√

3a/3
−a/2 a/2 0

∣∣∣∣∣∣∣ = a3

12
√

3α+ 1 (5.34)

of three vectors spanning the simplex.
The interior angles in a (3, 1)-simplex at space-like and time-like edges

can be calculated using (5.27). The angle at the space-like edge x1x2 is
given by the angles between the planes spanned by the points x1, x2 and
x3 and by the points x1, x2 and x4 equals the angle between −→yx3 and −→yx4,
where y = (x1 + x2)/2 = (0,−

√
3a/6, 0)t is the midpoint of x1 and x2, and

can be calculated as

cos
(
θ

(3,1),(3,0)(2,1)
(2,0)

)
= a2/4

(
√

3a/2) · (ia
√

4α+ 1)
= −i√

3(4α+ 1)

sin
(
θ

(3,1),(3,0)(2,1)
(2,0)

)
=
√
−3a4(4α+ 1)/16− a4/16
(
√

3a/2) · (ia
√

4α+ 1)
= 2

√
3α+ 1√

3(4α+ 1)

(5.35)

For the angle at a time-like edge, e.g. the edge −−→x3x4, it is not possible to use
the mid point z between x3 and x4 and its vectors to x1 and x2 to compute
the angle, because in general −→zx1 is not perpendicular to −−→x3x4. The exact
coordinates of z could be found by stipulating that these two vectors are
perpendicular, but we will use the vector product for calculating vectors
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ℓ2
space = a2

ℓ 2h
=

−
h

2

ℓ 2tim
e =

−
α

a 2

x1 x2

x3

x4

Figure 5.17: Embedding of a (2, 2)-simplex
into the R1+2 with Minkowski metric ηµν . The
coordinates of the points xi, i = 1, 2, 3, 4 can be
chosen according to

x1 = (h/2,−a/2, 0)t

x2 = (h/2, a/2, 0)t

x3 = (−h/2, 0,−a/2)t

x4 = (−h/2, 0, a/2)t

where h can be calculated from the length of a
time-like vector −h2 + a2/2 = −αa2.

that are normal to the planes x1x3x4 and x2x3x4, so that the angle between
these two vectors corresponds to the angle at the time-like edge −−→x3x4. These
vectors are given by

−−→x3x2 ×−−→x3x4 =

 h

−
√

3a/3
0

×
 0
−
√

3a/2
a/2

 =

−
√

3a2/6
ha/2√
3ha/2


−−→x3x2 ×−−→x3x4 =

 h

−
√

3a/3
0

×
 0
−
√

3a/2
−a/2

 =


√

3a2/6
−ha/2√

3ha/2


both have squared length (3α+ 1)a4/3− a4/12, and the angle between the
two vectors can be calculated by

cos
(
θ

(3,1),(2,1)(2,1)
(1,1)

)
= (3α+ 1)a4/3 + a4/12

(3α+ 1)a4/3− a4/12 = 2α+ 1
4α+ 1

sin
(
θ

(3,1),(2,1)(2,1)
(1,1)

)
=
√

(12α+ 3)2 − (6α+ 3)2

12α+ 3 = 2
√
α
√

3α+ 1
4α+ 1

(5.36)

For the (2, 2) simplex that consists of two space-like edges and four
time-like edges, we can choose the following coordinates for the vertices:

x1 =

 h/2
−a/2

0

x2 =

h/2a/2
0

x3 =

−h/20
−a/2

x4 =

−h/20
a/2


where h = a

√
(2α+ 1)/2 can be calculated from the length of one of the

time-like vectors as displayed in Figure 5.17.
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The volume can be calculated using the determinant of the connection
vectors of these four points

V2,2 = 1
3!

∣∣∣∣∣∣∣
0 −h −h
a a/2 a/2
0 −a/2 a/2

∣∣∣∣∣∣∣ = a3

6
√

2
√

2α+ 1 (5.37)

The interior angles at space-like and time-like edges can be calculated
using (5.27). For the angle at the space-like edge −−→x3x4 we have to calculate
the angles between the vectors −→yx1 and −→yx1, where y = (x3 + x4)/2 is the
mid of the points x3 and x4, which has the coordinates y = (−h/2, 0, 0)t.
So the angle can be calculated by

cos
(
θ

(2,2),(2,1)(2,1)
(2,0)

)
= −h

2 − a2/4
−h2 + a2/4 = 4α+ 3

4α+ 1

sin
(
θ

(2,2),(2,1)(2,1)
(2,0)

)
=
√
−a2h2

−h2 + a2/4 = −i2
√

2
√

2α+ 1
4α+ 1

(5.38)

For the angle at a time-like edge, e.g. the edge −−→x1x3, we calculate again the
normal vectors of the planes x1x2x3 and x1x3x4, whose angle correspond
to the interior angle at the time-like edge. The normal vectors are given by

−−→x1x3 ×−−→x1x2 =

 −ha/2
−a/2

×
0
a
0

 =

a2/2
0
ah


−−→x1x3 ×−−→x1x4 =

 −ha/2
−a/2

×
 h
a/2
−a/2

 =

a2/2
−ah

0


both have squared length a2h2−a4/4, and the angle between the two vectors
can be calculated by

cos
(
θ

(2,2),(2,1)(2,1)
(1,1)

)
= a4/4
a2h2 − a4/4 = − 1

4α+ 1

sin
(
θ

(2,2),(2,1)(2,1)
(1,1)

)
=
√
a4h4 − a6h2/2
a2h2 − a4/4 = 2

√
2α
√

2α+ 1
4α+ 1

(5.39)

The last task in this section is to calculate the sign factors σ of the bone
volume. For (2 + 1)-dimensional causal dynamical triangulations there are
two different types of bones, space-like (2, 0)-edges and time-like (2, 0)-edges.
For a time-like vector v = (

√
αa, 0, 0)t one gets

iσ1,1V1,1 = iσ1,1
√
αa =

√
vµvµ =

√−v1v1 = i
√
αa⇒ σ1,1 = 1 (5.40)
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a
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α
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Figure 5.18: Embedding of a (4, 1)-simplex
into the R1+3 with Minkowski metric ηµν . The
coordinates of the points xi, i = 1, 2, 3, 4, 5 can
be chosen according to

x1 = (0,−
√

3a/6,−a/2,−
√

6a/12)t

x2 = (0,−
√

3a/6, a/2,−
√

6a/12)t

x3 = (0,−
√

3a/3, 0,−
√

6a/12)t

x4 = (0, 0, 0,
√

6a/4)t

x5 = (h, 0, 0, 0)t

where h can be calculated from the condition
`x4x5 = −h2 + (

√
6a/4)2 = −αa2.

For a space-like vector v = (0, a, 0)t one gets

iσ2,0V2,0 = iσ2,0a =
√
vµvµ = √v2v2 = a⇒ σ2,0 = −i (5.41)

As mentioned before, the sign factors do only depend on the type of the
bone and not on the actual coordinates.

Four-dimensional simplices For the (4, 1) simplex that consists of four
space-like edges and four time-like edges, we can choose the following
coordinates for the vertices:

x1 =


0

−
√

3a/6
−a/2
−
√

6a/12

 x2 =


0

−
√

3a/6
a/2

−
√

6a/12

 x3 =


0

−
√

3a/3
0

−
√

6a/12



x4 =


0
0
0√

6a/4

 x5 =


h
0
0

0)t


where h = (a/2) ·

√
(8α+ 3)/2 can be calculated from the condition that

the squared distance between x4 and x5 is −αa2.
The volume can be calculated using the determinant of the connection
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vectors of these five points

V4,1 = 1
4!

∣∣∣∣∣∣∣∣∣
−h −h −h −h
0 −

√
3a/6 −

√
3a/6

√
3a/3

0 −a/2 a/2 0√
6a/4 −

√
6a/12 −

√
6a/12 −

√
6a/12

∣∣∣∣∣∣∣∣∣ =

= 1
24
√

2ha3 = a4

96
√

8α+ 3 (5.42)

We have to calculate the angles at a space-like (3, 0)-triangle and a time-
like (2, 1)-triangle. The interior angle at a space-like (3, 0)-triangles (e.g., the
triangle x1x2x3) corresponds to the angle between the normal vectors v1 of
the hyperplanes x1x2x3x4 and v2 of the hyperplane x1x2x3x5. Educated
guessing yields v1 = (1, 0, 0, 0)t, for v2 we use the vector product

v2 = −−→x1x5 ×−−→x2x5 ×−−→x3x5

=


h√

3a/6
a/2√
6a/12

×


h√
3a/6
−a/2√
6a/12

×


h√
3a/3
0√

6a/12

 =


√

2a3/24
0
0√

3a2h/6


The vectors have the squared length −1 and −a6/288 + a4h2/12, which can
be used for calculating the angle at triangle x1x2x3

cos
(
θ

(4,1),(4,0)(3,1)
(3,0)

)
=

√
2a3/24

i
√
−a6/288 + a4h2/12

= −i
2
√

2
√

3α+ 1

sin
(
θ

(4,1),(4,0)(3,1)
(3,0)

)
=
√
−a6/288 + a4h2/12−−a6/288

i
√
−a6/288 + a4h2/12

=
√

3(8α+ 3)
2
√

2
√

3α+ 1
(5.43)

For the angle at the time-like (2, 1)-triangle x1x2x5 between the simplices
x1x2x3x5 and x1x2x4x5 one has to calculate the angle between the normal
vectors v2 and v3, with

v3 = −−→x1x5 ×−−→x4x5 ×−−→x3x5

=


h√

3a/6
a/2√
6a/12

×


h√
3a/6
−a/2√
6a/12

×


h
0
0

−
√

6a/4

 =


√

2a3/8√
6a2h/3

0
−
√

3a2h/6
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ℓ2space = a2

ℓ 2tim
e =

−
α

a 2

x1 x2

x3

x4

x5

Figure 5.19: Embedding of a (3, 2)-simplex
into the R1+4 with Minkowski metric ηµν . The
coordinates of the points xi, i = 1, 2, 3, 4, 5 can
be chosen according to

x1 = (h, a/2,−a
√

3/6, 0)t

x2 = (h,−a/2,−a
√

3/6, 0)t

x3 = (h, 0, a
√

3/3, 0)t

x4 = (0, 0, 0, a/2)t

x5 = (0, 0, 0,−a/2)t

where h can be calculated from the condition
`x3x4 = −h2 + a2/3 + a2/4 = −αa2.

which has the squared length −a6/32 + 3a4h2/4. The angle between the
two normal vectors is then

cos
(
θ

(4,1),(3,1)(3,1)
(2,1)

)
= −a6/96− a4h2/12√

−a6/288 + a4h2/12 ·
√
−a6/32 + 3a4h2/4

=

= −(2α+ 1)
2(3α+ 1)

sin
(
θ

(4,1),(3,1)(3,1)
(2.1)

)
=
√
−a6/288 + a4h2/12−−a6/288

i
√
−a6/288 + a4h2/12

=
√

3(8α+ 3)
2
√

2
√

3α+ 1

For the (3, 2) simplex that consists of four space-like edges and four
time-like edges, we can choose the following coordinates for the vertices, as
depicted in Fig. 5.19:

x1 =


h
a/2

−
√

3a/6
0

 x2 =


h
−a/2
−
√

3a/6
0

 x3 =


h
0√

3a/3
0



x4 =


0
0
0
a/2

 x5 =


0
0
0
−a/2


where h =

√
α+ 7/12 can be calculated from the condition that the squared

distance between x3 and x4 is −αa2.
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The volume can be calculated using the determinant of the connection
vectors of these five points

V3,2 = 1
4!

∣∣∣∣∣∣∣∣∣
h h h 0
a/2 −a/2 0 0

−
√

3a/6 −
√

3a/6
√

3a/3 0
−a/2 −a/2 −a/2 −a

∣∣∣∣∣∣∣∣∣ =
√

3ha3

2 = a4

96
√

12α+ 7

(5.44)
As for the (4, 1)-simplex, one has to calculate the interior angles at a

(3, 0) and a (2, 1)-triangle. We start with the (3, 0)-triangle x1x2x3, which
is formed by the tetrahedra x1x2x3x4 and x1x2x3x5. The normal vectors
v1 and v2 of this tetrahedra are given by

v1/2 = −−−−→x1x4/5 ×−−−−→x2x4/5 ×−−−−→x3x4/5

=


−h
−a/2√
3a/6
±a/2

×

−h
a/2√
3a/6
±a/2

×

−h
0

−
√

3a/3
±a/2

 =


∓
√

3a3/4
0
0√

3a2h/2


which both have a squared length −3a6/16+3a4h2/4. For the angle between
the both vectors one gets

cos
(
θ

(3,2),(3,1)(3,1)
(3,0)

)
= 3a6/16 + 3a4h2/4
−3a6/16 + 3a4h2/4 = 6α+ 5

2(3α+ 1)

sin
(
θ

(3,2),(3,1)(3,1)
(3,0)

)
=

√
−9/16a8h4

−3a6/16 + 3a4h2/4 = i
√

3(12α+ 7)
2(3α+ 1)

(5.45)

For the (2, 1)-triangle there is the special feature that there are two
possibilities how a (2, 1)-triangle can be formed, on the one hand by the in-
tersection of two (2, 2)-tetrahedra, and on the other hand by the intersection
of a (2, 2) and a (3, 1)-tetrahedron. We consider first a (2, 1)-triangle x3x4x5
formed by the (2, 2)-tetrahedra x1x3x4x5 and x2x3x4x5, whose normal
vectors are given by

v1/2 = −−−−→x1/2x3 ×−−−−→x1/2x4 ×−−−−→x1/2x5

=


0
±a/2
−
√

3a/2
0

×


h
±a/2
−
√

3a/6
−a/2

×


h
±a/2
−
√

3a/6
a/2

 =


±
√

3a3/6√
3a2h/2
±a2h/2

0
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The squared length of both vectors is −a6/12 + a4h2, and the angle can be
calculated using

cos
(
θ

(3,2),(2,2)(2,2)
(2,1)

)
= a6/12 + a4h2/2
−a6/12 + a4h2 = 4α+ 3

4(2α+ 1)

sin
(
θ

(3,2),(2,2)(2,2)
(2,1)

)
=
√
−a10h2/4 + 3a8h4/4
−a6/12 + a4h2 =

√
(4α+ 1)(12α+ 7)

4(2α+ 1)
(5.46)

For the second possibility we consider the (2, 1)-triangle x2x3x4 formed by
the (3, 1)-tetrahedron x1x2x3x4 and the (2, 2)-tetrahedron x2x3x4x5, both
normal vectors have been calculated previously to be

v1 = −−→x1x4 ×−−→x2x4 ×−−→x3x4 =


−
√

3a3/4
0
0√

3a2h/2



v2 = −−→x2x3 ×−−→x2x4 ×−−→x2x5 =


−
√

3a3/6√
3a2h/2
−a2h/2

0


The squared length of v1 is −3a6/16 + 3a4h2/4, the squared length of v2 is
−a6/12 + a4h2, so the angle between the vectors can be calculated by

cos
(
θ

(3,2),(3,1)(2,2)
(2,1)

)
= −a6/8√

−3a6/16 + 3a4h2/4
√
−a6/12 + a4h2 =

= −1
2
√

2(3α+ 1)(2α+ 1)

sin
(
θ

(3,2),(3,1)(2,2)
(2,1)

)
=

√
−a10h2/4 + 3a8h4/4√

−3a6/16 + 3a4h2/4
√
−a6/12 + a4h2 =

=
√

(4α+ 1)(12α+ 7)
2
√

2(3α+ 1)(2α+ 1)

(5.47)

The sign factors can be calculated analogous as in the (2 + 1)-dimensional
case, which results in σ3,0 = −i and σ2,1 = 1 (compare Ref. [34]).

Topological quantities

If M and N are two manifolds, the Euler characteristic of the product space
is given by

χ(M ×N) = χ(M) · χ(N)

332



5.3. Fluctuating spacetimes - Causal Dynamical Triangulations

The underlying manifold for d-dimensional causal dynamical triangulation
can be written as a product of a (d− 1)-dimensional spatial slices manifold
Σ (in almost all situations we use a (d−1)-sphere Sd−1) and a 1-dimensional
time evolution manifold T (we use either a 1-sphere S1 for periodic boundary
conditions or an interval I for open or fixed boundary conditions). So the
Euler characteristic of the whole triangulation can be calculated to be

χ(T × Σ) = χ(T ) · χ(Σ)

Note that χ(Si) = 0 for odd i and χ(Si) = 2 for even i, so if T = S1 the
Euler characteristic vanishes for all space-slice topologies. For completeness
note that χ(I) = 1.
In general there are the following relations between the topological vari-

ables for closed manifolds (manifolds without border):

• Causal split of the triangulation into (d− 1)-dimensional spatial slices:

Nd+1,0 = 0
Nd,1 = 2Nd,0

(5.48a)

The first equation ensures that the spatial slices are (d−1)-dimensional,
the second equation is due to the fact that each spatial maximal simplex
is subsimplex of two simplices of type (d, 1).

• Dehn-Sommerville relations for the whole triangulation:

Nk =
d∑
i=k

(−1)i+d
(
i+ 1
k + 1

)
Ni

⇒
dk/2e∑
j=0

Nk−j+1,j =
d∑
i=k

di/2e∑
j=0

(−1)i+d
(
i+ 1
k + 1

)
Ni−j+1,j

(5.48b)

For k = d− 1 the Dehn-Sommerville relation include the well-known
result that each (d− 1)-simplex is incident with two d-simplices, and
each d-simplex is incident with (d+ 1) (d− 1)-simplices:

2Nd−1 = (d+ 1) ·Nd ⇒ 2 ·
d(d−1)/2e∑

i=0
Nd−i,i = (d+ 1) ·

dd/2e∑
i=1

Nd−i+1,i

• Dehn-Sommerville relations for the spatial slices:

Nk+1,0 =
d−1∑
i=k

(−1)i+d−1
(
i+ 1
k + 1

)
Ni+1,0 (5.48c)
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For k = d − 2 the Dehn-Sommerville relations for the spatial slices
include that each spatial (d− 2)-simplex is incident with two spatial
(d− 1)-simplices, and each spatial (d− 1) simplex is incident with d
spatial (d− 2) simplices:

2Nd−1,0 = dNd−2,0

• Euler-characteristic of the whole triangulation:

χ(T × Σ) =
d∑

i=−1

di/2e∑
j=0

(−1)i+dNi−j+1,j (5.48d)

• Euler-characteristic of the spatial slices:

t · χ(±) =
d+1∑
i=1

(−1)i−1Ni,0 (5.48e)

Here t is the number of spatial slices in the triangulation. Note that
for χ(Σ) = 0 the topological quantities of the triangulation do not
depend on the number t of spatial slices.

Mind that these equations are only valid for causal dynamical triangulations
with periodic boundary conditions. It is possible to formulate similar
equations for open and fixed boundary conditions that must take into
account the number of respective simplices of the two boundary simplices.

(1+1)-dimensional topological quantities In two dimensions the topo-
logical constraints (5.48) can be specialized to be

N2,1 = 2N2,0 (5.49a)
3 ·N2,1 = 2 · (N2,0 +N1,1) (5.49b)

2N1,0 = 2N2,0 (5.49c)
χ(T )χ(Σ) = N1,0 −N2,0 −N1,1 +N2,1 (5.49d)
t · χ(Σ) = N1,0 −N2,0 (5.49e)

One might conclude that there is a contradiction between Equations (5.49c)
and (5.49e). But Σ = S1 is the only possible topology of a closed manifold,
and χ(S1) = 0, so both equations are equivalent.

There is only one independent topological quantity, because we have three
constraints (5.49) (there are five equations, but only three are independent)
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for four topological quantities. So all topological quantities can be expressed
in terms of a single topological quantity (here the number N2,1 of triangles):

N1,0 = 1
2N2,1 (5.50a)

N2,0 = 1
2N2,1 (5.50b)

N1,1 = N2,1 (5.50c)

The next step is to calculate the simplex incidence numbers n(2,1)
(1,0), which

is the number of vertices incident with (2, 1)-triangle. For the triangulation
to be causal space-like triangles are prohibited, so this is the only simplex
incidence number to be calculated. There are two different numbers, because
the vertex can be between two time-like edges or between a time-like and a
space-like edge. The resulting numbers are

n
(2,1),(2,0)(1,1)
(1,0) = 2

n
(2,1),(1,1)(1,1)
(1,0) = 1

(5.51)

All other incidence numbers vanish.

(2+1)-dimensional topological quantities In three dimensions, the
topological quantities (5.48) can be specialized to

N3,1 = 2N3,0 (5.52a)
N3,0 +N2,1 = 2(N3,1 +N2,2) (5.52b)

2N2,0 = 3N3,0 (5.52c)
N1,0 −N2,0 −N1,1 +N3,0 +N2,1 −N3,1 −N2,2 = χ(T )χ(Σ) (5.52d)

N1,0 −N2,0 +N3,0 = χ(Σ) · t (5.52e)

One can simplify these five equations for eight variables and show that
the topological quantities of a (2+1) causal dynamical triangulation can
completely be written in terms of N3,1, N2,2 and N1,0:

N1,1 = N1,0 + 1
4N3,1 +N2,2 − χ(T )χ(Σ) (5.53a)

N2,0 = 3
4N3,1 (5.53b)

N2,1 = 3
2N3,1 + 2N2,2 (5.53c)
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N3,0 = 1
2N3,1 (5.53d)

t = 1
χ(Σ)N1,0 −

1
4χ(Σ)N3,1 (5.53e)

Eq. (5.53e) leads to undefined behavior for vanishing Euler characteristic
χ(Σ) of the spatial slices Σ. In this case in Eq. (5.52e) and in the whole
system of equations there is no dependence on the variable t.
The last step is to calculate the simplex incidence numbers, which are

the number of incident bones at the different types of maximal simplices.
In (2 + 1) dimensions one can have a maximal (3, 1)-simplex or a maximal
(2, 2)-simplex, furthermore there are (2, 0)-bones and (1, 1)-bones. The
resulting numbers are

n
(3,1),(3,0)(2,1)
(2,0) = 3 n

(2,2),(2,1)(2,1)
(2,0) = 2

n
(3,1),(2,1)(2,1)
(1,1) = 3 n

(2,2),(2,1)(2,1)
(1,1) = 4

(5.54)

All other incidence numbers vanish.

(3+1)-dimensional topological quantities In four dimensions the
topological quantities 5.48 can be specialized to

2N4,0 = N4,1 (5.55a)
2N2,2 = 3N3,2 (5.55b)

2(N2.0 +N1,1)− 3(N3,0 +N2,1)+
4(N4,0 +N3,1 +N2,2)− 5(N4,1 +N3.2) = 0 (5.55c)

5(N4,1 +N3,2) = 2(N4,0 +N3,1 +N2,2) (5.55d)
N3,0 = 2N4,0 (5.55e)

N1,0 −N2.0 −N1,1 +N3,0 +N2,1−
N4,0 −N3,1 −N2,2 +N4,1 +N3.2 = χ(T )χ(Σ) (5.55f)

N1,0 −N2.0 −N3,0 −N4,0 = t · χ(Σ) (5.55g)

One can simplify these seven constrains for ten variables and show that
the topological quantities of a (3+1) causal dynamical triangulation can
completely be written in terms of N4,1, N3,2 and N1,0:

N2,0 = N1,0 + 1
2N4,1 − χ(Σ)t (5.56a)

N1,1 = 2N1,0 + 1
2N3,2 − χ(Σ)(t− 3χ(T )) (5.56b)
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N3,0 = N4,1 (5.56c)
N2,1 = 2N1,0 +N4,1 + 2N3,2 − 2χ(T )χ(Σ) (5.56d)

N4,0 = 1
2N4,1 (5.56e)

N3,1 = 2N4,1 +N3,2 (5.56f)

N2,2 = 3
2N3,2 (5.56g)

Here we do not treat t as an important variable, because in almost all cases
we use Σ = S3, which has an Euler characteristic χ(S3) = 0.

The last step is to calculate the simplex incidence numbers, which are
the number of incident bones of a certain type with a maximal simplex of
certain type. In (3 + 1) dimensions one can have a maximal (4, 1)-simplex
or a maximal (3, 2)-simplex, there are (3, 0)-bones and (2, 1)-bones. The
resulting numbers are

n
(4,1),(4,0)(3,1)
(3,0) = 4 n

(3,2),(3,1)(3,1)
(3,0) = 1

n
(4,1),(3,1)(3,1)
(2,1) = 6 n

(3,2),(3,1)(2,2)
(2,1) = 6

n
(3,2),(2,2)(2,2)
(2,1) = 3

(5.57)

All other incidence numbers vanish.

The action of (1 + 1)-dimensional CDT

In this section we derive the actual form of the action for (1 + 1) causal
dynamical triangulations. We use (5.26), specialize first for d = 2 and define
k = 1/8πG for convenience, which yields

SCDT = 2πkσ1,0V1,0N1,0 − kc2,1N2,1

where the coefficient c2,1 is given by

c2,1 = ΛV2,1 + σ1,0V1,0
(
2θ(2,1),(2,0)(1,1)

1,0 + θ
(2,1),(1,1)(1,1)
1,0

)
Inserting the geometric quantities V2,1 from Eq. (5.31), θ(2,1)

1,0 from Eqs. (5.33)
and (5.32) and using V1,0 = 1 gives

SCDT = 2πkσ1,0V1,0N1,0

− k
(

Λa2

4
√

4α+ 1 + 2σ1,0 arccos
( −i

2
√
α

)
+ arcsin

(
−i4α+ 1

2α

))
N2,1
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We use the identities arccos(−i · x) = i arsinh(x) + π/2 and arcsin(−i · x) =
−i arsinh(x) to rewrite the trigonometric functions and get

SCDT = 2πkσ1,0V1,0N1,0 − k
(

Λa2

4
√

4α+ 1 + σ1,0π + 2σ1,0i arsinh
( i

2
√
α

)

− σ1,0i arsinh
(4α+ 1

2α

) )
N2,1

Using the topological identity (5.50a), which gives N1,0 = N2,1/2 for (1 + 1)
causal dynamical triangulations, cancels the first term with the second
term of the brackets. For the action to be real for α > 0 we conclude that
σ1,0 = −i, and we get for the action

SCDT = κ2,1N2,1 =

= −k
(

Λa2

4
√

4α+ 1 + 2 arsinh
( i

2
√
α

)
− arsinh

(4α+ 1
2α

))
N2,1

(5.58)

The action of (2 + 1)-dimensional CDT

In this section we derive the actual form of the action for (2 + 1) causal
dynamical triangulations. We use (5.26), and specialize first for d = 3 and
define k = 1/8πG for convenience, which yields

SCDT = 2πkV2,0σ2,0N2,0 + 2πkV1,1σ1,1N1,1 − kc3,1N3,1 − kc3,2N2,2

Using (5.54) in the definition (5.26) of the coefficients c3,1 and c3,2 gives

c3,1 = ΛV3,1 + 3θ(3,1),(3,0)(2,1)
2,0 σ2,0V2,0 + 3θ(3,1),(2,1)(2,1)

1,1 σ1,1V1,1

c3,2 = ΛV2,2 + 2θ(2,2),(2,1)(2,1)
2,0 σ2,0V2,0 + 3θ(2,2),(2,1)(2,1)

1,1 σ1,1V1,1

One can see that one can omit the last two upper indices of the angles,
because they do not carry any information. Using Eq. (5.53b) for replacing
N2,0 with N3,1 gives

SCDT = 2πkσ2,0V2,0
3N3,1

4 + 2πkσ1,1V1,1N1,1

− k
(
ΛV3,1 + 3θ(3,1)

2,0 σ2,0V2,0 + 3θ(3,1)
1,1 σ1,1V1,1

)
N3,1

− k
(
ΛV2,2 + 2θ(2,2)

2,0 σ2,0V2,0 + 4θ(2,2)
1,1 σ1,1V1,1

)
N2,2
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which can be sorted with respect to the dynamical quantities N1,1, N3,1 and
N2,2, which yields

SCDT = 2πkσ1,1V1,1N1,1

+
(3πk

2 σ2,0V2,0 − kΛV3,1 − 3kθ(3,1)
2,0 σ2,0V2,0 − 3kθ(3,1)

1,1 σ1,1V1,1

)
N3,1

+
(
−kΛV2,2 − 2kθ(2,2)

2,0 σ2,0V2,0 − 4kθ(2,2)
1,1 σ1,1V1,1

)
N2,2

We introduce now effective coupling constants κ by

SCDT = κ1,1N1,1 + κ3,1N3,1 + κ2,2N2,2.

Now use the geometric volumes and angles calculated in Sec. 5.3.4, so for the
coupling constant κ1,1 (which is the generalized inverse temperature with
respect to the time-like edges) we have κ1,1 = 2π

√
αka. For the coupling

constant κ3,1 (which is the generalized inverse temperature for the maximal
(3, 1)-simplices) we get

κ3,1
ka

= −i3π2 −
Λa2√3α+ 1

12 + i3 arccos
(

−i√
3(4α+ 1)

)

− 3 arccos
( 2α+ 1

4α+ 1

)√
α

We use the identity arccos(−i · x) = i arsinh(x) + π/2, so that the first term
cancels and the coupling constant can be expressed as

κ3,1
ka

= −Λa2√3α+ 1
12 − 3 arsinh

(
1√

3(4α+ 1)

)
− 3
√
α arccos

( 2α+ 1
4α+ 1

)
(5.59)

For the coupling constant κ2,2 (which is the generalized inverse temperature
for the maximal (2, 2)-simplices) we get

κ2,2
ka

= −Λa2√2α+ 1
6
√

2
+i arcsin

(
−2i

√
8(2α+ 1)

4α+ 1

)
−4 arccos

( −1
4α+ 1

)√
α

We use the identity arcsin(−ix) = −i arsinh(x) and rearrange the first term,
which yields

κ2,2
ka

= −Λa2√4α+ 2
12 + 2 arsinh

(√
8(2α+ 1)
4α+ 1

)
− 4
√
α arccos

( −1
4α+ 1

)
(5.60)
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Figure 5.20: Coupling constants κ3,1/ka (5.59) and κ2,2/ka (5.60) of (2 + 1)-
dimensional causal dynamical triangulations in terms of the spacetime asymmetry
factor α for different values of the cosmological constant a2Λ (a2Λ = 0, a2Λ = 2
and a2Λ = −2). The real part of κ is displayed with solid lines, the imaginary part
is displayed with dashed lines.

In Fig. 5.20 the values for the two coupling constants κ3,1 and κ2,2 are
displayed for different values a2Λ of the cosmological constant in terms
of the spacetime asymmetry parameter α. For the considered range of
α > 0 both coupling constants and therewith the action are real, and for
α < −0.5 both coupling constants are purely imaginary. For −0.5 < α < 0
the coupling constant κ2,2 is a complex number. This means that for
α > 0 the weight factor ∝ exp(iSCDT ) is just a phase factor (as one would
expect for a Lorentzian path integral), whereas for α < −0.5 the weight
factor ∝ exp(iSCDT ) is a real number, which can be used for performing a
Wick-rotation to the Euclidean domain.

In the following we will show that for α = −1 the action of causal dynam-
ical triangulations equals the action of Euclidean dynamical triangulations,
as expected by construction (since for α = −1 the length of a time-like edge
becomes `2time = −αa2 = a2 = `2space). For the edge coupling constant we
get κ1,1 = 2πkai. The coupling constant κ3,1 becomes

(κ3,1/ka)|α=−1 = −iΛa2√2/12− 3 arsinh(−i/3)− 3i arccos(1/3)

We use the trigonometric identities arsinh(−ix) = −i arcsin(x) and arcsin(x)
= π/2− arccos(x) to obtain

(κ3,1/ka)|α=−1 = −iΛa2√2/12− 6i arccos(1/3) + 3πi
2

The coupling constant κ2,2 becomes

(κ2,2/ka)|α=−1 = −iΛa2√2/12 + 2 arsinh(−2i
√

2/3)− 4i arccos(1/3)
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= −iΛa2√2/12− 2i arcsin(2
√

2/3)− 4i arccos(1/3)

By using the identity arcsin(x) = arccos(
√

1− x2) we have

(κ2,2/ka) = −iΛa2√2/12− 6i arccos(1/3)

So the action for α = −1 becomes

SCDT = 2πkai
[
N1,1 + 3

4N3,1

]
−i
[

Λka3√2
12 − 6ika arccos

(1
3

)]
(N3,1+N2,2)

Using the topological identity N2,0 = 3N3,1/4 and using the total number
N1 = N2,0 +N1,1 of edges and the total number N3 = N3,1 +N2,2 of maximal
simplices, we get

SCDT|α=−1 = 2πkaiN1 − i
[

Λka3√2
12 − 6ika arccos

(1
3

)]
N3 = i · SDT,

where SDT is the action (5.18b) of the (Euclidean) dynamical triangulation
approach.

The action of (3 + 1)-dimensional CDT

In this section we derive the actual form of the action for (3 + 1) causal
dynamical triangulations. We use (5.26), and specialize first for d = 4 and
define k = 1/8πG for convenience, which yields

SCDT = 2πkV3,0σ3,0N3,0 + 2πkV2,1σ2,1N2,1 − kc4,1N4,1 − kc4,2N3,2

Using (5.57) in the definition (5.26) of the coefficients c3,1 and c3,2 gives

c4,1 = ΛV4,1 + 4θ(4,1),(4,0)(3,1)
3,0 σ3,0V3,0 + 6θ(4,1),(3,1)(3,1)

2,1 σ2,1V2,1

c4,2 = ΛV3,2 + θ
(3,2),(3,1)(3,1)
3,0 σ3,0V3,0 + 6θ(3,2),(3,1)(2,2)

2,1 σ2,1V2,1

+ 3θ(3,2),(2,2)(2,2)
2,1 σ2,1V2,1

For most angles one can omit the second and the third upper index without
any loss of information (for the remaining two angles one can omit the third
upper index), and we can calculate the action

SCDT = 2πkV3,0σ3,0N3,0 + 2πkV2,1σ2,1N2,1

− k
(
ΛV4,1 + 4θ(4,1)

3,0 σ3,0V3,0 + 6θ(4,1)
2,1 σ2,1V2,1

)
N4,1
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− k
(
ΛV3,2 + θ

(3,2)
3,0 σ3,0V3,0 + 6θ(3,2),(3,1)

2,1 σ2,1V2,1

+ 3θ(3,2),(2,2)
2,1 σ2,1V2,1

)
N3,2

We can use the topological identity (5.56c), which yields N3,0 = N4,1, to
express the action in the three independent quantities N2,1, N4,1 and N3,2.
Furthermore we introduce the generalized inverse temperatures κ with
respect to the independent extensive quantities, so that the actual action is

SCDT = κ2,1N2,1 + κ4,1N4,1 + κ3,2N3,2.

The first generalized inverse temperature is given by

κ2,1
ka2 = π

√
4α+ 1

2

The second coupling constant κ4,1, which is the generalized inverse temper-
ature for the extensive quantity N4,1, is given by

κ4,1
ka2 = −πi

√
3

2 − Λa
4

96
√

8α+ 3 + 4i arccos
( −i

2
√

2
√

3α+ 1

) √3
4

− 6 arccos
( 2α+ 1

2(3α+ 1)

) √4α+ 1
4

Note that in the last term we used the positive argument of the arccos
function to obtain an angle between 0 and π, and not the complementary
angle. We use the identity arccos(−i · x) = π/2− i sinh(x) (where the real
part cancels the first term of the coupling constant), and arrive at

κ4,1
ka2 = −Λa2

96
√

8α+ 3−
√

3 arsinh
( 1

2
√

2
√

3α+ 1

)
− 3

2
√

4α+ 1 arccos
( 2α+ 1

2(3α+ 1)

)
(5.61)

The third coupling constant κ3,2, which is the generalized inverse tempera-
ture for the extensive quantity N3,2, is given by

κ3,2
ka2 = −Λa2

96
√

12α+ 7 + i arcsin
(
−i
√

3(12α+ 7)
2(3α+ 1)

) √
3

4

− 6 arccos
(

−1
2
√

2(3α+ 1)(2α+ 1)

) √
4α+ 1

4
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− 3 arccos
( 4α+ 3

4(2α+ 1)

) √4α+ 1
4

Note that we also interchanged the sign of the argument of the arcsin
function to get the right contribution to the action. Using the identity
arcsin(−i ·x) = −i arsinh(x) leads to the final form of the coupling constant

κ3,2
ka2 = −Λa2

96
√

12α+ 7 +
√

3
4 arsinh

(√
3(12α+ 7)
2(3α+ 1)

)

− 3
√

4α+ 1
2 arccos

(
−1

2
√

2(3α+ 1)(2α+ 1)

)
(5.62)

− 3
√

4α+ 1
4 arccos

( 4α+ 3
4(2α+ 1)

)

In Fig. 5.21 the values for the two coupling constants κ4,1 and κ3,2 are
displayed for different values a2Λ of the cosmological constant in terms
of the spacetime asymmetry parameter α. For the considered range of
α > 0 both coupling constants and therewith the action are real, and for
α < −7/12 both coupling constants are purely imaginary. This means that
for α > 0 the weight factor ∝ exp(iSCDT ) is just a phase factor (as one would
expect for a Lorentzian path integral), whereas for α < −7/12 the weight
factor ∝ exp(iSCDT ) is a real number, which can be used for performing a
Wick-Rotation to the Euclidean domain. Similar to the (2 + 1)-dimensional
case, one can then identify the action of Euclidean dynamical triangulations
with the action of causal dynamical triangulations for spacetime asymmetry
α = −1. We omit this calculation here and point the interested reader
to Ref. [34], where it was shown numerically that the two actions can be
identified.

5.3.5 Grandcanonical one-slice propagator approach to
CDT

In this section we derive how the partition function of causal dynamical
triangulations can be reduced to the density of states defined for triangu-
lations of one time slice. We will show that if this one-slice DOS can be
calculated, e.g., by the Wang-Landau algorithm, the limit T →∞ can be
implemented at once.
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Figure 5.21: Coupling constants κ4,1/ka
2 (5.61) and κ3,2/ka

2 (5.62) of (3 + 1)-
dimensional causal dynamical triangulations in terms of the spacetime asymmetry
factor α for different values of the cosmological constant a2Λ (a2Λ = 0, a2Λ = 10
and a2Λ = −10). The real part of κ is displayed with solid lines, the imaginary
part is displayed with dashed lines.

Partition function

In the following we denote by Σd−1×IT the underlying manifold of the causal
dynamical triangulations with T time slices, where usually Σd−1 = Sd−1 for
the spatial slices and I is an interval (for open or fixed boundary conditions)
or S1 (for periodic boundary conditions). For T ∈ triang(Σd−1 × IT ) we
denote by ∂T ∈ triang(Σd−1) the triangulation which is the lower boundary
of T , and by ∂T ∈ triang(Σd−1) the triangulation which is the upper
boundary of T (if not using periodic boundary conditions). In general we
define ∂tT ∈ triang(Σd−1) as the triangulation at time slice t.

Furthermore, denote by N(T ) an independent tuple of topological quanti-
ties describing the triangulation T ∈ Σd−1×IT → Zk, compare Sec. 5.3.4 for
details, e.g., N(T ) = (N1,0(T ), N3,1(T ), N2,2(T ))t for (2 + 1)-dimensional
CDT. The number Ni(T ) denotes the topological quantities of the i-th
time slice. Denote by M(τ) an independent tuple of topological quantities
describing the spatial triangulation τ ∈ Σd−1, e.g., M(τ) = N2(τ) for 2-
dimensional triangulations with fixed topology, and by Mi(T ) the spatial
topological quantities of the spatial slice of triangulation T between the
(i−1)-th and the i-th time slice. Last, we denote by κ the coupling constants
which are dual to the independent topological quantities of the respective
dimension. Note that in general N , M and κ are vectorial quantities, and
that κ · N denotes a scalar product between these quantities. We often
omit the argument of the quantities if it is clear to which triangulation they
belong.
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Depending on the choice of boundary conditions, the partition function
for causal dynamical triangulations with T time slices can then be written
as:

Zfixed
T (M0,MT ) =

∑
T ∈triang(Σd−1×IT )

M(∂T )=M0,M(∂T )=MT

e−κ·N(T ) =
∑
N

gT (N,M0,MT )e−κ·N

Zperiodic
T =

∑
M0

Zfixed
T (M0,M0)

Zopen
T =

∑
M0

∑
MT

Zfixed
T (M0,MT )

The density of states (DOS) gT (N,M0,Mt) is basically the (normalized)
number of T -slice triangulations with N simplices and M0 boundary sim-
plices at the one end and MT boundary simplices at the other end of the
triangulation. In principle this DOS can be calculated with a Wang-Landau
simulation, but for large T the algorithm does not converge anymore because
of the large number of energy bins.
But it is possible to calculate the T -slice DOS gT (N,M0,MT ) in terms

of the 1-slice DOS g1(N,M0,M1), as described in the following. Note that
the one-slice DOS can be written as

g1(N,M0,M1) =
∑

τ0,τ∈triang(Σd−1)
δM(τ0),M0δM(τ1),M1

∑
T ∈triang(Σd×I1)
∂T=τ0,∂T=τ1

δN(T ),N

We now assume that∑
T ∈triang(Σd×I1)
∂T=τ0,∂T=τ1

δN(T ),N ≈ h(N,M(τ0),M(τ1)),

where the function h(N,M1,M2) is the number of (1-slice) triangulations
with topological quantities N that join one7 spatial triangulation with
topological quantities M1 with one with topological quantities M2. This
assumption means that the number of triangulations joining two boundary
triangulations τ and τ do not depend on the actual boundary triangulations,

7 The difference between the DOS g(N,M1,M2) and h(N,M1,M2) is that g corresponds
to the number of triangulations joining all possible triangulations with boundary
topological quantities M1 and M2, and h corresponds to the (average) number of
possible triangulations joining two fixed boundary triangulations with topological
quantities M1 and M2
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but only on the topological quantities of the boundary triangulations. Denote
by

h∂(M) =
∑

τ∈triang(Σd−1)
δM(τ),M

the number of boundary triangulations with topological quantitiesM (which
is the density of states for triangulations of the spatial manifold as considered
in Secs. 4.2 or Sec. 4.3), so the one-slice density of states can be written as

g1(N,M0,M1) = h∂(M0)h∂(M1)h(N,M0,M1)

Next, we find a similar expression for the two-slice DOS and try to write
it in terms of the one-slice DOS. The 2-slice DOS g2(N,M0,M2) (which is
basically the number of two-slice spacetime triangulations with topological
quantities N , which have boundaries with topological quantities M0 and
M2) can be calculated by

g2(N,M0,M2) =
∑

τ0,2∈triang(Σd−1)
δM(τ0),M0δM(τ2),M2

∑
T ∈triang(Σd×I2)
∂T=τ0,∂T=τ2

δN(T ),N

Next we use the fact that the sum over all two-slice triangulations T ∈
triang(Σd × I2) can be expressed as a sum over all intermediate spatial
triangulations τ1 and all one-slice triangulations T1,2 ∈ triang(Σd×I1) with
the correct boundary conditions:

g2(N,M0,M2) =
∑

τ0,1,2∈triang(Σd−1)
δM(τ0),M0δM(τ2),M2

∑
T0,1∈triang(Σd×I1)
∂T0=τ0,∂T0=τ1
∂T1=τ1,∂T1=τ2

δN(T0)+N(T1),N

Now we divide the condition N(T0) +N(T1) = N , which is encoded in the
last delta function, into the conditions N(T0) = N0 and N(T1) = N −N0,
summing over all possible N0, which results in

g2(N,M0,M2) =
∑

τ0,1,2∈triang(Σd−1)
δM(τ0),M0δM(τ2),M2

∑
N0

∑
T0,1∈triang(Σd×I1)
∂T0=τ0,∂T0=τ1
∂T1=τ1,∂T1=τ2

δN(T0),N0δN(T1),N−N0

Inserting the functions h and h∂ then yields

g2(N,M0,M2) =
∑
M1

h∂(M1)h∂(M2)h∂(M3)

·
∑
N0

h(N0,M0,M1)h(N −N0,M1,M2),
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which means that one can express the two-slice DOS g2 in terms of the
one-slice DOS g1 by

g2(N,M0,M2) =
∑
M1

∑
N0

1
h∂(M1)g1(N0,M0,M1)g1(N −N0,M1,M2),

or, in a way that is more symmetric in the first arguments of the one-slice
DOS, by

g2(N,M0,M2) =
∑
M1

∑
N0,N1

1
h∂(M1)g1(N0,M0,M1)g1(N1,M1,M2)δN0+N1,N

(5.63)
This can be generalized for the T -slice DOS by

gT (N,M0,MT ) =
∑

M1,...,MT−1

∑
N0,...,NT−1

∏T
r=1 g1(Nr,Mr−1,Mr)∏T−1

s=1 h∂(Ms)
δ∑

i
Ni,N

(5.64)
Using the T -slice DOS in the partition function yields

Zfixed
T (M0,MT ) =

∑
M1,...,MT−1

∑
N0,...,NT−1

T∏
i=1

g1(Ni,Mi−1,Mi)
h∂(Mi)

h∂(MT )e−κ·N

(5.65)
Note that the factor h∂(MT ) is constant if considering fixed Mt, so it is not
important for calculating expectation values using this partition function,
and will be omitted further on. The partition functions for open and
periodic boundary conditions can be calculated from the fixed boundary
partition function. In principle one can use this DOS or this partition
function for calculations of expectation values directly. But numerically it
is a problem to evaluate the nested sums that occur in the formulas and to
store the resulting DOS in memory, so in the next section we will derive a
transfer-matrix approach for extrapolation expectation values directly from
the 1-slice DOS.

Construction of the transfer matrix

The aim of this section is to formulate the partition function using transfer
matrices, as already done for the one-dimensional Ising model in Sec. 2.1.7.
This is quite easy if the action is slice-additive, i.e., if T1 and T2 are two one-
slice triangulations with matching boundaries ∂T1 = ∂T2, and T = T1 ∪ T2
is the two-slice triangulation that consists of the triangulations T1 and T2,
then

N(T1 ∪ T2) = N(T1) +N(T2)
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This is true if N consists only of the number of simplices of type (k− i+1, i)
with 1 ≤ k ≤ d and i ≤ 1, but it fails if N has a component that is the
number of a space-like (k+ 1, 0)-simplices, because these are shared between
the neighbors, and we get

N(T1 ∪ T2) = N(T1) +N(T2)−N(T1 ∩ T2)

We will introduce the transfer matrix notation for the partition function
in this section first for slice-additive actions. At the end of the section we
will present how to generalize this formulation also for non-slice-additive
actions.

If the action is slice-additive, the T -slice partition function (5.65) for fixed
boundary conditions can be written as

Zfixed
T (M0,MT ) =

∑
M1

· · ·
∑
MT−1

T∏
i=1

V (κ,Mi−1,Mi)

with V (κ,Mi−1,Mi) : =
∑
N

g1(N,Mi−1,Mi)
h∂(Mi)

e−κ·N

In the following we identify V (κ, •, •) with the components of a symmetric
transfer matrix V(κ), so that we can identify matrix products in the upper
formula and for the other types of partition functions:

Zfixed
T (κ,M0,MT ) =

(
V(κ)T

)
(M0,MT ) (5.66a)

Zopen
T (κ) =

∑
M0

∑
MT

(
V(κ)t

)
(M0,MT ) (5.66b)

Zperiodic
T (κ) = Tr

(
V(κ)t

)
(5.66c)

For the fixed boundary conditions, the result is simply the proper entry of
the power of the transfer matrix. For open boundary conditions, the result
is the grand sum of the power of the matrix, and for periodic boundary
conditions, the result is the trace of the power of the transfer matrix.

Since the transfer matrix V(κ) is a symmetric matrix, it has a non-negative
eigenbasis

V(κ) |a〉 = λa(κ) |a〉 λ1 ≤ λ2 ≤ λ3 . . . (5.67)
Note that of course also the eigenvectors |a〉 depend on the coupling constants
κ, which is not reflected in the notation. Furthermore we introduce the
notion |M〉 for the standard-basis of the transfer-matrix, so that〈

M
∣∣V(κ)

∣∣M ′〉 = V (κ,M,M ′)
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For distinction, we use upper-case letters for the standard basis and lower-
case letters for the eigenbasis. Using this notation the different partition
functions can be written as

Zfixed
T (κ,M0,MT ) =

〈
M0

∣∣∣V(κ)T
∣∣∣MT

〉
=
∑
a

〈M0 | a〉 〈a |MT 〉λa(κ)T

Zopen
T (κ) =

∑
ab

〈
a
∣∣∣V(κ)T

∣∣∣ b〉 =
∑

M0,MT

∑
a

〈M0 | a〉 〈a |MT 〉λa(κ)T

Zperiodic
T (κ) =

∑
a

〈
a
∣∣∣V(κ)T

∣∣∣ a〉 =
∑
a

λa(κ)T

The formulation of the partition functions in the eigenbasis has the advantage
that the limit T →∞ can be implemented easily, because there only the
largest eigenvalue λ1 contributes to the partition function. This results in

lim
T→∞

Zfixed
T (κ,M0,MT ) = 〈M0 | 1〉 〈1 |MT 〉λ1(κ)T (5.68a)

lim
T→∞

Zopen
T (κ) =

∑
M0,MT

〈M0 | 1〉 〈1 |MT 〉λ1(κ)T (5.68b)

lim
T→∞

Zperiodic
T (κ) =

∑
1
λ1(κ)T (5.68c)

So if the dependence of λ1(κ) on the coupling constants κ is known analyt-
ically, all relevant quantities could be calculated using derivatives of this
eigenvalue.
As mentioned before, the action of causal dynamical triangulations can

be non-slice-additive, if there are contributions of the number of spatial
simplices (which are counted in both neighboring triangulation slices). One
can generalize the transfer matrix method by calculating the total topological
contribution of the whole triangulation by

N =
T∑
i=1

Ni +
T−1∑
i=0

f(Mi) =
T∑
i=1

Ni + f

(
T∑
i=0

Mi

)

for periodic boundary conditions with a linear boundary contribution func-
tion f . Using this correction the (periodic boundary) partition function
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becomes

ZT =
∑
N1

· · ·
∑
Nt

∑
M0

∑
M1

· · ·
∑
Mt−1

T∏
i=1

g1(Ni,Mi−1,Mi)
h∂(Mi)

e−κ·(
∑

i
Ni+

∑
i
f(Mi)) =

=
∑
M0

∑
M1

· · ·
∑
MT−1

T∏
i=1

V (κ,Mi−1,Mi)e−κ·
∑

i
f(Mi)

=
∑
M0

∑
M1

· · ·
∑
MT−1

T∏
i=1

Ṽ (κ,Mi−1,Mi)

with Ṽ (κ,Mi−1,Mi) := V (κ,Mi−1,Mi) exp
[
−κ2 · (f(Mi−1) + f(Mi))

]
Using again the matrix representation results in

ZT = Tr
(
Ṽ(κ)T

)
→ λ̃T1

So one can do all the following calculations with the modified transfer matrix
Ṽ instead of the standard transfer matrix V, if there are non-additive
topological quantities.
Sometimes it is more convenient to use the matrix notation instead of

the bracket notation. In this cases we use the eigenvalue decomposition

V(κ) = P · diag (λ1, . . . , λk) ·P−1

of the transfer matrix, where P is the projection operator or matrix on the
corresponding eigenvectors.

For simplicity we use only periodic boundary conditions in the following
derivations, but give the results for closed and open boundaries if appropriate.
If nothing is specified, the partition functions and the expectation values
are for periodic boundary conditions. In the following sections, we use the
transfer matrix method to calculate expectation values and correlations of
slice observables (e.g., number of simplices that connect neighboring time
slices), spatial observables (e.g., number of simplices in the same spatial
slice, this can be used for calculating the spatial volume of the universe, or
its correlations) and world observables (e.g., density of simplices).

Slice observables

The first task is to calculate the expectation value of functions of the
independent topological quantities N within a given spacetime slice. We
denote by Nj the topological quantities of the j-th spacetime slice.
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We start by calculating the linear expectation value 〈Nj〉T for T time
slices by modifying Eq. (5.65) for the partition function:

〈Nj〉T = 1
ZT (κ)

∑
N1

· · ·
∑
NT

∑
M0

· · ·
∑
MT−1

Nj

T∏
i=1

g1(Ni,Mi−1,Mi)
h∂(Mi)

e−κ·N =

= 1
ZT (κ)

∑
M0

· · ·
∑
MT−1

T∏
i=1
i 6=j

V (κ,Mi−1,Mi)
∑
Nj

Nj
g1(Nj ,Mj−1,Mj)

h∂(Mj)
e−κ·Nj

= 1
ZT (κ)Tr

(
V(κ)jS(1)(κ)V(κ)t−j−1

)

with S(1)(κ,Mj−1,Mj) :=
∑
Nj

Nj
g1(Nj ,Mj−1,Mj)

h∂(Mj)
e−κ·Nj .

Using the commutativity of the trace results, and evaluation the trace in
the eigenbasis of the transfer matrix results in

〈N〉T = 〈Nj〉T = 1
ZT (κ)

∑
ab

〈
a
∣∣∣S(1)(κ)

∣∣∣ b〉〈b ∣∣∣V (κ)T−1
∣∣∣ a〉 =

= 1
ZT (κ)

∑
a

〈
a
∣∣∣S(1)(κ)

∣∣∣ a〉λT−1
a ,

(5.69)

which of course does not depend on the index j if using periodic boundary
conditions. We can calculate the limit T → ∞ for Eq. (5.69) as for the
partition function, where only the largest eigenvalue λ1 did contribute to
the sum. The result is

〈N〉 = lim
T→∞

1
ZT (κ)

∑
a

〈
a
∣∣∣S(1)(κ)

∣∣∣ a〉λT−1
a =

= lim
T→∞

1
λT1

〈
1
∣∣∣S(1)(κ)

∣∣∣ 1〉λT−1
1 =

〈
1
∣∣∣S(1)(κ)

∣∣∣ 1〉
λ1

(5.70)

Using the same method one can also calculate the expectation values
〈Nk〉 of powers of the topological quantities N by

〈Nk
j 〉t = 1

Zt(κ)
∑
N1

· · ·
∑
Nt

∑
M0

∑
M1

· · ·
∑
Mt−1

Nk
j

t∏
i=1

g1(Ni,Mi−1,Mi)
h∂(Mi)

e−κ·N =

= 1
Zt(κ)

∑
M0

· · ·
∑
Mt−1

t∏
i=1
i 6=j

V (κ,Mi−1,Mi)
∑
Nj

Nk
j

g1(Nj ,Mj−1,Mj)
h∂(Mj)

e−κ·Nj
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= 1
Zt(κ)Tr

(
V(κ)jS(k)(κ)V(κ)t−j−1

)

with S(k)(κ,Mj−1,Mj) :=
∑
Nj

Nk
j

g1(Nj ,Mj−1,Mj)
h∂(Mj)

e−κ·Nj

Using again the commutativity of the trace and going to the eigenbasis of
the transfer matrix results in

〈Nk〉T = 〈Nk
j 〉T = 1

ZT (κ)
∑
ab

〈
a
∣∣∣S(k)(κ)

∣∣∣ b〉〈b ∣∣∣V (κ)T−1
∣∣∣ a〉 =

= 1
ZT (κ)

∑
a

〈
a
∣∣∣S(k)(κ)

∣∣∣ a〉λT−1
a

(5.71)

which again does not depend on the index j due to the periodic boundary
conditions. The continuum limit can be calculates as before by

〈Nk〉 = lim
T→∞

1
ZT (κ)

∑
a

〈
a
∣∣∣S(k)(κ)

∣∣∣ a〉λT−1
a =

= lim
T→∞

1
λT1

〈
1
∣∣∣S(k)(κ)

∣∣∣ 1〉λT−1
1 =

〈
1
∣∣∣S(k)(κ)

∣∣∣ 1〉
λ1

(5.72)

This enables us to calculate the variance of slice observables by

Var(N) = 〈N2〉−〈N〉2 = 1
λ1

〈
1
∣∣∣S(2)(κ)

∣∣∣ 1〉− 1
λ2

1

〈
1
∣∣∣S(1)(κ)

∣∣∣ 1〉2
, (5.73)

as well as all other continuous functions f(N) of the topological quantities
N by using a Taylor expansion.
To calculate correlations in the topological quantities N across several

slices, one has to calculate mixed expectation values. The covariance
Cov(Nt, Nt+∆t) equals the covariance Cov(N0, N∆t) for periodic boundary
conditions and can be calculated using

Cov(N0, N∆t) = 〈N0N∆t〉 − 〈N0〉〈N∆t〉 = 〈N0N∆t〉 − 〈N〉2. (5.74)

The second part has been calculated before, and the mixed expectation
values can be calculated by

〈N0N∆t〉T = 1
Z(κ)

∑
a

〈
a
∣∣∣S(1)V ∆t−1S(1)V T−∆t−1

∣∣∣ a〉 =

= 1
Z(κ)

∑
abcd

〈
a
∣∣∣S(1)

∣∣∣ b〉〈b ∣∣∣V ∆t−1
∣∣∣ c〉〈c ∣∣∣S(1)

∣∣∣ d〉〈d ∣∣∣V T−∆t−1
∣∣∣ a〉 =
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= 1
Z(κ)

∑
abcd

〈
a
∣∣∣S(1)

∣∣∣ b〉λ∆t−1
b δbc

〈
c
∣∣∣S(1)

∣∣∣ d〉λT−∆t−1
a δad =

= 1
Z(κ)

∑
ab

λT−∆−1
a λ∆−1

b

∣∣∣〈a ∣∣∣S(1)
∣∣∣ b〉∣∣∣2 .

For T →∞ only the largest eigenvalue λa = λ1 does contribute, and we use
Z(κ)T = λT1 for the partition function. Furthermore we split the sum over
b into the part b = 1 and b 6= 1:

〈N0N∆t〉T = 1
λ2

1

∣∣∣〈1
∣∣∣S(1)

∣∣∣ 1〉∣∣∣2 + 1
λ∆t+1

1

∑
b6=1

λ∆t−1
b

∣∣∣〈1
∣∣∣S(1)

∣∣∣ b〉∣∣∣2 . (5.75)

The first term can be recognized to be the second moment of the slice
observable 〈N2〉, so the covariance (5.74) of two slice variables becomes

Cov(N0, N∆t) = 1
λ2

1

∑
b 6=1

(
λb
λ1

)∆t−1 ∣∣∣〈1
∣∣∣S(1)

∣∣∣ b〉∣∣∣2 (5.76)

Eq. (5.76) can be simplified further in the limit of large ∆t. Here only
the second-largest eigenvalue λb = λ2 does contribute in the sum, and we
can approximate

Cov(N0, N∆t)|∆t�1 ≈
1
λ2

1

(
λ2
λ1

)∆t−1 ∣∣∣〈1
∣∣∣S(1)

∣∣∣ 2〉∣∣∣2 =

=

∣∣∣〈1
∣∣∣S(1)

∣∣∣ 2〉∣∣∣2
λ1λ2

(
λ2
λ1

)∆t

The last term can be written as an exponential function, resulting in

Cov(N0, N∆t)|∆t�1 ≈

∣∣∣〈1
∣∣∣S(1)

∣∣∣ 2〉∣∣∣2
λ1λ2

exp
[
log

(
λ2
λ1

)
·∆t

]
(5.77)

So one can read off the relation for a correlation time τ

τ = − 1
log(λ2/λ1) = 1

log(λ1)− log(λ2) , (5.78)

which is independent of the considered observable. Note that the ordering
of the eigenvalues is by their absolute value, so that the exponential approx-
imation is only valid for λ2 > 0. The case λ2 < 0 means that the covariance
alternates between positive and negative values, and one can approximate
the absolute values of the covariance by an exponential function.
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Spatial observables

In the previous section we calculated expectation values and correlations
of slice observables. In this section we will calculated both for spatial
observables, i.e., the number of spatial (k + 1, 0)-simplices. They can be
calculated analogous to the slice observables by

〈Mk
j 〉t = 1

Zt(κ)
∑
N1

· · ·
∑
Nt

∑
M0

∑
M1

· · ·
∑
Mt−1

Mj

t∏
i=1

g1(Ni,Mi−1,Mi)e−κ·N =

= 1
Zt(κ)

∑
M0

∑
M1

· · ·
∑
Mt−1

Mj

t∏
i=1

V (κ,Mi−1,Mi)

= 1
Zt(κ)Tr

(
V(κ)jR(k)(κ)V(κ)t−j−1

)
= 1
Zt(κ)Tr

(
V(κ)t−1R(k)(κ)

)
with R(k)(κ,Mj−1,Mj) := Mk

j−1V (Mj−1,Mj)
Due to the periodic boundary conditions these results also do not depend
on the index j. Using the approximations for T → ∞ as in the previous
section yields

〈Mk〉 = 1
λ1

〈
1
∣∣∣R(k)(κ)

∣∣∣ 1〉 (5.79)

The correlation of spatial observables can also be calculated as in the
section before as

〈M0Mτ 〉 = 1
Zt(κ)Tr

(
R(κ)V(κ)τ−1R(κ)V(κ)t−τ−1

)
= 1
λτ+1 Tr

(
R(κ)V(κ)τ−1R(κ)Pλ

)
,

and with this also the covariance function as in Eq. (5.76).

World observables

Until now we calculated expectation values only for observables defined for
single slices, e.g. the average number of 3-simplices 〈N3〉 or their variance
Var(N3) = 〈N2

3 〉− 〈N3〉2. In this subsection expectation values of quantities
of the whole triangulation are considered. To discriminate between slice and
triangulation observables, we denote the latter by bold letters. In general
we are interested in calculating expectation values of the observable

N :=
T−1∑
t=0

Nt, (5.80)
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which is finite only for finite T and where Nt denotes the slices observable
at the t-th slice, or the density

n := 1
T

T−1∑
t=0

NT , (5.81)

which has a finite value also in the limit T →∞.
The first moments can be simply calculated in terms of the slice expecta-

tion values

〈N〉 =
〈
T−1∑
t=0

Nt

〉
=

T−1∑
t=0
〈Nt〉 = T · 〈N〉 (5.82)

〈n〉 = 1
T

〈
T−1∑
t=0

Nt

〉
= 〈N〉, (5.83)

where we used 〈Nt〉 = 〈N〉 independent of t for periodic boundary conditions.
For higher moments the calculation becomes more involved due to the

correlations between different slices, which we one see for calculating e.g., the
second moment

〈N2〉 =
〈(

T−1∑
t=0

Nt

)
·
(
T−1∑
t′=0

Nt′

)〉
=

T−1∑
t=0

T−1∑
t′=0
〈NtNt′〉 =

=
T−1∑
t=0
〈N2

t 〉+
T−1∑
t=0

T−1∑
t′=0,t′ 6=t

〈NtNt′〉 =

= T 〈N2〉+ T
T−1∑
t=1
〈NtNt′〉 = T ·

[
〈N2〉+

T−1∑
t=1
〈NtNt′〉

]

This can be used for calculating the variance of triangulation observables by

Var(N) = 〈N2〉 − 〈N〉2 = T ·
(

Var(N) +
T−1∑
t=1

Cov(N(0), Nt)
)
. (5.84)

So the variance of the triangulation observable is not just the sum of the
single time slice variables, also the summed covariance of the observables
has to be taken into account.
Using Eq. (5.76) for the covariance of the slice observables one gets

Var(N)
T

= Var(N) +
T−1∑
t=1

∑
b6=1


∣∣∣〈1

∣∣∣S(1)
∣∣∣ b〉∣∣∣

λ1

2

·
(
λb
λ1

)t−1
=
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= Var(N) +
∑
b 6=1


∣∣∣〈1

∣∣∣S(1)
∣∣∣ b〉∣∣∣

λ1

2
T−2∑
t=0

(
λb
λ1

)t
=

= Var(N) +
∑
b 6=1


∣∣∣〈1

∣∣∣S(1)
∣∣∣ b〉∣∣∣

λ1

2
1− (λb/λ1)T−1

1− λb/λ1

where we used that the sum over t is a geometric series. Note that we
cannot use the approximation for large t because due to the sum also small
values of t are always present. In the limit T →∞ we get

lim
T→∞

Var(N)
T

= Var(N) +
∑
b 6=1

∣∣∣〈1
∣∣∣S(1)

∣∣∣ b〉∣∣∣2
λ1(λ1 − λb)

(5.85)

for the variance of the total number of simplices in the triangulation.

5.3.6 Numerical results of (2 + 1)-dimensional CDT

In this section we use the developed one-slice propagator approach to
calculate observables in (2+1)-dimensional causal dynamical triangulations.

Calculating the 1-slice DOS

The first task is to calculate the density of states of a single slice causal
dynamical triangulations in terms of the numbers N3,1 and N2,2 of maximal
simplices and the number N2 and N2 of maximal boundary simplices using
the Wang-Landau algorithm [406, 407]. For an efficient calculation the
number of energy bins has to be reduced as far as possible by symmetry
considerations.
We denote by g(N3,1;N2,2;N2;N2) the (normalized) number of triangu-

lations with these topological quantities. Note that the number of trian-
gulations does not depend on N1,0 (the number of vertices), because N1,0
is determined by N2 and N2 and the Euler characteristic of the boundary
triangulations by

N1,0 = 2 · χ(Σ) + 1
2
(
N2 +N2

)
,

where χ(Σ) is the Euler-characteristic of the spatial slices.
Because the labeling of one boundary as lower boundary and the other

boundary as upper boundary is not important, the density of states is
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symmetric in the last two arguments:

g(N3,1;N2,2;N2;N2) = g(N3,1;N2,2;N2;N2)

So it is enough to calculate only the density of states with N2 ≤ N2.
Furthermore the following relation is true

N2 +N2 = N3,1

since each maximal spatial simplex is the face to exactly one (3, 1)-simplex
and vice versa. So the density of states only depend on the (absolute value
of the) difference of the boundary simplex numbers:

g(N3,1;N2,2;N2;N2) = g(N3,1;N2,2; |N2 −N2|) =: g(N3,1;N2,2; |∆N2|)

Since spatial slices have the topology of spheres, N3,1 is always even, because
it is for the minimal configuration and all flips alter the number by 0 or 2.

Bounds on simplex numbers In this section we numerically estimate
and proof bounds on the number of simplices allowed in one slice of a (2 + 1)
causal dynamical triangulation. This can be used for estimating the number
of bins of the 1-slice DOS to calculate with the Wang-Landau algorithm.

We first consider the number of maximal simplices of type (3, 1) and (2, 2).
The lower bounds for this number is

N3,1 ≥ 8 N2,2 ≥ 4

because the smallest spatial triangulation of S2 has 4 maximal simplices, so
N2 +N2 = N3,1 ≥ 8. The lower bound for N2,2 can be verified numerically.

For the difference of the boundary simplices there are the following possible
values.

|∆N2| ∈
{
{0, 4, 8, . . . , N3,1 − 8} for N3,1/2 even
{2, 6, 10, . . . , N3,1 − 8} for N3,1/2 odd

This can be proven in the following way: We have that N2 and N2 are even
(all possible Pachner flips alter these numbers either by 0 or by 2), so also
N3,1 = N2 +N2 is even. For the difference of the boundary simplices we
have

|∆N2| = |N2 −N2| = |2N2 −N3,1|,
and |∆N2|/2 is even if and only if N3,1/2 is even. The upper bound for
|∆N2| is due to the lower bounds N2, N2 ≥ 4 for the spatial slices.
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Table 5.1: Table showing the numerically calculated upper bounds for N2,2 in
terms of N3,1, N2 and N2

N31 N2 N2 up. bound
8 4 4 N2,2 ≤ 10
10 4 6 N2,2 ≤ 13
12 4 8 N2,2 ≤ 16
12 6 6 N2,2 ≤ 17
14 4 10 N2,2 ≤ 19
14 6 8 N2,2 ≤ 21
16 4 12 N2,2 ≤ 22
16 6 10 N2,2 ≤ 25
16 8 8 N2,2 ≤ 26
18 4 14 N2,2 ≤ 25
18 6 12 N2,2 ≤ 29
18 8 10 N2,2 ≤ 31
20 4 16 N2,2 ≤ 28
20 6 14 N2,2 ≤ 33
20 8 12 N2,2 ≤ 36
20 10 10 N2,2 ≤ 37
22 4 18 N2,2 ≤ 31
22 6 16 N2,2 ≤ 37
22 8 14 N2,2 ≤ 41
22 10 12 N2,2 ≤ 43
24 4 20 N2,2 ≤ 34
24 6 18 N2,2 ≤ 41
24 8 16 N2,2 ≤ 46
24 10 14 N2,2 ≤ 49
24 12 12 N2,2 ≤ 50

N31 N2 N2 up. bound
26 4 22 N2,2 ≤ 37
26 6 20 N2,2 ≤ 45
26 8 18 N2,2 ≤ 51
26 10 16 N2,2 ≤ 55
26 12 14 N2,2 ≤ 57
28 4 24 N2,2 ≤ 40
28 6 22 N2,2 ≤ 49
28 8 20 N2,2 ≤ 56
28 10 18 N2,2 ≤ 61
28 12 16 N2,2 ≤ 64
28 14 14 N2,2 ≤ 65
30 4 26 N2,2 ≤ 43
30 6 24 N2,2 ≤ 53
30 8 22 N2,2 ≤ 61
30 10 20 N2,2 ≤ 67
30 12 18 N2,2 ≤ 71
30 14 16 N2,2 ≤ 73
32 4 28 N2,2 ≤ 46
32 6 26 N2,2 ≤ 57
32 8 24 N2,2 ≤ 66
32 10 22 N2,2 ≤ 73
32 12 20 N2,2 ≤ 78
32 14 18 N2,2 ≤ 81
32 16 16 N2,2 ≤ 82
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The next step is to derive an upper bound for N2,2 in terms of N3,1 and
the number of boundary maximal simplices. In Tab. 5.1 such upper bounds
for N2,2 that can be found numerically are displayed.
Neglecting the influence of the upper and lower boundary simplices one

can conjecture that the upper boundary Nmax
2,2 (N3,1) is given by the following

recursion relation:

Nmax
2,2 (8) = 10

Nmax
2,2 (N3,1) = Nmax

2,2 (N3,1 − 2) + 1 +
⌊
N3,1

4

⌋ (5.86)

Since the number N3,1 is always even, a recursion relation for Ñmax
2,2 (N3,1/2)

:= Nmax
2,2 (N3,1) can be written in terms of N3,1/2 as

Ñmax
2,2 (4) = 10

Ñmax
2,2

(
N3,1

2

)
= Ñmax

2,2

(
N3,1

2 − 1
)

+ 1 +
⌊
N3,1

4

⌋

=

Ñ
max
2,2

(
N3,1

2 − 1
)

+ N3,1
4 + 1 N3,1

2 even
Ñmax

2,2
(
N3,1

2 − 1
)

+ N3,1
4 + 1

2
N3,1

2 odd

The case by case analysis can be written in terms of two recursion relations,
one for even M = N3,1/2 and one for odd M = N3,1/2.

Ñmax
2,2 (4) = 10 Ñmax

2,2 (2M) = Ñmax
2,2 (2M − 2) + 2M + 1

Ñmaxodd
2,2 (5) = 13 Ñmaxodd

2,2 (2M + 1) = Ñmaxodd
2,2 (2M − 1) + 2M + 2

Using the standard procedure for solving such recursive relations8 leads to
the following proposition:

Proposition 5.1 (Rough upper bound for single slice N2,2). Consider a
(2+1)-dimensional causal triangulation of S2 × I with T = 2 time slices,
N3,1 (3, 1)-simplices and N2,2 (2, 2)-simplices. Then there is the following
upper bound for N2,2 in terms of N3,1

N2,2 ≤
{1

4N
2
3,1 +N3,1 + 2 for N3,1/2 even

1
4N

2
3,1 + 3

2N3,1 + 3 for N3,1/2 odd
(5.87)

8 Make the ansatz Nmax
2,2 (x) = ax2 + bx + c, calculate Nmax

2,2 (2M) −Nmax
2,2 (2M − 2) for

both the recursion relation and the ansatz and compare the coefficients to calculate a
and b. Then use the single known value to calculate the constant offset c
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We do not proof this proposition here (the only thing that needs to be
proven is the recursion relation (5.86)), but derive and proof a more general
one that includes this proposition as a special case.

This proposition can even be made better if one includes also the number
N2 of maximal simplices of the lower boundary, or equivalently the difference
∆N2 into account. Let Nmax

2,2 (N3,1;N2) be the upper boundary for the
number of (2, 2)-simplices in terms of these two quantities. Looking at
the entries of Table 5.1 with N2 = 4 one sees that there is the following
functional dependency in terms of N3,1:

Nmax
2,2 (N3,1; 4) = 3

2N3,1 − 2

Looking at the entries with fixed N3,1 one can conjecture the following
relation:

Nmax
2,2 (N3,1; 4 + 2n) = Nmax

2,2 (N3,1; 4 + 2(n− 1)) + (δ − 2(n− 1))

δ = 1
2 (N3,1 − 10)

Solving these recursion relation for constant N3,1 leads to the following
proposition:

Proposition 5.2 (Fine upper bound for single slice N2,2). Consider a
causal triangulation as in conjecture 5.1, and let N2 and N2 be the number
of 2-simplices of the lower and the upper boundary sphere triangulation.
Assume without loss of generality N2 ≤ N2 and denote ∆N2 := N2−N2 ≥ 0.
Then there is the following upper bound for N2,2 in terms of N3,1 and N2
or ∆N2:

N2,2 ≤ −
1
4N

2
2 + 1

4N3,1 (N2 + 2) + 2

= 1
16
(
N2

3,1 − (∆N2)2
)

+ 1
2N3,1 + 2

(5.88)

Note that if one uses ∆N2 ≥ 0 for even N3,1/2 and ∆N2 ≥ 2 for odd N3,1/2
in Equation (5.88), this is the same as the rough bound (5.87)

Proof. We show that this upper bound is given by the maximal number of
N1,1-simplices in the triangulation. The maximal number is given by

N1,1 ≤ N0N0
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because every vertex of the lower boundary can be connected at most with
every vertex of the upper boundary. Using N0 = χ+N2/2 = 2 +N2/2 for
the two spatial slices gives

N1,1 ≤ 4 +N2 +N2 + 1
4N2N2.

Now we need to write the number of diagonals N1,1 in terms of N3,1 and
N2,2. Therefor we use the ansatz

N1,1 (N3,1;N2,2) = aN3,1 + bN2,2 + c

and the change of the numbers N1,1, N3,1 and N2,2 in the possible causal
Pachner flips to determine a and b, as well as these numbers in the ground
state to determine c. Using N2 +N2 = N3,1 this results in

1
2N3,1 +N2,2 + 2 ≤ 4 +N2 +N2 + 1

4N2N2

N2,2 ≤ −
1
4N

2
2 + 1

4N3,1(N2 + 2) + 2.

The remaining questions is whether these bounds are tight, i.e., whether
there is a triangulation so that the equality is valid:

Conjecture 5.3 (Tightness of fine upper bound for single slice N2,2). The
upper bound given in Proposition 5.2 is tight, i.e. there is a single slice
triangulation with

N2,2 = −1
4N

2
2 + 1

4N3,1(N2 + 2) + 2

We did not find an analytical proof for this conjecture, but our numerical
data shows that one can construct such triangulations for all considered
values of the topological parameters.

Splitting of the configuration space In the previous section we saw
that using (N3,1, N2,2, N2) as energy leads to a huge grow of the number
of energy levels. Since the convergence of the Wang-Landau algorithm is
determined mainly by the number of energy bins (the time for becoming
flat scales approximately as b log b if b is the number of bins, as shown in
Sec. 2.3.2), the space of possible energies must be cut into small suitable
pieces, so that the system is ergodic within the sub-ranges.
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Figure 5.22: Comparison of the cumulative distribution function of the density
of states g(N3,1, N2,2, N2) calculated using the Wang-Landau algorithm with un-
restricted DOS (red) with N3,1 ≤ 16 (blue) and with DOS restricted to constant
N3,1 and constant N2 (green). The upper row shows a comparison for N3,1 = 12,
the lower row for N3,1 = 16, both for N2 = 4 and different values of N2,2.

Restricting the considered DOS to constant N3,1 and constant N2 (and
therewith constant N2) probably does not violate the ergodicity, because
diagonal edge flips are ergodic for the two-dimensional boundary trian-
gulations (for the sphere and for large enough triangulations with genus
g 6= 0, compare Sec. 4.2). Furthermore, also the full-dimensional (2 → 3)
and (3 → 2) flips do flip one (3, 1) and one (2, 2)-simplex into another
(3, 1)-simplex and two (2, 2)-simplex, so they keep N3,1 constant.

Since there is no analytical proof for this ergodicity conjecture, one has
to perform suitable simulations that strengthen this conjecture. Therefor
we compare calculations of the full DOS for N3,1 ≤ 16 and all possible
values of N2,2 and N2 (and therewith N2) and compare with DOSs obtained
for fixed N3,1 and fixed N2 in this interval. In Fig. 5.22 the cumulative
distribution function of the DOS obtained by several independent Wang-
Landau simulations are displayed for the full DOS and the restricted DOS
for N3,1 = 12 and N3,1 = 16. One sees a good qualitative agreement between
the different methods of calculating the density of states, which is better
for N3,1 = 16 than for N3,1 = 12. The calculations were performed using
the exact ratio of selection probabilities.
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Figure 5.23: Deviation of the DOS calculated for fixed N3,1 and N2 from the
actual DOS calculated over the full range of energy bins, in terms of the number
N3,1 and N2,2 of maximal simplices. (a) Absolute difference |gfull − grestricted| of
the DOS in units of σfull + σrestricted, which is the sum of the standard deviations
of the respective DOS. (b) p-value of a t-test, where a high p-value corresponds to
a good agreement. Usually one rejects the hypothesis that the two distributions
are equal for p > 0.01.

For a quantitative comparison of the two calculation methods, we use two
different methods. First, we measure the distance between the means of
the two distributions in units of the standard deviation of the calculations
for the full DOS. Second, we apply a t-test which tests whether two data
sets of a normal distribution have the same mean [378], in this case we use
the p-value of the test as a measure for the comparison. The results of the
calculations are displayed in Fig. 5.23. One sees that the results fit quite
well qualitatively, except for a small number N2,2 of (2, 2)-triangulations.

From the qualitative and the quantitative comparison we can conclude
that it is in fact possible to calculate the DOS only for fixed N3,1 and N2.
Note that this makes it necessary to perform a simulation for the whole
range of N3,1 and N2 with restricted N2,2 for normalizing the different
density of states, because intrinsically they have no common energy bin that
can be used for normalization. Using these DOS for normalization makes it
possible to cure the deviations from the overall DOS for small N2,2, because
one can use the values of the normalization DOS for this range.
A further reduction of the number of bins can be applied by cutting the

considered interval of N2,2 for fixed N3,1 and N2. The ergodicity of these
cuts has to be tested numerically by the same methods presented above,
with similar results. Since a cut of N2,2 was not applied for the results in
the section, these numerical tests are not displayed here.
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Figure 5.24: Number of (2 + 1)-dimensional causal dynamical triangulations of
one time slice in terms of the number of maximal simplices. (a) Entropy density
(5.89) in terms of the number N3 = N3,1 +N2,2 of maximal simplices. (b) Number
of triangulations in terms of N3,1 for fixed N3 = 25, 50, . . . , 275, 300. The dashed
line shows the location of the maxima of the DOS. (b) Number of triangulations in
terms of N2,2 for fixed N3 = 25, 50, . . . , 275, 300.

Number of causal dynamical triangulations

As for lattice and topological triangulations, the number of causal dynamical
triangulation of a single slice is an important quantity for the convergence of
the partition function and is accessible with our Wang-Landau simulations.
We study the number of (2+1)-dimensional one-slice triangulations in terms
of the total number N3 = N3,1 +N2,2 of maximal simplices, and in terms
of the number N3,1 and N2,2 with fixed N3, the results are displayed in
Figs. 5.24 and 5.25.
For the entropy density

κc3(N3) := 1
N3

log g(N3), (5.89)

(which at the same time determines the phase transition necessary to obtain a
valid thermodynamical limit in the causal dynamical triangulation model for
κ0 = 0) we obtain that κcc(N3) ≈ 1.35 for large N3 = 300 (the largest number
of maximal simplices we considered), which is below the entropy density for
three-dimensional topological triangulations calculated in Sec. 4.3. This is
intuitvly clear because in the setup of causal dynamical triangulations one
restricts the set of possible triangulations by imposing causality conditions.
Similar to topology triangulation with our code it would be possible to
access much higher numbers N3 of maximal simplices if altering the energy
function. The presented results are obtained by summing over the full DOS
g(N3,1, N2,2, N2, N2), using only the number of maximal simplices as energy
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Figure 5.25: Number of (2 + 1)-dimensional causal dynamical triangulations of
one time slice in terms of the number of maximal simplices in terms of N2.2 and
N3,1 (a) or N3 (b). Contour lines are drawn for the values 50, 100, . . . , 350. The
red region of the DOS is excluded because we calculated the DOS only up to
N3 ≤ 300. The brown region is excluded because N2,2 < N3 − 8, and the green
region is excluded due the bound (5.87).

function directly in the calculations would lead to a large speed up and to a
larger range of accessible N3, because the number of energy bins decreases.
The number of triangulations g(N3,1)|N3 in terms of N3,1 for fixed N3

(which is basically the integrated density of states) shows a steep rise for
the first possible values of N3,1. Due to the resulting small acceptance
probabilities in the Wang-Landau simulations this drastically slows down
simulations and explains why it is better to calculate for fixed N3,1.
One can also examine the location of the maximum gmax(N3,1, N2,2) of

the DOS in more detail. Using a linear fit we find that

log gmax(N3) ≈ 1.3255(7) ·N3 − 22.4(1),

where the prefactor is approximately the value κ(c)
3 of the critical entropy

density. Furthermore we have N3,1/N3 ≈ 0.6129(6) for the location of the
maximum, which implies that typical triangulations have twice as much
(3, 1)-simplices as (2, 2)-simplices, independent of the total number N3 of
maximal simplices. Both results imply that the functional dependency of
the DOS does not change qualitatively for growing system size N3, which
can then be used for giving initial estimates for the DOS of Wang-Landau
simulations for higher system sizes.
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Validity of the one-slice extrapolation

In this section we mainly test two assumptions that are done for actually
calculating expectation values with the transfer matrix method. The first
assumption is that one can in fact extrapolate the two-slice density of states
(DOS) in terms of the one-slice DOS using Eq. (5.63), which then implies
also the possibility for extrapolating a T -slice DOS using Eq. (5.64). The
second assumption is that one can use a simplified version of the selection
probability factor for large enough triangulations, similar to topological
triangulations (compare Sec. 4.1.4 and Fig. 4.10).
For testing Eq. (5.63) we explicitly compute the two-slice DOS g2(N31,

N22, N2, N2) for N31 ≤ 24 using the Wang-Landau algorithm and compare
the results with the two-slice DOS that was extrapolated from the one-slice
DOS and the spatial DOS h∂(N2) (that equals the DOS of topological
triangulations of the 2-sphere). The comparison was done for exact and
simple ratios of the selection probability, and the results are displayed in
Fig. 5.26.
One sees that in both cases the relative error is below 0.02, and that

the error becomes smaller for larger N3,1. The largest errors occur at the
boundaries of the allowed range of N2,2. Furthermore the error in the
exact calculations in larger than in the simple calculations, which can be
explained by noting that using the exact ratio of selection probabilities takes
into account the isomorphy of the considered triangulation, but these are
completely neglected in the approximation (5.63) (there a triangulation is
simply represented by its topological quantities). One can conclude that
the extrapolation of the T -slice DOS is in fact approximately correct and
can be used for calculating expectation values.
For verifying that it is possible to use the simple ratio of selection prob-

abilities for large triangulations, in Fig. 5.27 a comparison of the entropy
log g(N3,1, N2,2) in terms of N2,2 for different values of N3,1 calculated with
both simple and exact ratio of selection probabilities can be found. For small
system sizes the errors are quite large (more than 0.1), but for N3,1 = 14
and N3,1 = 16 the errors are lower than 0.05 in almost all cases. So one
can conclude that using simple selection probability ratios is approximately
valid for high enough system sizes.

Fine-tuning in (2 + 1)-CDT

As for the approach of dynamical triangulations also in the causal version
one has to fine-tune a coupling constant in order to get a thermodynamical
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Figure 5.26: Extrapolation of the 1-slice DOS.
Comparison of the density of states (DOS) of causal dynamical triangulations
(CDT) with two time slices directly calculated using Wang-Landau simulations ( ,
slightly shifted) and indirectly calculated by multiplying the DOS of two combined
one-slice DOSs according to Eq. (5.63) ( ). Plots (a) and (b) shows the logarithmic
DOS log g(N3,1, N2,2) in terms of the number of (2,2)-simplices N2,2 for different
numbers of (3,1)-simplices N3,1 = 16, N3,1 = 18, N3,1 = 20, N3,1 = 22 and
N3,1 = 24. The other degrees of freedom are traced out. Plots (c) and (d) show
the relative error of the extrapolated two-slice DOS with respect to the directly
calculated two-slice DOS. Plots (a) and (c) are done using the simple selection
probability ratio, (b) and (d) with exact selection probability ratio. Note that the
extrapolated density of states are not normalized with respect to the first bin, but
with respect to the sum of all bins.

Figure 5.27: Comparison of the
CDT slice DOS obtained with
the simple and the exact selec-
tion probability ratio for differ-
ent values of N3,1 (N3,1 = 8,
N3,1 = 10, N3,1 = 12, N3,1 = 14
and N3,1 = 16) in terms of N2,2.
(a) Comparison of the entropy
S(N3,1, N2,2) obtained by using
exact ( ) and simple ( ) selection
probability ratios. (b) Relative er-
ror of using simple selection prob-
ability.
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limit independent of the discretization scale. It is convenient to replace
the dynamical variables N0, N3,1 and N2,2 with the corresponding coupling
constants κ0, κ3,1 and κ2,2 by rewriting

S = κ0N0 + κ3,1N3,1 + κ2,2N2,2 =
= κ0N0 + κ3,1N3,1 + κ2,2(N3 −N2,2) =
= κ0N0 + κ2,2N3 + (κ3,1 − κ2,2)N3,1 =
=: κ0N0 + κ3N3 + ∆N3,1,

where we use the total number N3 = N3,1 +N2,2 of 3-simplices and the new
coupling constants9 κ3 := κ2,2 and ∆ = κ3,1 − κ2,2. The coupling constant
κ3 (which can be interpreted as the chemical potential of the triangulations
with system size N3) will be fine-tuned to its critical value κ(c)

3 (κ0,∆) (which
corresponds to the entropy density), where the new coupling constant ∆
weights the difference of the two types of 3-simplices. Remember that
the thermodynamical limit is only defined for κ3 ≥ κ

(c)
3 , for κ3 < κ

(c)
3 the

partition function does not converge.
The conjugated, extrinsic variable to the (intrinsic) fine-tuned coupling

constant κ3 is the number N3 of maximal simplices. In Fig. 5.28 the proba-
bility distribution of N3 is displayed for a fixed value of κ0 and ∆ in terms
of κ3, with κ3 located near the conjectured location of the phase transition.
Although the considered system size is small, one can already see that
for κ3 < κ

(c)
3 the partition function is dominated by triangulations with

N3 ≈ Nmax
3 , whereas for κ3 > κ

(c)
3 it is dominated by triangulations with

N3 ≈ Nmin
3 = 12. Triangulations with N3 between these two extremal values

do almost not contribute at all to the partition function. Furthermore, the
transition between 〈N3〉 ≈ 12 to 〈N3〉 ≈ Nmax

3 is located sharply in a small
interval around κ(c)

3 .
There are several possibilities to locate the fine-tuned coupling constant

κ
(c)
3 , which will be described in detail in the following paragraphs. Further-

more we consider the finite-size-scaling of the fine-tuned coupling constant,
and the structure of the phase transition that is used for fine-tuning. All
methods of calculating κ(c)

3 (Nmax
3 have the problem that for large enough

Nmax
3 ≈ 200 for T →∞ the transition happens in an interval in κ3 that is

smaller than the usual machine precision of around 10−15. We avoid this
problem by not using the limit T →∞, but a finite, large T , and will show
that the considered expectation values do not depend anymore on T . Using
9 Note that in the usual CDT literature slightly different notations are used for the
coupling constants, but the results can be matched by using a linear transformation.
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Figure 5.28: Fine-tuning transition in terms of κ3 and 〈N3〉.
Influence of the coupling constant κ3 on the number of maximal simplices N3 in the
triangulation. (a) The (logarithmic) colorscale shows the probability distribution
of N3 in terms of the coupling constant κ3 around the quasi-critical value κ(c)

3
for Nmax

3 = 100 and the two other coupling constants κ0 and ∆ chosen to be 0.
The red, solid line line is the average number 〈N3〉 in terms of κ3. The data was
calculated using the transfer matrix method for periodic boundary conditions in
the limit T → ∞ of infinite time slices. (b) Average number 〈N3〉 of maximal
simplices in terms of κ3 − κ(c)

3 (T ) for different number T = 2, 4, . . . , 512 of time
slices (black, solid lines) and for T →∞ (red, solid line). Note that the scale of
the x-axis is much larger than in sub-figure (a), in fact the two red curves are the
same.
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a finite T significantly broadens the interval where the fine-tune transition
takes place, as can be seen in Fig. 5.28b.

Fine-tuning κ3 using the variance Var(N3) From the probability dis-
tribution of N3 displayed in Fig. 5.28 one can formulate the conjecture that
the phase transition used for fine-tuning κ3 is a discontinuous or first-order
phase transition. In the limit of infinite system sizes, the expectation value
〈N3〉 is then given by a step function, and its derivative (which is connected
with the variance) has a pole at the critical point. For finite systems the
step function is not exact, and its derivative does not posses a pole, but
a maximum. The location of this maximum is a good estimation for the
critical coupling constant κ(c)

3 .
In principle one can use Eq. (5.73) for calculating the variance directly

from 〈N2
3 〉, but this lead to numerical instabilities (which can be possibly

cured by defining an observable matrix directly of the variance, and not of
the second power of an observable). So we used the fact that in the limit of
T →∞ of infinitely many time slices, the variance

Var(N3)(κ0, κ3,∆) := ∂2

∂κ2
3

logZ(κ0, κ3,∆) = T
∂2

∂κ2
3

log λ1(κ0, κ3,∆)

of the number of 3-simplices can be calculated by a derivative of the logarithm
of the partition function, which is given by the largest eigenvalue λ1 of the
transfer matrix. The derivative has to be calculated numerically by using
the method of finite differences, it is given by

∂2

∂κ2 log λ(κ) ≈ 1
δκ2 [log λ(κ− δκ)− 2 · log λ(κ) + log λ(κ+ δκ)] , (5.90)

where δκ is the (small) difference that is used for the coupling constants.
For δκ → 0 the method becomes exact. In practice we use the following
algorithm to locate the maximum of the respective variance:

• Calculate Var(N) at n points of support κi, with 0 ≤ i ≤ n− 1 and
κi+1 − κi = const., using the finite difference δκ = 0.1 · (κi+1 − κi).

• Find the point of support κj where Var(N) is maximal.

• Start again with n points of support between κj−1 and κj+1.

Additionally, reducing δκ gradually is necessary because the maximum
in Var(N) can be extremely sharp, so using a small δκ in the beginning
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Figure 5.29: Fine-tuning using Var(N3).
Algorithm used for fine-tuning the coupling constant κ(c)

3 for κ0 = ∆ = 0. The
variance Var(N3) is displayed in terms of the deviation κ3 − κ(c)

3 for κ3 < κ
(c)
3 (a)

and κ3 > κ
(c)
3 (b) for different value δκ3 of the finite difference used in Eq. (5.90):

δκ3 = 10−1 ( ), δκ3 = 10−2 ( ), δκ3 = 10−3 ( ), δκ3 = 10−4 ( ), δκ3 = 10−5

( ), δκ3 = 10−6 ( ). The difference kappa3,i+1 − κ3,i equals the respective finite
difference δκ3 used for calculating the variance. Note that deltaκ3 is chosen 10
times higher than in production runs for the single coupling constants to be able
to display its influence better.

can lead to a miss of the maximum in the scan. Eventually it can be
possible to reduce the considered intervals by inspecting Var(N)(κj−1) and
Var(N)(κj+1) around the maximal value and to conjecture that the actual
maximum lies between κj and κj+1 if Var(N)(κj+1) > Var(N)(κj−1), but
this can be influenced by small errors in the transfer matrix especially in
the cases where the two variances are approximately equal, so we did not
apply this optimization.
The algorithm for calculating the fine-tuned value of κ3 is displayed in

Fig. 5.29. Here one can see that for fixed δκ3 the variance Var(κ3) saturates
for κc → κ

(c)
3 , which makes it difficult to extract the maximal value without

further reducing δκ3. Contrary, choosing δκ3 to small from the beginning
could lead to amiss of the maximum of the variance due to small resolution.
In Fig. 5.30 the value of the fine tuned coupling constant κ(c)

3 (κ0, Nmax
3 )

in terms of the other two coupling constants κ0 and ∆ is displayed. It is
remarkable that for large κ0 and ∆ there is an area where κ(c)

c is negative,
which means that energy dominates over entropy in this region and the
probability for large systems has to be increased by the fine tuning. Fur-
thermore the contour lines of constant κ(c)

c are approximately parallel lines
in κ0 and ∆ with slope −1/4.
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Figure 5.30: Fine-tuned coupling constant κ(c)
3 in terms of κ0 and ∆. (a) Colorplot

as function of both independent coupling constants, the contour lines are at the
integers 0 to 4. The red line is the parameter range shown on the right side. (b)
Dependency of κ(c)

3 on the coupling constant for ∆ = 0 for Nmax
3 = 100 (dotted),

Nmax
3 = 200 (dashed) and Nmax

3 = 300 (solid). The red line in (a) corresponds to
the parameters shown in plot (b).

Fine-tuning κ3 using the expectation value 〈N3〉 As seen in the
previous section, locating the phase transition using variances can lead to
problems due to the numerical derivative. A much simpler procedure is to
tune the value of kappa3 such that one gets a given expectation value 〈N3〉
for the number of maximal simplices. This procedure is much easier than
finding the maximum of a derivative, because calculating the expectation
value does not involve calculating a variance or a numerical derivative, which
can lead to numerical instabilities. Furthermore, due to statistical errors in
the density of states the variance can have multiple maxima, so algorithms
for finding a maximum can run into one of the local minima. In contrast,
the expectation value 〈N3〉 is decreasing monotonically with increasing κ3,
so there is a unique solution for κ(c)

3 .
Fine-tuning using the expectation value 〈N3〉 introduces the ambiguity

which value in the range [Nmin
3 , Nmax

3 ] is chosen for 〈N3〉, and it is not a
prior clear which value corresponds to the maximum in the variance. We
conjecture that 〈N3〉 = Nmax

3 /2 is a good choice, because this is approxi-
mately the mid between the two phases in the phase diagram, so it should
be the point where the variance is maximal, and use it in the calculations
within this section. Furthermore, in Fig. 5.31 it will be shown that the
probability distribution of p(N3) is not altered qualitatively, if one alters
〈N3〉, only the height of the peaks change. So the concrete choice of 〈N3〉
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Figure 5.31: Characteristics of the fine-tune-transition.
In all plots the probability distribution of the number N3 of maximal simplices in
a single slices is plotted in terms of the relative number (N3 − 12)/(Nmax

3 − 12) of
maximal simplices in the slice (the number 12 is the minimal number of maximal
simplices that can be present in a single slice). If not stated otherwise, the
parameters used are Nmax

3 = 100, 〈N3〉 = 50, κ0 = ∆ = 0 and T → ∞. (a)
Influence of the tuned value of 〈N3〉. (b) Influence of the other coupling constant
κ0. (c) Influence of of the number T of time slices. (d) Influence of the system size
Nmax

3 (here we used the parameters T = 64 and 〈N3〉 = 0.5 ·Nmax
3 ).

is insignificant, as long as one stays away from the boundary, where one
would get a wrong value for the fine tuning coupling constant.

Properties of the fine-tuning phase transition In this section we
consider the phase transition that is used for the fine-tuning in more detail.
In Fig. 5.31 the probability distribution p(N3) of the number N3 of maximal
simplices is plotted in dependence of several parameters. As already conjec-
tured from the two-dimensional colorplot in Fig. 5.28a, for all considered
parameters the probability distribution shows a two-peak structure, one
peak located near the minimal number Nmin

3 , one near the maximal number
Nmax

3 of the triangulation. Note that the lower limit Nmin
3 = 12 is given by

the triangulation structure, whereas Nmax
3 is artificially set by the maximal

number of 3-simplices considered in the Wang-Landau simulations.
Fig. 5.28a displays the dependency of the probability distribution on the

average number 〈N3〉 that is used for fine-tuning. The location of the two
maxima and the minimum inbetween does not change, only the relative
height of the two maxima. Together with the fact that 〈N3〉(κ3) is almost
a step function near κ(c)

3 (compare Fig. 5.28), one can conclude that the
obtained results are mainly independent of the chosen value 〈N3〉 for fine-
tuning, especially if one considers large system sizes and 〈N3〉 away from the
boundaries. In Fig. 5.28b one can also see that the two-peak structure does
not change if one alters the other coupling constant κ0, but the location of
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Figure 5.32: Finite size scaling of the fine-tuned κ
(c)
3 .

The fine-tuned coupling constant (entropy density) κ(c)
3 is displayed in terms of

the system size Nmax
3 (a) and in terms of the inverse system size (b) for different

values of the coupling constant κ0 (κ0 = 0.0, κ0 = 1.0, κ0 = 2.0, κ0 = 3.0, κ0 = 4.0,
κ0 = 5.0, κ0 = 6.0 and κ0 = 7.0). The solid lines are fits to the power law (5.91).
(c) Double-logarithmic plot of the deviation κ(c)

3 (κ0,∞)− κ(c)
3 (κ0, N

max
3 ) in terms

of the inverse system size. In all plots ∆ = 0 is used.

the minimum is slightly shifted. One can also see that using a finite number
T of time slices also has no influence on the result for T ≥ 8, but that the
height of the minimum is lower than in the calculation for T →∞ (compare
Fig. 5.28c). This is probably due to the limited numerical precision that has
to be taken into account for finite T , because one has to calculate powers
λT of eigenvalues.
An important result is displayed in Fig. 5.28d, where the dependency of

the probability distribution p(N3) is plotted for increasing system size Nmax
3 .

The location of the two maxima and the minimum does almost not depend on
the system size, if one uses the normalization (N3−Nmax

3 )/(Nmin
3 −Nmax

3 ))
for the number of 3-simplices. But the height of the minimum decreases
with system size, which is a clear indication that the transition used for
fine-tuning is first-order phase transition with two distinct phases.
In Fig. 5.32 the finite size scaling of the fine tuned coupling constant

κ
(c)
3 (κ0, Nmax

3 ) in terms of the system size Nmax
3 is displayed. Using a fit

with respect to the power law

κ
(c)
3 (κ0, N

max
3 ) = κ

(c)
3 (κ0,∞)− a · (Nmax

3 )c (5.91)

the value of the entropy density at infinite system size can be extrapolated.
The fits show that 0.6 ≤ c ≤ 0.7 and 2.5 ≤ a ≤ 3.9 depend only weakly
on the value of the coupling constant κ0. The dependence on the other
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Figure 5.33: Relative eigenvalues λi/λ (λ1 ≥ λ2 . . . ) of the transfer matrix near
the fine-tune transition in terms of κ3 − κ(c)

3 for Nmax
3 = 100 and κ0 = ∆ = 0. The

eigenvalue λ = λ1 used for scaling is the maximal eigenvalue of the transfer matrix.
The colorcode corresponds to 〈i | SN3 | i〉 /λi, which is the expectation value 〈N3〉
considering only the contribution of the respective eigenvalue.

coupling constant ∆ was not examined, we chose ∆ = 0 (no asymmetry)
for our calculations.

Fine-tuning κ3 using the eigenvalues of the transfer matrix The
third and last possibility to find the fine-tuned value κ(c)

3 of the coupling
constant κ3 is by inspecting the eigenvalues λi of the transfer matrix V (κ).
Directly at the phase transition the two largest eigenvalues λ1(κ) and λ2(κ)
become equal. Intuitively this can be understand in the following way: The
fine-tuning is done using the described first-order transition, where (for
fixed Nmax

3 ) there are two coexisting phases, one with N3 being near the
minimal number of 3-simplices, and one with N3 being near Nmax

3 . Near
the critical point κ(c)

3 there are then two eigenvalues that dominate over the
other eigenvalues (remember that Z = ∑

i λ
T
i , and we usually consider T

being large or even T →∞), one with an eigenvector that is located mainly
in the first phase, one located mainly in the second phase. In order to get
a true phase-transition in the limit T → ∞, the two eigenvalues must be
exactly equal, otherwise one of the phases would be suppressed.
In Fig. 5.33 the 10 largest eigenvalues are plotted for κ0 = ∆ = 0 and

Nmax
3 = 100 near the critical point κ(c)

3 . Furthermore in this Figure the
reduced expectation value

〈N3〉|λi := 1
λi
〈i | SN3 | i〉 , (5.92)
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Figure 5.34: Convergence of
the slice observables in (2 + 1)-
dimensional CDT for increasing
number T of time slices (for
Nmax

3 = 100, 〈N3〉 = 50 and
∆ = 0). (a) Relative number
〈N2,2〉/〈N3〉 of (2, 2)-simplices in
terms of the coupling constant κ0
for different values T = 21, . . . 29

of the number of time slices. The
red, dashed line is the result for
T →∞ time slices. (b) Relative
error 〈N2,2〉(T )/〈N2,2〉(∞)− 1 of
the number of (2, 2) simplices
with respect to the results for
T →∞ time slices.

which is the observable matrix SN3 projected onto one eigenspace of the
transfer matrix. This is corresponds to the expectation value (5.70) if one
assumes that λi is the maximal eigenvalue of the transfer matrix. In Fig. 5.33
one sees that the phase transition occurs exactly where the two eigenvalues
corresponding to the two phases are equal.

Expectation values and phase transition of (2 + 1)-CDT

In this section we calculate expectation values in (2+1)-dimensional causal
dynamical triangulations using the fine-tuned coupling constant κ3(κ0,∆)
from the previous section. We will see that there are two-phases separated
by a second-order phase transition which we will examine in more detail.
In all calculations we fine-tune 〈N3〉 to Nmax

3 /2, due to difficulties in the
fine-tuning within large systems for T = ∞, we use T = 64 within all
following calculations.

Order parameter and critical point In Fig. 5.34 the dependence of
the relative number 〈N2,2〉/〈N3〉 of (2, 2)-simplices on the number of time
slices T is displayed in terms of the coupling constant κ0. One finds that
even if using only four time slices, the error compared to using T → ∞
time slices is below 1 percent. So the choice T = 64 yields negligible errors,
especially if one takes into account that there are also statistical errors from
the calculation of the density of states.
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Figure 5.35: Order parameter and critical point in (2 + 1)-dimensional
CDT.
Slice expectation values for (2 + 1)-dimensional causal dynamical triangulations
in terms of the coupling constant κ0 for ∆ = 0.0 and T = 64 for different values
of Nmax

3 . 〈N3〉 is fine-tuned to Nmax
3 /2. (a) Expected ratio 〈N2,2〉/〈N3〉 of (2, 2)-

simplices. (b) Expected ratio 〈N3,1〉/〈N3〉 of (3, 1)-simplices, which is of course
equal to 1 − 〈N2,2〉/〈N3〉. (c, d) Total derivative |d(〈N2,2/3,1〉/〈N3)/dκ0| of the
simplex number ratios, which coincide for both types of simplices. The dashed
lines are a combination of Eqs. (5.93b) and (5.94) for the quasi-critical coupling
constant. (a, inset) Dependence of the location of the quasi-critical coupling
constant κ(c)

0 (Nmax
3 ) on the system size Nmax

3 . The dashed line is the power law
fit Eq. (5.93b), the dotted line is the power law fit Eq. (5.93a). The location of
the quasi-critical temperature was located using the maximum of the displayed
total derivatives. (b, inset) Dependence on the value of the total derivative at the
quasi-critical temperature in terms of the system size. The dashed line is the linear
fit Eq. (5.94).
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In Fig. 5.35 the expectation values of the relative number of (2, 2)- and
(3, 1)-simplices are displayed for different system sizes Nmax

3 in terms of the
coupling constant κ0 for ∆ = 0. Remember that N3 = N3,1 +N2,2 for every
triangulation, so that

〈N3,1〉
〈N3〉

= 1− 〈N2,2〉
〈N3〉

Also the expectation values of the other slice and spatial slice quantities
can be calculated in terms of 〈N3,1〉, e.g., the number of maximal spatial
simplices is given by 〈N2〉 = 〈N3,1〉/2, and the number of vertices can be
calculated from it.
One observes that there are two different phases in terms of κ0. For

κ0 / −5.0 the ratio of (2, 2)-simplices vanishes, whereas for κ0 ' −5.0 the
ratio is finite, which implies that this ratio can be used as an order parameter
(as also suggested in [34]). The remaining task is to examine whether this
phase transition is a continuous or a discontinuous phase transition. Since
the fine-tuning phase transition is clearly a first-order phase transition, as
discussed in the previous section, which does not lead to a scale-invariant
continuum limit, only in the case of a discontinuous phase transition one
can define a sensible continuum limit of the theory.
In order to do finite size scaling and to extract critical exponents, one

first needs to extract the quasi-critical coupling constants κ(c)
0 (Nmax

3 ) for
each system size. In principle there are several possibilities for doing
so (e.g. using the Binder cumulant), we locate the maximum of the to-
tal derivative of the order parameter 〈N2,2〉/〈N3〉 (which are displayed in
Figs. 5.35c and Figs. 5.35d). The results are displayed in Fig. 5.35a (in-
set). We use a power law fit to determine the critical coupling constant
κ

(c)
0 = limNmax

3 →∞ κ
(c)
0 (Nmax

3 ) and the exponent of the scaling. Including
the exponent as a fit parameter yields

κ
(c)
0 (Nmax

3 ) = −5.25± 0.03 + (80± 45) · (Nmax
3 )−1.24±0.16, (5.93a)

whereas fixing the exponent to −1 and using only two fit parameters yields

κ
(c)
0 (Nmax

3 ) = −5.306± 0.010 + 34± 1
Nmax

3
. (5.93b)

For the maximal value of the total derivative d(〈N2,2〉/〈N2〉)/dκ0 one finds
the linear dependency

d〈N2,2〉
〈N3〉dκ0

(
κ

(c)
0 (Nmax

3 )
)

= (1.39± 0.02) · 10−3 ·Nmax
3 − 0.017± 0.001 (5.94)
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Figure 5.36: Order parameter in the coexisting phases.
Order parameter within the two coexisting phases of the fine-tune transition in
terms of the coupling constant κ0 for ∆ = 0.0 and T = 64 for different values of
Nmax

3 . 〈N3〉 is fine-tuned to Nmax
3 /2. (a) Expected ratio (〈N2,2〉/〈N3〉)lower of (2, 2)-

simplices for the phase with N3 ≤ 〈N3〉. (b) Expected ratio (〈N2,2〉/〈N3〉)upper of
(2, 2)-simplices for the phase with N3 ≤ 〈N3〉.

In the previous section we saw that the phase-transition used to fine-
tune the coupling constant κ3 is a discontinuous phase transition, so using
the fine-tuned value of κ3 we are in a coexistence of two phases. We
can now consider the two different phases separately by considering only
triangulations with N3 ≤ 〈N3〉 and with N3 ≥ 〈N3〉, which was done in
Fig. 5.36 for the order parameter 〈N2,2〉lower,upper/〈N3〉lower,upper. Note that
we have 〈N3〉lower < 〈N3〉 and 〈N3〉upper > 〈N3〉, and both expectation
values have to be calculated. One can clearly see that the phase transition
does only occur in the large-N3 phase, whereas in the small-N3 phase the
order parameters converges to zero for the whole considered range of κ0, so
there is no continuous phase transition in this phase.

For the large-N3 phase plotting with respect to (κ0 − κ(c)
0 ) (where κ(c)

0 is
the extrapolated temperature at infinite volume taken from Eq. (5.93b) or
Eq. (5.93a)) yields that there is a power law behavior

〈N2,2〉
〈N3〉

= (0.056± 0.008) · (κ0 − κ(c)
0 )0.428±0.002 κ0 > κ

(c)
0 (5.95)

of the order parameter on one side of the critical coupling constant, which
is depicted in Fig. 5.37. For κ0 < κ

(c)
0 the order parameter vanishes.

Correlation time The phase transition can also be examined in terms
of the correlation time. Remember that the covariance CovN (t) of an
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Figure 5.37: Scaling of the order
parameter in (2 + 1)-dimensional
causal dynamical triangulations.
The order parameter 〈N2,2〉/〈N3〉
is plotted in terms of (κ0 −
κ

(c)
0 )/κ(c)

0 , where κ(c)
0 is the limit

for Nmax
3 from (5.93a), for differ-

ent values of Nmax
3 . For the plot

only configurations with N3 ≥
〈N3〉 are taken into account. The
black, dashed line corresponds to
the power law fit (5.95).

observables usually scales exponentially

CovN (t) := 〈N(0)N(t)〉 − 〈N〉2 ∝ exp
(
− t
τ

)
,

where the timescale τ is denoted as correlation time. The correlation
time can only be calculated using Eq. (5.78) if the largest eigenvalue is
not degenerated, but in the phase transition used for fine-tuning the two
smallest eigenvalues are equal. If one denotes the value of the two largest
eigenvalues as λ = λ1 = λ2, the covariance has to be calculated using

CovN (t) = 1
2λ2

∑
a,b

| 〈a|S|b〉 |2
(
λa
λ

)T−t−1 (λb
λ

)t−1

− 1
4λ2

∑
a

〈a|S|a〉
(
λa
λ

N
)T−1

2

.

Note that the 2 in the denominator of the first term and the 4 in the
denominator are the value of the partition function if divided by λT in
the limit T →∞. In this limit also all relative eigenvalues with exponent
T − t− 1, except those with a = 1, 2 vanish, so the covariance is

CovN (t) = 1
2λ2

∑
b

(
| 〈1|S|b〉 |2 + | 〈2|S|b〉 |2

)(λb
λ

)t−1

− 1
4λ2

(
〈1|S|1〉2 + 〈2|S|2〉2 + 2 〈1|S|1〉 〈2|S|2〉

)
.
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For large times t also the other relative eigenvalues can be neglected if not
b = 1, 2, so the covariance can be simplified further to be

CovN (t) = 1
2λ2

∑
b

(
| 〈1|S|1〉 |2 + | 〈2|S|2〉 |2 + 2| 〈1|S|2〉 |2

)
− 1

4λ2

(
〈1|S|1〉2 + 〈2|S|2〉2 + 2 〈1|S|1〉 〈2|S|2〉

)
in the leading order, independent of t. (Note that for the previous calculation
that lead to Eq. (5.76) the terms independent of t canceled, so that the
leading order depends on t). Since the two eigenvalues and the corresponding
eigenvectors correspond to the two different phases, one can use

〈1|S|1〉 /λ = 〈N〉lower and 〈2|S|2〉 /λ = 〈N〉upper

or vice versa, where 〈N〉lower is the expectation value of N if restricting to the
phase N3 ≤ 〈N3〉. Furthermore the overlap 〈1|S|2〉 vanishes approximately
because the phases are separated. So the leading term of the covariance
becomes

CovN (t) = 1
4 (〈N〉lower − 〈N〉upper)2 . (5.96)

Since 〈N〉lower 6= 〈N〉upper, the t-independent part of the covariance does
not vanish, and there is no exponential decay of the covariance function
that can lead to the definition of a correlation time.
The situation is different if one considers only a subsystem consisting of

one of the two separate phases. In this case the above calculation is altered
in two details: First, instead of the partition function Z = 2λT of the whole
system, one has to consider the partition function Zlower,upper = λT , because
in a simplified picture the transfer matrix is in block-diagonal form with two
blocks corresponding to each phase (each of which has an eigenvalue λ), and
considering only one phase is equivalent to considering only one block in the
transfer matrix. Second, if considering the phase that is connected with the
eigenvector |1〉, the expectation values 〈2|S|2〉 do vanish. If one uses these
modifications, the covariance can be calculated according to Eqs. (5.76) and
(5.78), and we get two different correlation times

τlower = [log(λ)− log(λlower)]−1

τupper = [log(λ)− log(λupper)]−1, (5.97)

where λlower and λupper are the second-largest eigenvalues which corre-
sponding eigenvectors located in one of the two phases. For the numerical

381



5. Triangulations as fluctuating space-(times)

0

0.2

0.4

0.6

0.8

1

1.2

-7 -6 -5 -4 -3 -2 -1

c
o
rr
e
la
ti
o
n

ti
m
e
τ

c
o
rre

la
tio

n
tim

e
τ

coupling constant κ0

N3 ≤ 〈N3〉 =
1

2
Nmax

3

Nmax
3

-7 -6 -5 -4 -3 -2 -1 0
0

1

2

3

4

5

6

7

Nmax
3

N3 ≥ 〈N3〉 =
1

2
Nmax

3

1

3

6

10-2 10-1 100

a b

∝ x
−1/3

Figure 5.38: Correlation time τ of the covariance 〈N2,2(0)N2,2(t)〉− 〈N2,2〉2 ∝
exp(−t/τ) for the two coexisting phases of the κ3-transition in terms if the terms of
the coupling constant κ0 for ∆ = 0.0 and T = 64 for different values of Nmax

3 . 〈N3〉
is fine-tuned to Nmax

3 /2. (a) Expected ratio (〈N2,2〉/〈N3〉)lower of (2, 2)-simplices
for the phase with N3 ≤ 〈N3〉. (b) Expected ratio (〈N2,2〉/〈N3〉)upper of (2, 2)-
simplices for the phase with N3 ≤ 〈N3〉. The inset shows the dependence of the
correlation time on |κ0−κ(c)

o | for κ0 ≤ κ(c)
o in a double-logarithmic plot, the dashed

black line corresponds to the power law (5.98) with exponent −1/3.

calculation of the correlation time, we do not calculate directly Eq. (5.97),
because it can be difficult to know which eigenvalue does correspond to
which phase. We rather cut the possible values of N3 into N3 ≤ 〈N3〉 and
N3 ≥ 〈N3〉, calculate the covariance function and use a linear fit to obtain
the correlation time. The results of these calculations are displayed in
Fig. 5.38 for the observable N2,2.
As for the values of the observables, also from the divergence of the

correlation time one can conjecture a phase transition at κ0 ≈ −5.2 for
the high-N3 phase, whereas in the low-N3 phase no signs for a divergent
correlation time can be found. Plotting the correlation time for κ0 < κ

(c)
0

with respect to |κ0 − κ(c)
0 |, where κ

(c)
c was extracted from the maximum of

the derivative of N2,2 as described before, yields a power law behavior of
approximately

τN2,2,upper ∝ |κ0 − κ(c)
0 |−1/3, (5.98)

where the critical exponent was not determined by fitting, but is an educated
guess which agrees quite well with the data. In the region κ0 > κ

(c)
0 there

are structures that are probably numerical artifacts that make it difficult to
find the critical exponent.
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Figure 5.39: Phase-diagram
of (2+1)-dimensional causal dy-
namical triangulations. The or-
der parameter 〈N2,2〉/〈N3〉 is dis-
played as colorcode in terms of
the coupling constants κ0 and
κ3 for Nmax

3 = 100. The solid
black double line is the location
of the fine-tuning transition be-
tween separating a phase with
small slices (〈N3〉 → Nmin

3 = 12,
above the transition line) and
large slices (〈N3〉 → Nmax

3 , above
the transition line). The dot on
one of the solid black line cor-
responds to the location of the
second-order phase transition on
the fine-tuned line in one com-
ponent of the fine-tune transition.
The dashed black lines lives in the
phase of large slices and separates
a phase with vanishing order pa-
rameter and with non-vanishing
order parameter.
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Phase diagram In Fig. 5.39 one can see the resulting phase-diagram of
(2+1)-dimensional causal dynamical triangulations. Neglecting the necessity
for fine-tuning, one finds three different phases in the phase diagram: First
we have a first-order transition between the phases of small slices (〈N3〉 →
Nmin

3 = 12) and of large slices (〈N3〉 → Nmax
3 ). Within the phase of large

slices there is a (probably) second-order transition between a sub-phase
with vanishing order parameter 〈N2,2〉/〈N3〉 for κ0 below a certain critical
value, and a sub-phase with finite order parameter for κ0 above this value.

As argued above, a physical relevant system has to live on the first-order
transition where small and large slices coexist. In fact there is a second-
order phase transition on this line (compare Figs. 5.35 and 5.38), which can
indicate the possibility of a scale-invariant continuum limit of the theory.
One needs the scale-invariance because the discretization length a introduced
by regulating the action is not a physical length, but only introduced for
the discretization procedure, and the results should be independent of the
actual choice of the discretization length a.

5.3.7 Problems of the causal dynamical triangulation
approach

In this last section we list some of the problems that come with the approach
of causal dynamical triangulations (CDT). Many problems have already
be addressed in Sec. 5.2.5 for dynamical triangulations (DT) and are also
present within the causal version of this approach. As in DT, one has
to fix the topology of the underlying manifold also in CDT, where one
usually considers the manifold S × Sd−1, otherwise there would be more
then exponentially many triangulations and the partition function would
not converge. This means that one has to fix the topology of space and
time as an input parameter, where it would be feasible to get the topology
as a result from the calculations.

It was already mentioned before that it is crucial for DT and CDT that the
number of triangulations of this fixed manifold does grow only exponentially
with the number of maximal simplices, and not faster than exponential,
because otherwise the partition function would break. The usage of the
causal version effectively reduces the problem by one dimension, because
intuitively it should be true that if there are only exponentially many (d−1)-
spheres, there should also be only exponentially triangulations of S× Sd−1,
which was proven for d− 1 = 2 and d− 1 = 3 in Ref. [148]. Since there are
only exponentially many 2-spheres (or in general triangulations of a given
surface), there are also only exponentially many triangulations of S× S2,
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but the situation is still unclear for 3-spheres, despite of many numerical
hints for their extensivity.
As in the DT approach also in CDT almost nothing is known about the

(computational) ergodicity of the Pachner moves, which is needed for the
Markov chain Monte Carlo simulations to get the right results. Though
causal Pachner moves for (3 + 1) dimensions are probably ergodic, there is
still a problem with computational ergodicity if introducing a cutoff in the
range of accessible triangulations, either by using a strict cutoff as we do
for our Wang-Landau simulations, or by using an additional potential as
done for Metropolis simulations in the literature.
Our results on the continuous phase transition for (2 + 1)-dimensional

triangulations show that there is also a fundamental problem if one using
an additional potential for having a quasi-canonical Metropolis simulation.
In the literature, if one wants the system to stay near a certain value Nd of
maximal simplices, an additional potential term ∝ γ · (Nd −Nd) is inserted
into the action that penalizes states far away from Nd. In Fig. 5.31 one can
see that the probability distribution p(N3) of the number of simplices per
slices has two-peaks, one near the minimal number of simplices Nmin

3 , and
one near the maximal number Nmax

3 . The expectation value 〈N3〉 for the
number of maximal simplices is due to the fine-tuning given by

〈N3〉 ≈
1
2
(
Nmin

3 +Nmax
3

)
,

where there is a minimum of the probability distribution p(N3). If one
introduces now the additional potential to have N3 ≈ 〈N3〉, one selects
the states with the lowest probability for the calculation of the partition
function, which could be a big source of systematic errors.

These considerations show that a Metropolis-like simulation which is used
throughout the whole literature of DT and CDT is actually not suited due
to the necessary introduction of an artificial potential term. Furthermore
we showed that the fine-tuning transition is actually a discontinuous phase
transition, which is the situation where Metropolis-like simulations usually
fail due to an effective break of computational ergodicity. This can also
be made clear by considering again Fig. 5.31, where one can see that the
probability for going from one phase to the other phase of the fine-tuning
transition is almost zero if using the Metropolis algorithm. The only possible
solution is using an algorithm which samples according to the entropy, and
not the energy, as we did using the Wang-Landau algorithm.

Although the approach of CDT found some remarking results, especially
if compared to DT, e.g., the running and asymptotically correct Hausdorff
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dimensions [36, 39, 123] or the existence of continuous phase transitions
[25, 26], these results should be reviewed in the context of the obtained
results of this thesis. Furthermore, for the coupling of matter to the CDT
approach there are only few results [246] outside of the (1 + 1)-dimensional
case, where analytical calculations are possible.
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6 Concluding remarks

In this last section we summarize the work about triangulations done within
the thesis and review its most important results, with the focus being on
possible applications of the methods developed and possible new research
direction that arise from the results obtained. Afterwards we give an
extended outlook to two discrete space time models that were considered
during this thesis besides triangulations, namely finite projective geometry
and spin foam models.

Counting like a physicist The main method presented and partially
developed within this thesis is the possibility to use Markov chain Monte
Carlo simulations, precisely the Wang-Landau simulations, to count the
number of all states or states with certain properties of any arbitrary
system. The basic idea that was presented in Sec. 2.3.3 is to normalize the
density of states, which is the output of a Wang-Landau simulation, with
a prior knowledge of the system, or if this is not available, to modify the
energy or quantitation function so that this knowledge is created. Using
the approximate counting algorithm it is possible to estimate counts that
differ by several hundred orders of magnitudes, but always with an errorbar
originating from the random nature of the underlying algorithm.
This algorithm was applied already onto several diverse system within

this thesis. In Secs. 3.2 and 3.3 it was applied for counting the number of
triangulations of two- and three-dimensional integer lattices. These systems
show the power of the described counting algorithm, e.g., for two-dimensional
lattice triangulations one is able to calculate the state counts from 2 for the
smallest lattice to ≈ 10370 for the largest considered lattice.

The modification of the energy or quantitation function had to be applied
to estimate the number of topological triangulations of closed (oriented
and non-oriented) surfaces in Sec. 4.2, because the number of minimal
triangulations is not known a prior. This example also demonstrates that
one can use almost every function that maps the complex structure of the
state to a simple number or small vector can be used as energy function,
and that this function does not have to be related at all with the physical
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notion of energy. For topological triangulation we used either the number
of vertices in the triangulation or the number of maximal simplices.
There are several possible applications for this algorithm in the near

future. Even if restricting to the topics considered in this thesis, there are
a lot of open research questions that can possibly be answered with the
proposed approximate counting algorithm in the future. Mathematicians
are e.g., interested in counting (especially topological triangulations) where
the minimal (maximal) degree of the vertices is bounded from below (above),
furthermore there are certain types of triangulations that can be counted,
e.g.,

• q-equivelar triangulations [287,310] (which are regular graphs, i.e., ev-
ery vertex has the same degree q)

• q-covered triangulations [287] (where at least one of the two vertices
of every edge has the degree q)

• cyclic triangulations [285] (where every cycle is a simplex of the trian-
gulation, i.e., for every three edges {ab}, {ac} and {bc} also the triangle
{abc} is contained in the triangulation. A possible counterexample is
the minimal triangulation of a torus.)

This could be easily done using our algorithm, either by cutting the range of
triangulations in the simulation, or by introducing another component of the
energy functional that measures binary whether the considered triangulation
has the desired properties.

However, the approximate counting algorithm can also be applied to other
counting problems of discrete mathematics (graph or game theory) and
computer science. One possible application is the counting of k-connected
graphs, which can be done exactly only for small graphs (e.g., Ref. [377]
for k = 2), where the case k = 2 can be utilized for a calculation scheme of
virial coefficients in statistical physics [212]. Another problem from graph
theory (that is somehow related to q-equivelar triangulations) is the number
of non-isomorphic q-regular graphs with n vertices, where actual counts are
only known for n ≤ 22 for suitable q [290], our method can provide the
asymptotics, and where our method could possibly provide the asymptotic
behavior in n and q.
There are also more esoteric problems that can be addressed: Consider

e.g., a quadratic n× n chess board and place n queens on it, so that no two
queens can attack each other. How many possible placings are there? Until
now this question is only answered for n ≤ 26 [288] and can possibly be

388



6. Concluding remarks

answered asymptotically using our algorithm. A multitude of such problems
arising in mathematics can be found in the On-Line Encyclopedia of Integer
Sequences [225]. Remember that for applying the algorithm one needs
elementary steps that ergodically link the different states of the system, and
a suitable quantitation function.

Tessellating space We presented within this thesis that triangulations
are a clever way for tessellating or discretizing space, mainly because within
a triangulation everything is fixed in terms of the length of the edges,
and does not need to consider certain angles (like it would be necessary
if one considered quadrangulations). They are especially useful if objects
with curvature need to be discretized (e.g., surfaces embedded into the
three-dimensional space).
Triangulations are not only interesting inherently, but can often be used

as a tool in physics. The simplest applications would be a description of
boundaries in some finite-element methods, e.g., in flow simulations. Here
one has to carefully choose the needed fineness of the triangulation, because
using too small triangles increases the simulation time (e.g., for testing for
boundary collisions), but using too coarse triangles possibly hides important
features of the objects to be discretized.

Another reason why triangulations can be used as a tool is that the dual of
a certain triangulation, the so-called Delaunay triangulation, is the Voronoi
tessellation, which divides the space into regions that are nearest to a certain
of the given points, it can be used for studying properties of the underlying
(possibly random) system, e.g., in terms of integral geometry. Furthermore,
the Voronoi tessellation can be used a starting point for studying foams,
and triangulations can be used for understanding better the topological
properties of or topological changes within foams and granular matter.

Another important property of triangulations that was widely used within
this thesis is that they are maximal planar graphs. This means that one
cannot include a new edge between two nodes without intersecting an
existing one and violating the planarity. So every planar graph can be
considered as a subgraph of a triangulation, so the graph properties that
were examined in Sec. 3.4 are of special interest. Since every planar graph
can be realized with rational coordinates (by choosing first real coordinates
and then slightly wiggling the coordinates so that they become rational,
which is possible because the rational numbers are dense in the real ones),
by scaling every planar graph can also be realized with integer coordinates.
So it is in fact no severe restriction to consider only triangulations of integer
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lattices. Nevertheless in future research one could consider first the number
and second the graph properties of triangulations of random two-dimensional
point sets, but note that this leads to an increase in computation time by a
factor that equals the number of systems that is used to average over the
randomness. Furthermore, triangulations of real point sets can be studied
to examine properties of planar graphs on this point sets (e.g., the location
of power plants in a country for planing electricity networks).

Another important application of triangulations can be found in topology,
where they can be used as a discretized version of manifolds. It seems to be
a restriction to consider triangulations and no other discretizations, but one
can expect that the fundamental results obtained from triangulations are
also valid for other discretization methods. For example one often considers
CW complexes (which are a generalization of triangulations), where every
cell is homeomorphic to a closed ball, but triangulations are accommodating
because everything is specified by giving the edge lengths.

We used our approximate counting algorithm on triangulations of surfaces
in Sec. 3.2 to estimate the number of small triangulations and extend the
existing numbers, and to furthermore find the asymptotics of the number
in terms of the genus of the surface and the number of simplices used. For
three dimensions we considered in Sec. 3.3 the two basic questions about
triangulations using the same methods, the ergodicity (of the Pachner
moves) and the extensivity of the topological triangulations. Understanding
better Adiprasito’s obstruction about the simulational recognizability of
non-extensivity using numerical simulations one can hope to modify the
simulations in order to be able to make statements about extensivity. Then,
our numerical calculations can be extended to four dimensions to answer the
very two very fundamental questions, whether Pachner moves are ergodic
for different 4-manifolds, and whether there are more than exponentially
many triangulations. For these tasks one has to be careful about the
numerical ergodicity, because some tests already showed that it is possible
that two triangulations with the same number of maximal simplices can be
reached only by using detours to triangulations with much higher number of
maximal simplices, and these detours have to be included into the numerical
algorithm. Our algorithm could also be applied to other discretizations
of manifolds in arbitrary dimensions to extract the facts about (discrete)
topology itself from results that depend on the discretization scheme.

Our methods can also help to consider other fundamental open problems
in discrete topology. E.g., although it is known that the topological d-sphere
has a unique PL structure for dimension d 6= 4 [304, 370], there is neither a
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proof or a counterexample in d = 4. Monte Carlo algorithms as simulated
annealing or Wang-Landau simulations can help to test whether proposed
exotic 4-spheres are bistellar equivalent to the boundary of the 5-simplex,
which means to obstruct possible counterexamples (for details compare
Ref. [395]).
Similiar algorithms can also be used to examine the flip graph of topo-

logical triangulations in more detail. The nodes of this graph correspond
to the different triangulation of the manifold, and there is an edge present
between two nodes if there is a Pachner move that transforms the respective
pair of triangulation into each other. There are only very few facts that
can be proven rigorously about the flip graph, e.g., its connectedness, which
corresponds to the ergodicity of Pachner moves. Similiar to considering
triangulations of graphs, one could calculate various observables of the flip
graph, for example

• the average shortest path length, which is the minimal number of
Pachner moves that one has to apply to go from one to another
triangulation, averaged over all triangulations,

• the distribution of shortest path length, which can be used to learn
something about computational ergodicity of triangulations,

• the clustering coefficient, which is a measure for the locality of Pachner
moves, because it gives the probability that two triangulations that are
neighbors of a common triangulation are also connected by a Pachner
move,

• or the degree distribution, which can be used to measure how diverse
the single triangulations are in terms of the number of Pachner moves
originating from them.

Each of the quantities can be measured in terms of the size of the triangula-
tion, or only for a certain subset of triangulations, to study also the local
structure of the flip graph.
Another very interesting application of random surface triangulations is

given by the KPZ formula [146,184,254]. Consider a statistical model defined
on a two-dimensional regular lattice (quadratic, triangular, hexagonal etc.)
near a critical point. The same model can sometimes be easier to solve on
a random (or quantum) surface, which can be described by a triangulation,
and the KPZ-formula relates the critical exponents on the regular lattice
and on the quantum surface.
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Discrete analogs of curvature In addition to being a tessellation of
curved space, triangulations additionally provide an elegant way for studying
the curvature of the underlying space itself. This goes back to the work
of Tullio Regge, which we summarized in Sec. 5.1, who showed that the
curvature of a triangulation of a d-manifold is a distribution taking only
values on the (d− 2)-simplices. This observation can be used to find the
Regge action, which is a triangulation equivalent of the Einstein-Hilbert
action, and to derive the analogs of the Einstein equations, the equations
of motions corresponding to this action, where the dynamical variables are
given by the edge lengths of the triangulation, which fix the geometry.

The Regge formalism then provides two possibilities to obtain a quantum
theory. The first is to fix the underlying triangulation and to canonically
quantize the edge length degrees of freedom. The other one is to fix the
edge lengths to a cutoff length and to use a path-integral like sum over all
possible triangulations of the manifold, weighted with the respective Regge
action. The latter possibility has the advantage that the Regge action is
completely determined by the f -vector of the triangulation, i.e., the number
of k-dimensional simplices for some k ≤ d, and the respective coupling
constants can be read off. Since the path-integral quantization procedure
can interpreted in terms of the usual formalism of statistical physics, we
used the Wang-Landau algorithm to calculate the density of states with
respect to the relevant simplex numbers.

We presented that there are some problems with the approach of dynami-
cal triangulations, and how some of the problems can be solved by using
causal dynamical triangulations, where a causality condition is imposed on
every triangulation contributing to the path integral. But even within this
setup some conceptional problems remain, especially if one uses traditional
Markov chain Monte Carlo algorithms as in the literature. It was explicitly
demonstrated for (2 + 1)-dimensional causal dynamical triangulations the
continuous phase transition that is claimed to exist does take place only in
one component of the system, which has been tuned to a first-order phase
transition to allow for a valid thermodynamic limit.
If the computational ergodicity of 3-spheres or in general 3-manifolds

can be understood better, our approach can be used for calculating phase
diagrams for (3 + 1)-dimensional causal triangulations. The problem with
the current lack of knowledge is that one cannot split the energy range
(here the range of simplex numbers) as nicely as in (2 + 1)-dimensional
case without violating ergodicity, so one has to perform Wang-Landau
simulations of large energy ranges, which are known to slowly converge
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(compare Sec. 2.3.2). If it is not possible to take gain more understanding
about the ergodicity, one has to rely on massively parallel replica exchange
Wang-Landau simulations for calculating the one-slice propagator to have
small enough number of energy bins in each replica for fast convergence,
but also guaranteed ergodicity.

6.1 Outlook: Equidistance in finite projective
geometries trough biquadrics

Many mathematical descriptions of the physical reality relies on or postulates
a continuous spacetime equipped with a metric (Riemannian or Pseudo-
Riemannian manifold). For special or general relativity these continuous
manifolds are the objects that are described by the theory, but also for other
topics the existence of a continuous space with a metric is assumed, e.g., in
Maxwell theory, which can be formulated using differential equations.

Despite the fact that a continuous spacetime and the existence of a metric
is used everywhere throughout physics, some kind of discreteness has to
be inserted into the theories to take into account the quantum properties
of nature. Usual quantum mechanics or quantum field theory keep the
continuous and metrizable spacetime and quantize only the objects that
live thereon (particles or matter). If one speculates about the quantum
nature of space and time itself, its discreteness is introduced a posterior
e.g., by quantization (as in loop quantum gravity [388]) or regularization
(as in (causal) dynamical triangulations1, see Sec. 5) a continuous spacetime.
There are only few possible counterexamples that postulate discreteness a
prior, e.g., causal set theory [141].
But not only the continuity and the metrizability of the underlying

geometry is used tacitly, but also the demand that space(-time) is at least
locally an affine geometry to use coordinates that can be identified with
elements of a vectors space. However, in mathematics geometry can be
considered in a much more abstract way, by just considering the objects of
the geometry and their incidence relation, i.e., which objects are contained
in or intersect with other objects. Based on this elementary notions, in
mathematics two certain types of geometries are considered: on the one hand

1 Remember that Regge calculus or the (causal) dynamical triangulation approach do
not postulate the triangles or simplices as building blocks of the spacetime, but as a
regularization or discretization scheme. Inside of the simplices spacetime is considered
as flat, and only the curvature is located on discrete objects (inside of a simplex the
geometry is considered as flat).
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the already mentioned affine geometry, which is the prototype of Euclidean
or Lorentzian geometry, and on the other hand projective geometry, which
is often considered to be a more valuable object of study in mathematics,
because it possesses several nice symmetries which simplify many notions
and theorems 2.
Breaking with the two usual design principles (affinity and continuity)

for the underlying geometry of space(-time), one naturally arrives at finite
projective geometries, which are widely studied in the mathematical liter-
ature [89]. Furthermore, due to the inherent discreteness such geometries
are well-suited to be considered using a computer, because theorems for
small geometries can be proven by simply verifying all of the finitely many
possibilities. We want to test whether finite projective geometries are suited
for describing the geometry of space and time. Since in this approach
discreteness is postulated a prior, an important question is whether one
can recover the usual continuous metrizable as well as affine geometry in a
limiting procedure.

Therefor one has to answer a fundamental open question: How to define
distance between two points in a finite projective geometry, so that this
distance is invariant under certain transformations? The question that
should be addressed in this section is whether it is possible to define places
of equal distance from a given point, similar to standard Euclidean geometry
(where these places are given by a circle around a given point) or Lorentzian
geometry (where these places are given by a hyperbola centered at the given
point). In these standard setups, the places of equidistance are given by
different quadrics, which can be seen as cone intersections. These quadrics
can also be defined consistently within finite projective geometries.
We will show that it is not sufficient for defining equidistance in finite

projective geometries to consider only one quadric, but to use two quadrics
with certain properties, because there are not enough points on one quadric
to have an intersection into each direction originating from a point.
This section is based mainly on the master’s thesis

[271] , Biquadric fields: Equipping finite projective spaces with metric
structure, (2014), master’s thesis

as well as partly on the bachelor theses and project reports

[62] W. Barfuss, Quadrics in finite projective planes, (2012), short term
research project

2 e.g., the Erlangen program of Felix Klein is formulated using projective geometry.
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[10] N. Alex, Quadriken in endlichen projektiven Ebenen, (2012), bachelor’s
thesis

[425] F. Winterhalter, Monte-Carlo-Simulationen mit Quadriken in end-
lichen projektiven Ebenen, (2013), bachelor’s thesis

which were supervised jointly by me and Klaus Mecke.
In our following consideration we suppose that the necessary mathemat-

ical basics are known, especially (finite) group theory. Details about the
mathematical setup can be found in great details in Ref. [271].

6.1.1 Affine and projective geometries

We start by giving the basic definition of the term geometry, which encodes
that there is a set of objects (points, lines, planes, circles etc.) and their
respective relation of incidence (Is a point contained in a line? Do two lines
intersect?):

Definition 6.1 (geometry [89, p. 1]):
Let Ω be a set and let I ⊂ Ω × Ω be a relation on Ω. The pair
G = (Ω, I) is called a geometry, if

• I is symmetric, i.e. (x, y) ∈ I ⇒ (y, x) ∈ I for x, y ∈ Ω

• I is reflexive, i.e. ∀x ∈ Ω: (x, x) ∈ I.

The relation I is called incidence relation.
The symmetry requirement means that for an object x that is incident
with an object y also the object y is incident with the object x, and the
reflexivity requirement means that an object is incident with itself. We
consider only geometries where there is a set P of points, and all other
objects are composed of points (i.e., we identify a line with the set of the
constituting points), so two objects x and y can be considered as incident if
x ∩ y 6= ∅ (set-incidence relation).
Formally the set Ω can be split into subsets Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωr,

where r is denoted as rank of the geometry, so that the subsets fulfill certain
properties (e.g., they are disjunct and no two elements of the same subset
are incident, compare [89, Sec. 1.1]). Intuitively the set Ω1 consist of the
points, Ω2 of the lines and Ω3 of the planes of the geometry. It can be
shown that it is enough to describe a geometry only by the sets of Ω1 and
Ω2, which will be denoted by points P and lines L [89, Sec. 1.1].
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As next step we define axiomatically the two geometries that are the
starting point of our further considerations, and that are the most considered
types of geometry considered in mathematics.

Definition 6.2 (projective and affine geometry [89, Sec. 1.2] and [82,
Sec. 6.1]):
Let G = (P,L, I) be a geometry consisting of points P, lines L and
an incidence relation I. The geometry is called projective, if

PG1 For all pairs p1, p2 ∈ P of distinct points there is a unique line
p1p2 ∈ L that is incident with these two points (line through
two points).

PG2 For all quadruples p1, p2, p3, p4 ∈ P of distinct points with p1p2∩
p3p4 = q1 ∈ P , also the lines p1p3 and p1p3 intersect in a unique
point (Veblen-Young-Paschen axiom).

PG3 There are at least two lines and three points per line.

The geometry is called affine, if PG1 and PG3 and the following axiom
holds

AG2 For every line ` ∈ L and every point p ∈ P there is a unique
line `′ ∈ L so that p ∈ `′ and `′ ‖ `, so that ‖ is a equivalence
relation.

If ` ‖ `′, one calls ` parallel to `′ and vice versa.
Note that the affine geometry is a generalization of the usual Euclidean or
Lorentzian spacetime.

We denote by a hyperplane h an object with maximal rank (compare [89,
Sec. 1.1] (intuitively this is an object with dimensionality one less than the
dimensionality of the space, which we did not yet introduce), and use these
objects to find an interesting relationship between affine and projective
geometries:

Theorem 6.3 (relation of affine and projective geometry [89, Sec. 1.6]). Let
G = (P,L, I) be a projective geometry, and let h∞ be a hyperplane of G.
The triple G′ = (P ′,L′, I) with P ′ being the set of points not contained in
h∞ and L′ being the set of lines not lying in h∞ is then an affine geometry.

This means that one can construct affine from projective geometries by
slicing (leaving out) one hyperplane, and projective from affine geometries
by suitably adding one hyperplane. This special hyperplane is often denoted
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as hyperplane at infinity and can be considered as the place where all parallel
lines from an affine geometry intersect.

An important special case of a projective geometry is its two-dimensional
specialization, the projective plane, which can be defined independently as

Definition 6.4 (projective plane):
Let G = (P,L, I) be a geometry consisting of point P , lines L and an
incidence relation I. The geometry is called projective plane, if PG1
and PG3 hold, and if

PP2 for all pairs `1, `2 ∈ L of distinct lines there is a unique point
p = `1 ∩ `2, which is incident with both lines (intersection of two
lines).

In this definition one can see clearly the inherent symmetry: The usage
of the terms lines and planes can be interchanged without changing the
definition. So from first principles it does not matter which objects to denote
as points, and which as lines.
Until now projective and affine geometries were defined synthetically in

terms of axioms for the incidence of the basic objects. For doing actual
calculations or for physical applications one has to consider analytical
geometry in terms of coordinates. While for affine geometries one uses
normal vector spaces over fields as coordinates, for projective geometries
one needs

Definition 6.5 (homogeneous coordinates, [344, p. 47 and p. 48]):
Let F be an arbitrary field3 and Fd+1 the (d+ 1)-dimensional vector
space over F. The homogeneity equivalence relation for x1, x2 ∈
Fd+1 \ {0} is defined by

x1 ∼ x2 :⇔ ∃λ ∈ F \ {0} : x1 = λ · x2

By homogeneous coordinates one denotes the equivalence classes with
respect to the homogeneity equivalence.

One can now proof that these coordinates in fact give the points of a
projective geometry4:
3 Note that one has to coordinatize some projective geometries with R-modules over skew

fields (these are Desarguian, but not Pappossian geometries). But since we consider only
finite fields, and a finite skew field is already a field due to a theorem by Wedderburn, we
can restrict the following considerations to vector spaces and fields. See Ref. [271, p. 20
and p. 21] for details.

4 Note that there are two-dimensional non-Desarguian geometries, which cannot be
coordinatised in this way. For d ≥ 3 and finite projective spaces every geometry can be
coordinatised in this way. See Ref. [271, p. 20 and p. 21] for details.
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Theorem 6.6 (projective geometries over fields F, [89, Thm. 2.1.1]). Let
F be an arbitrary field and Fd+1 the (d+ 1)-dimensional vector space over
F. Let P = Fd+1/ ∼ be the set of 1-dimensional subspaces of Fd+1, and let
L be the 1-dimensional subspaces of Fd+1, then PdF := (P,L,⊂) with ⊂
being the set-incidence relation is a projective space.

Intuitively this means that points in a d-dimensional projective space are
given by (d+ 1)-homogeneous vectors, e.g., for P3F

P =



x1
x2
x3
1

 , x1/2/3 ∈ F

 ∪


x1
x2
1
0

 , x1/2 ∈ F


∪



x1
1
0
0

 , x1 ∈ F

 ∪



1
0
0
0


 .

Another important quantity will be the hyperplanes H, which are the (d−1)-
dimensional objects in the geometry, that can be coordinatised using dual
homogeneous vectors, e.g., for P3F

H =
{

(x1, x2, x3, 1), x1/2/3 ∈ F
}
∪
{

(x1, x2, 1, 0), x1/2 ∈ F
}

∪ {(x1, 1, 0, 0), x1 ∈ F} ∪ {(1, 0, 0, 0)}

It can be shown that a point lies on a hyperplane if the (scalar) product of its
coordinates vanishes, and that the (generalized) vector product can be used
for calculating the hyperplane spanned by d points in general position or the
common intersection point of d hyperplanes in general position [271, Sec. 2.2].

Note that we introduced the dimension of a projective geometry using the
dimension of the vector space used for its coordinatization. It is also possible
to define the dimension of a projective geometry synthetically without using
coordinates (compare Ref. [89, Sec. 1.3]).
From now on we will restrict ourselves to finite projective geometries,

which means that we use the finite field Fq as underlying field of the
projective geometry, where q is a prime or a power of a prime. For prime
p the field F can be identified with defining addition and multiplication
modulo p (which is the remainder if dividing by p), for prime powers the
situation is more complicated (one has then to consider the Galois extensions
of the additive and multiplicative group). Working with finite fields has the
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advantage that the objects of the projective geometry space can be counted,
e.g., for a projective geometry PdFq there are [89, Thm. 1.5.3, Thm. 1.5.4]
• ∑d

i=0 q
i = qd + · · ·+ q + 1 points and hyperplanes in the geometry,

• ∑d−1
i=0 q

i = qd−1 + · · ·+ q + 1 points incident with every hyperplanes
and vice versa,

• ∑d−1
i=0 q

i = qd−1 + · · ·+ q + 1 lines incident with every point, and

• p+ 1 points on every line

6.1.2 Quadrics and Biquadrics

Commonly the fundamental objects for defining distance and therewith
metric in spaces used in physics are quadrics (roots of quadratic polynomials
in the coordinates, which correspond to cone intersections), which give
the places of equal distance from an observer. E.g., in the standard three-
dimensional Euclidean space, all points that have unit distance from the
origin fulfill

x2
1 + x2

2 + x2
3 = 1,

which defines a sphere in space, whereas in the (1+3)-dimensional Lorentzian
spacetime, all points that have a unit distance from the origin fulfill

−x2
0 + x2

1 + x2
2 + x2

3 = 1,

which defines a hyperbola in space, and where x0 is identified as time-
direction (if using c = 1). So one can conclude that quadrics should also
play an important role in projective geometries for defining equidistance or
a metric.
Quadrics can also be defined for projective geometries in the following

way:
Definition 6.7 (quadric):
Let PdFq be a projective space over the field Fq, and let M be a
(d+ 1)× (d+ 1) matrix. The point set

QM := {x ∈ P|xtMx = 0} (6.1)

is called quadric5 associated with the matrix M . A quadric QM is
5 Mathematically one first defines a quadratic form f(x) by imposing that B(x, y) :=
f(x+ y)− f(x)− f(y) is symmetric and bilinear, and then shows that this quadratic
form can be written using a matrix (see Ref. [89, Sec. 4.7] for details). It is also possible
to define a quadratic set, which is a generalization of a quadric, synthetically (see
Ref. [89, Sec. 4.1] for details).
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Figure 6.1: Single quadric in
a finite projective plane.
(Affine) points of the quadric Q1 :
x2

1 + x2
2 + x2

3 = 0 (i.e., x3 = 1)
in the affine part of the finite
projective plane P2F7. The cen-
ter black point has coordinates
pc = (0, 0, 1)t, the color of the
other points encodes the different
lines through the centering points
they lie on. Dark colors corre-
spond to points of the quadric
Q1.

called (non)-degenerated, if the matrix M is (non)-degenerated. For
an arbitrary point x ∈ P, the hyperplane given by h = xtM is called
polar of the quadric QM with respect to the point x.

Note that only the symmetric part (M +M t)/2 of the matrix is relevant
for the quadric, because the antisymmetric part cancels in the calcula-
tion. Furthermore, in projective geometries there is no distinction of (non-
degenerated) quadrics into hyperbolas, parabolas and ellipsis as in the
usual affine geometry, which also shows that projective geometries can be
considered as more symmetric6.

Normally in physical used geometries, the positional relationship between
a line and a (non-degenerated) quadric can be characterized by the number
of intersections. For a given quadric Q and a line ` the line is called a
secant of Q if both have to common points, the line is called tangent of Q if
both have one common point, and the line is called passant if both have no
common point. Note that for d ≥ 3 there is also the possibility that a line
is completely contained in a quadric.

As for Euclidean or Lorentzian space, we want to use quadrics for defining
equidistant points in finite projective geometries. The aim is to find for
every point pc a suitable quadric so that we have an intersection into every
direction originating from this point7, or equivalently two intersections

6 The usual notion of quadric types can be considered by marking a hyperplane at infinity
and considering the positional relationship between the quadric and this hyperplane at
infinity.

7 We consider first the Euclidean or elliptical case. For a Lorentzian or hyperbolic case
there are two lines in a plane (in higher dimensions a degenerated quadric) where one
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Figure 6.2: Types of metrics and their embedding into the projective
space.
In the top row the possible types of metrics in a (continuous) affine plane are dis-
played: Elliptic (positive signature, as in the Euclidean case), parabolic (vanishing
signature) and hyperbolic (negative signature, as in the Lorentzian case). In the
bottom row the projective counterparts are displayed. The red solid lines are the
tangents from the center point to the quadrics (the number of tangents defines
the type of the metric), the dashed, green lines are lines through the center that
needed to be intersected twice. The blue quadrics needs to be included so that
every line through the center that is not a tangent is intersected twice. Note that
if one uses finite projective geometries, one also would need an additional quadric
in the elliptic case (because intuitively the quadric is not dense enough).

for every line through pc (because one needs two intersection per line to
define forward and backward direction). If we consider the simplest possible
case of a projective plane, there are (p + 1) points through every line, so
one needs 2(p + 1) different intersection points with the quadric. But a
non-degenerated quadric in the plane has only p+ 1 points, so one needs in
fact two quadrics. This situation is displayed in Figs. 6.1 (with one quadric)
for P2F7. In higher dimensions one can find similar counting arguments
that one quadric is not enough for defining equidistance in every direction.

A similar phenomenon can also be found in Lorentzian spacetime, where

has no intersections, these correspond to the light-like directions
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the usual choice ηµνxµxν = 1 only leads to intersections into time-like direc-
tions, and one needs a second quadric ηµνxµxν = −1 to get intersections also
in the space-like directions. The situation for different types of geometries
is displayed in Fig. 6.2.
Surely one cannot choose two arbitrary quadrics for defining equidis-

tance, but one needs two quadrics in a certain relation, which leads to the
proposition of the following definition:

Definition 6.8 (biquadric [10,271]):
Let Q1 and Q2 be two quadrics with matrices M1 and M2, let pc ∈ P
be a point and h∞ ∈ H be a hyperplane so that pc /∈ h∞. Then
(Q1, Q2) is called biquadric with center pc and hyperplane h∞ at
infinity if

• h∞ is the polar of pc with respect to both Q1 and Q2.

• Every line through pc except the lines in at most two hyperplanes
intersects either Q1 or Q2 in exactly two points.

If the second condition is true for every line through pc, the biquadric
is called elliptic, if it is true for every line except the lines in one
hyperplane, the biquadric is called parabolic, otherwise the quadric is
called hyperbolic.

The first question one has to answer is whether one can construct such a
biquadric. In fact it is possible to find the matrices M1 and M2 easily if pc
and h∞ have some special coordinates:

Proposition 6.9 (Coordinate description of biquadrics, special case [10,
271]). Let PdFq the projective geometry over the field Fq, and let m be a
non-degenerated d× d matrix, and let M1 and M2 be the (d+ 1)× (d+ 1)
matrices

M1 :=
(
m ~0
~0 t 1

)
M2 :=

(
r ·m ~0
~0 t 1

)
, (6.2)

where r ∈ Fq is a number that does not possess a square root. Then the
quadrics Q1 and Q2 associated with M1 and M2 are biquadrics with center
pc and hyperplane at infinity h∞, where

pc =
(
~0
1

)
h∞ =

(
~0 t 1

)
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6.1. Equidistance in finite projective geometries trough biquadrics

Proof. (Sketch) Consider an arbitrary line through pc, whose affine points
are all a · p with p ∈ P \ h∞ (i.e., p = (~p, 1)) and a ∈ Fq. We calculate the
value of a so that a · p ∈ Q1,2:

p ∈ Q1 a2~p tm~p+ 1 = 0 ⇒ a2 = −1
~p tm~p

p ∈ Q2 r · a2~p tm~p+ 1 = 0 ⇒ a2 = 1
r

−1
~p tm~p

Suppose that w.l.o.g. the first equation has a solution a = ±(−~p tm~p)1/2.
This means that −~p tm~p possesses a square root, then the second equation
does not have a solution, since −r~p tm~p does not have a square root, and
vice versa. This implies that lines that are secant for Q1 are passants for
Q2 and vice versa, and similar one can show that tangents for Q1 are also
tangents for Q2.

Of course having coordinates only for special pc and h∞ is not satisfying.
But one can derive actual coordinates for the general case. The idea is to
considered maps that transform affine to projective coordinates or vice versa
in general, which are denoted as homogenizations and dehomogenizations
(note that these are not given simply in terms of a matrix, because one has
to consider that vectors for points and covectors for hyperplanes transform
differently, see Ref. [271] for details), and apply them to matrices that define
affine quadrics. The result is the following theorem:

Theorem 6.10 (Coordinate description of biquadrics, general case [270]).
Let PdFq the projective geometry over the field Fq, and let m be a non-
degenerated d× d matrix, let pc ∈ P be an arbitrary point and let h∞ ∈ H
be an arbitrary hyperplane so that pc /∈ h∞. Choose d points p∞i ∈ h∞ in
general position, and define the matrix H by(

H
h∞

)
:=
(
P̂−1

)t
with P̂ := (p∞1 , p∞2 , . . . , p∞d , pc)

Then the quadrics Q1 and Q2 associated with

M1 := HtmH + h∞h
t
∞

M2 := r ·HtmH + h∞h
t
∞,

(6.3)

where r ∈ Fq is a number that does not possess a square root, are biquadrics
with center pc and hyperplane h∞ at infinity. Note that one must use the
same representative of the homogeneous equivalence class in Eq. (6.3) as in(
P̂−1

)t
.
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x2 Figure 6.3: Biquadric in a fi-
nite projective plane.
(Affine) points of the biquadric
Q1,2 : ±x2

1 ± x2
2 + x2

3 = 0
(i.e., x3 = 1) in the affine part of
the finite projective plane P2F7.
The center black point has coor-
dinates pc = (0, 0, 1)t, the color
of the other points encodes the
different lines through the cen-
tering points they lie on. Dark
colors correspond to points of
the quadrics Q1 and Q2. Note
that every line through the cen-
ter has two common points with
the quadric.

Note that this theorem is only proven in one direction, i.e., that two matrices
calculated as in (6.3) are biquadrics. The other direction is not proven until
now, but is only a conjecture:

Conjecture 6.11 (Inverse coordinate description of biquadrics). The in-
verse of Theorem 6.10 is true, i.e., for every biquadric (Q1, Q2) as defined
in Def. 6.8 one can find a suitable pc and h∞ as well as a matrix H so that
matrices M1 and M2 associated with the two quadrics can be calculated as
in (6.3).

Since we are dealing with finite geometries, for small q and d one can
explicitly check this conjecture by testing all possible combinations of
quadrics.

Proposition 6.12 (Inverse coordinate description of biquadrics, [270]).
Conjecture 6.11 is true for d = 2 and q = 2, q = 3 and q = 5.

6.1.3 Open questions and research directions

The presented considerations about finite projective geometries are just a
small step towards an actual formulation as a possible spacetime model.
Although it is possible to introduce an object denoted as biquadric which
allows to define places of constant distance from a center, there are still
major open questions and need to be addressed in future research.
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6.2. Efficient calculations of 3nj-symbols for spin foam amplitudes

A major open question is whether the Definition 6.8 and the coordinati-
zation (6.3) are equivalent. Until now it is only known that two matrices as
in (6.3) describe a biquadric. For an equivalency Conjecture 6.11, which is
basically the inverse statement, has to be proven.

The introduced biquadrics also induces only places of constant distance to
a given center pc. Until now it is not clear in general how to define distance
between to points in the strict sense of a metric, so that e.g., the triangle
inequality is fulfilled and so that the distance is invariant with respect to
at least some projectivities. It is thinkable that it is impossible to define a
metric on finite projective space, but that something like an effective metric
arises from a superposition of several biquadrics (in a path-integral sense).
A last major open question that is related with the previous ones is how to
define a meaningful limit to get a continuous spacetime, which is what we
can observe at normal length-scales.

6.2 Outlook: Efficient calculations of 3nj-symbols
for spin foam amplitudes

Spin networks, which were originally introduced by R. Penrose [326,327] for
describing classical spacetime combinatorially, can be used as a description of
the states of the Loop quantum gravity (LQG) Hilbert space. Since LQG uses
a foliation of spacetime to use the canonical quantization method, the states
or the spin-networks describe space at fixed time, and the time-dependence
does enter the theory only by a constraint. Spin foams are an extension
of spin networks that try to describe space and time simultaneously in a
path-integral like quantization formalism. While a spin network is a graph
where each edge is colored with a representation of an underlying group,
e.g., SU(2) or SL(R, 2), and each vertex8 is labeled with an intertwiner, a
spin foam is a complex with vertices, edges and faces where the faces are
colored with a representation of the underlying group, and edges are labeled
with intertwiners. So every intersection of a plane and a spin foam is again a
spin network, and one can interpret spin foams as the time-evolution of spin
networks and use them to calculate transition amplitudes between different
spin networks. In Fig. 6.4 a simple spin foam with boundary spin networks

8 Note that the term vertex in this section and in the spin network and spin foam
literature is used differently than in the previous sections of this thesis. While in the
latter case vertex refers to a 0-simplex of a triangulation, here vertex refers to a node of
the graph dual to the possibly underlying triangulation, so it corresponds to a d-simplex
of the triangulation.
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Figure 6.4: Spin networks and spin foam.
(b) Spin foam with group representations ka associ-
ated with the six displayed faces and intertwiners ib
associated with the four displayed edges (black, solid
lines). On the top (a) and on the bottom (c) the spin
networks that arise if one cuts the spin foam with two
horizontal planes are displayed. Due to the cut, the
group representations ka live on the edges, and the
intertwiners ib live on the vertices of the spin networks.
Note that the dashed lines in (b) are no edges of the
spin foam, but arise only from the cut with the planes,
so they have no associated group representation, and
also the gray points are no actual vertices of the spin
foam.
If one defines the time direction upwards parallel to the
i1 edge, one can interpret the spin foam as transition
between the initial lower spin network (c) and the
final upper spin network (a), where the vertex i1 of
the network is split into the three vertices i2, i3 and
i4 inbetween.
The displayed spin foam is dual to a 3-triangulation
consisting of only one tetrahedron, the group represen-
tations can then be identified with the six 1-simplices,
and the intertwiners can be identified with the four
2-simplices of the triangulation.

can be found, for a general review about spin foams see Refs. [55, 56].
For a path-integral-like formulation of spin foams there are several possi-

bilities for choosing the contributing 2-complexes and their weight. One can
e.g., consider all possible 2-complexes that can be constructed, even those
that cannot be embedded into any manifold. Alternatively one can consider
only those 2-complexes which can be embedded into a manifold. Using these
options one has to be careful to not overcount the 2-complexes. A possible
regularization scheme is to consider only 2-complexes which are dual to a
given triangulation of a manifold [55,56], which connects spin foams with the
previous sections of this thesis. So one can assign to every (d− 2)-simplex
(which is dual to a face of the spin foam) of the triangulation an irreducible
representation of the associated group, and to every (d− 1)-simplex (which
is dual to an edge of the spin foam) an intertwiner.
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In this section we consider a certain model of spin foams, the so-called
EPRL-model [155]. Our work is entirely on numerical calculations within
this spin foam model, we are not concerned about its actual derivation or
interpretation of the obtained result. We rather want to show that it is
possible to calculate transition or vertex amplitudes numerically for small
quantum numbers, we therefor calculate amplitudes for simple examples
and discuss a coarsening step. Previous calculations considered mostly the
asymptotic limit of large quantum numbers, consider e.g., Refs. [8, 67, 121,
245].
This section is based on the numerical simulations and conceptional

thoughts of the following two theses supervised by me

[144] M. Düll, Effiziente Berechnung von Wigner 3nj-Symbolen, (2013),
short term research project

[145] , Numerische Berechnung von Vertex-Amplituden im EPRL-
Modell, (2013), bachelor’s thesis

6.2.1 Spin foam models and amplitudes

In this section we present different spin foam models and describe the spin
foam amplitude of the considered EPRL model. The most general form of
the amplitude for single spin foam is

A =
∑
kf ,ie

 ∏
faces f

Af (kf )

·
 ∏

edges e
Ae(kf , ie)

·( ∏
vertices v

Av(kf , ie)
)
, (6.4)

where kf are the group representations associated with the faces and ie are
the intertwiners associated with the edges. The products go over all faces f ,
edges e and vertices v of the dual 2-complex (bones, (d− 1)-simplices and
maximal simplices of the triangulation). The different models then have to
define the face, edge and vertex amplitudes Af , Ae and Av.
An early and successful spin-foam model is denoted as Barrett-Crane

model [65, 66]. Despite its success, there are several problems with this
model, e.g., its boundary states are not equivalent with the LQG spin
networks, and the volume operator within the model is ill-defined [9,57]. An
alternative model (denotes as EPR-model) that can resolve these problems
was proposed by J. Engle, R. Pereira and C. Rovelli [156,157], where the
vertex amplitude is defined as a square of a Wigner 15j symbol, and one can
show that its kinematics match those of LQG. But this model is still defined
only for the Euclidean case and for vanishing Barbero-Immirzi parameter γ.
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The Barbero-Immirzi parameter γ is a parameter not relevant in the
classical theory, it appears in front of a total derivative term in the La-
grangian and does not contribute to the classical equations of motion. But
it is important in the quantum theory, because it influences eigenvalues of
certain operators (e.g. the area and the volume operator) [61,138,224]. One
can fix the Barbero-Immirzi parameter (to a non-vanishing value) if one
compares the entropy of a black hole calculated by Bekenstein and Hawking
with the according value calculated in LQG [50]. It can be concluded that
spin-foam models must implement a Barbero-Immirzi parameter γ 6= 0 to
produce the correct results.

A new model originating from the EPR model and taking into account a
finite Barbero-Immirzi parameter γ was proposed by J. Engle, E. Livine, R.
Pereira and C. Rovelli [155] and is denoted as EPRL-model according to the
names of this authors. Furthermore this model can be used in Euclidean
and Lorentzian spacetimes. A similar model was proposed in Ref. [176]. In
the Euclidean case, which is the case we use in the following, the underlying
group of the spin foam is Spin(4) = SU(2) × SU(2), the double cover of
SO(4), where the different unitary representations can be labeled by two
half integers k+ and k−. In the Lorentzian case the underlying group is
Spin(3, 1) = SL(2,C), where the unitary representations can be labeled by
a positive integer and a real number.
Consider a vertex which is dual to a four-simplex, and denote by ia the

intertwiners assigned to the five 3-simplices dual to the edges, and by kab
the ten group representations assigned to the 2-simplices dual to the faces,
where kab is incident with the intertwiners ia and ib. In the EPRL model
the amplitude of this vertex is given by9

Av,γ(~k,~i) =
∑

i+1 ,...i
+
5

∑
i−1 ,...i

−
5

15j(~k−;~i−)15j(~k+;~i+)
∏
a

f ia
i−a i

+
a

(~k) (6.5)

Here k±ab := |1±γ|kab/2 with Barbero-Immirzi parameter γ, and i± are sum-
mation indices. For the Wigner 15j symbol one has to use the combination

15j
(
~k±;~i±

)
= 15j

(
k±12, k

±
13, k

±
14, k

±
15, k

±
23, k

±
24, k

±
25, k

±
34, k

±
35, k

±
45;

i±1 , i
±
2 , i
±
3 , i
±
4 , i
±
5

) (6.6)

Note that a non-vanishing Barbero-Immirzi parameter γ imposes some
selection rules on the kab. Since k±ab ∈ Z/2 it follows that (1 ± γ)kab ∈ Z.
9 For simplicity reasons here and in the course of this section we do not give the boundaries
of the sums. In all cases these are given by certain selection rules for the quantum
numbers used as summation index that can be easily implemented.
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This implies that for a rational γ = γn/γd with γn and γd prime one can
only choose kab ∈ γd · Z. The fusion coefficients f ii+i− are defined as [8]

f ii+i−(k1, k2, k3, k4) := (−1)k1−k2+k3−k4
√

(2i+ 1)(2i+ + 1)(2i− + 1)

4∏
a=1

√
2ka + 1


k−1 i− k−2
k+

1 i+ k+
2

k1 i k2



k−3 i− k−4
k+

3 i+ k+
4

k3 i k4

 ,
(6.7)

where one has to use the four spins kab or kba as arguments for the fusion
coefficient f of the intertwiner ia, and {•} are Wigner 9j symbols. Details
about the Wigner 15j and 9j symbol can be found in Sec. 6.2.2.
The amplitudes Eq. (6.5) are defined for one vertex of the spin foam,

which corresponds to one 4-simplex of the dual triangulation. For a whole
spin foam, the amplitude is given as a specialization of the general amplitude
(6.4) by

Aγ =
∑
kf ie

∏
faces f

(2kf + 1)
∏

vertices v
Av,γ(kf , ie), (6.8)

where the sum runs over all internal group representations kf associated
with the faces f , and all internal intertwiners associated with the edges e.

One of the aims of this project is to calculate the change of the amplitude if
one considers a coarsening step of the triangulation. For the four-dimensional
spacetime this is a (5 → 1)-Pachner move that removes a 0-simplex and
transform five 4-simplices into one 4-simplex. We state here exactly how to
calculate the amplitude according to Eq. (6.8). Therefor we consider as an
example the move of the 4-simplices

{01235, 01245, 01345, 02345, 12345} → {01234},

which induces the replacement

0123︸ ︷︷ ︸
i1

, 0124︸ ︷︷ ︸
i2

, 0134︸ ︷︷ ︸
i3

, 0234︸ ︷︷ ︸
i4

, 1234︸ ︷︷ ︸
i5

,

0125︸ ︷︷ ︸
j0

, 0135︸ ︷︷ ︸
j1

, 0145︸ ︷︷ ︸
j2

, 0235︸ ︷︷ ︸
j3

, 0245︸ ︷︷ ︸
j4

,

0345︸ ︷︷ ︸
j5

, 1235︸ ︷︷ ︸
j6

, 1245︸ ︷︷ ︸
j7

, 1345︸ ︷︷ ︸
j8

, 2345︸ ︷︷ ︸
j9


→ {0123︸ ︷︷ ︸

i1

, 0124︸ ︷︷ ︸
i2

, 0134︸ ︷︷ ︸
i3

, 0234︸ ︷︷ ︸
i4

, 1234︸ ︷︷ ︸
i5

}

for the 3-simplices (tetrahedra), where ia are the fixed external intertwiners
and jb are the internal intertwiners that are summed associated with the
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tetrahedra, and the replacement

012︸︷︷︸
k12

, 013︸︷︷︸
k13

, 014︸︷︷︸
k23

, 023︸︷︷︸
k14

, 024︸︷︷︸
k24

,

034︸︷︷︸
k34

, 123︸︷︷︸
k15

, 124︸︷︷︸
k25

, 134︸︷︷︸
k35

, 234︸︷︷︸
k45

,

015︸︷︷︸
l012

, 025︸︷︷︸
l034

, 035︸︷︷︸
l135

, 045︸︷︷︸
l245

, 125︸︷︷︸
l067

,

135︸︷︷︸
l168

, 145︸︷︷︸
l278

, 235︸︷︷︸
l369

, 245︸︷︷︸
l479

, 345︸︷︷︸
l589


→


012︸︷︷︸
k12

, 013︸︷︷︸
k13

, 014︸︷︷︸
k23

, 023︸︷︷︸
k14

, 024︸︷︷︸
k24

,

034︸︷︷︸
k34

, 123︸︷︷︸
k15

, 124︸︷︷︸
k25

, 134︸︷︷︸
k35

, 234︸︷︷︸
k45



for the 2-simplices (triangles), where kab are the external spins and lcde are
the internal spins that are traced out associated with the triangles. Note
that lcde indicates that this spin (triangle) is incident with the intertwiners
(tetrahedra) jc, jd and je, where kab indicates that this spin is incident with
the intertwiners ia and ib and another intertwiner je that is not specified in
the indices. The resulting amplitudes for five maximal simplices (vertices of
the dual graph) are then

A01235
v,γ (k12, k13, k14.k15, l012, l034, l067, l135, l168, l369; i1, j0, j1, j3, j6) (6.9a)

A01245
v,γ (k12, k23, k24.k25, l012, l034, l067, l245, l278, l479; i2, j0, j2, j4, j7) (6.9b)

A01345
v,γ (k13, k23, k34.k35, l012, l135, l168, l245, l278, l589; i3, j1, j2, j5, j8) (6.9c)

A02345
v,γ (k14, k24, k34.k45, l025, l035, l235, l045, l245, l589; i4, j3, j4, j5, j9) (6.9d)

A12345
v,γ (k15, k25, k35.k45, l067, l168, l369, l278, l479, l589; i5, j6, j7, j8, j9) (6.9e)

We want to calculate the amplitude Aγ

Aγ(~k,~i) =
∑
~l,~j

∏
f

(2lf + 1)
∏
v

A(v)
γ (~k,~l;~i,~j) (6.10)

of the spin foam consisting of the dual objects of the five simplices in order
to compare with the single vertex amplitude Av,γ(~k,~i) as defined in Eq. (6.5)
to later be able to quantify the effect of coarsening on the model.

6.2.2 Clebbsch-Gordan coefficients and 3nj-symbols

In the previous section we saw that the spin foam amplitudes in the EPRL
model are closely related with Wigner 3nj-symbols. In this section we state
the definition of the necessary symbols based on the notions of the coupling
of quantized angular momenta.
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6.2. Efficient calculations of 3nj-symbols for spin foam amplitudes

Clebbsch-Gordan coefficients describe how to couple two angular momenta
together to a third angular momentum. They are the matrix elements of the
unitary transformation from the product basis of the two angular momenta
to the eigenbasis of the total angular momentum

|j,m, j1, j2〉︸ ︷︷ ︸
eigenbasis

=
∑

m1,m2

|j1,m1; j2,m2〉︸ ︷︷ ︸
product basis

〈j1,m1; j2,m2 | j,m, j1, j2〉︸ ︷︷ ︸
Clebbsch-Gordan coeff.

The 3j-symbols can be viewed as a more symmetric version of the Clebbsch-
Gordan coefficients, they describe a coupling of three angular momenta j1,
j2 and j3 to a vanishing angular momentum. They are defined in terms of
the Clebbsch-Gordan coefficients as(

j1 j2 j3
m1 m2 m3

)
:= (−1)j1−j2+m3

√
2j3 + 1 〈j1,m1; j2,m2 | j3,−m3, j1, j2〉

Wigner 6j-symbols relate the three different possibilities to couple three
spins. One couples first two of the three spins, and the joint spin is coupled
with the remaining spin. The 6j-symbols mediate between the three different
coupling possibilities. The important fact is that they can be defined directly
or as sum of 3j symbols.{

j1 j2 j3
j4 j5 j6

}
:=
∑
allm

(−1)S
(
j1 j2 j3
m1 m2 −m3

)(
j1 j5 j6
−m1 m5 m6

)
·(

j4 j2 j6
−m4 −m2 −m6

)(
j4 j5 j3
m4 −m5 m3

)

Of the 6 angular momenta in the symbol three are the total quantum numbers
for the original momenta, one is the resulting total angular momentum, and
two are the two different coupled intermediate angular momenta from the
different schemes. Due to the selection rules of the underlying 3j-symbols
the summation of the six dependent m can be reduced to a summation of
three independent m.
Similiar to the 6j-symbol, one can also calculate 3nj-symbols which

correspond to coupling schemes of a higher number of angular momenta. All
of these symbols can be reduced to symbols of smaller kind, so a recursive
calculation is possible. For the EPRL model the 15j and the 9j symbol
are important, because these two are used in the definition of the vertex
amplitude (the latter one in the fusion constants). The 9j symbol can be
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expressed in terms of 6j symbols
j1 j2 j3
j4 j5 j6
j7 j8 j9

 =
∑
i

(2i+1)(−1)2i
{
j1 j2 j3
j6 j9 i

}{
j4 j5 j6
j2 i j8

}{
j7 j8 j9
i j1 j4

}
(6.11)

but it is also possible to express it directly in terms of binomial coefficients
[414, 415]. Also the higher and thus the 15j-symbol can be expressed in
terms of 3j-symbols [431],

15j(k12, k13, k14, k15, k23, k24, k25, k34, k35, k45; i1, i2, i3, i4, i5) =

=
ki∑

ai=−ki
(−1)

∑
m

(km−am)
[
k15 k14 k13 k12
a15 a14 a13 a12

]
i1

[
k12 k25 k24 k23
−a12 a25 a24 a23

]
i2

·
[
k23 k13 k35 k34
−a23 −a13 a35 a34

]
i3

[
k34 k24 k14 k45
−a34 −a24 −a14 a45

]
i4

·
[
k45 k35 k25 k15
−a45 −a35 −a25 −a15

]
i5

with [•] being defined as[
k1 k2 k3 k4
a1 a2 a3 a4

]
i

:=
√

2i+ 1(−1)i−a1−a2

(
k1 k2 i
a1 a2 −a1 − a2

)
·
(

i k3 k4
a1 + a2 a3 a4

)
,

but a representation in terms of binomial coefficients is not known in general.

6.2.3 Calculation time of 3nj-symbols

The amplitude of a single vertex Av,γ within the EPRL-model is given by a
summation over 15j-symbols and fusion coefficients f , which are basically
9j-symbols. The previous section explained that all of these higher order
symbols can be expressed in terms of the elementary 3j-symbols. So for
an efficient calculation of the vertex amplitudes it is necessary to calculate
3j-symbols fast.
In principle there are two options for a fast calculation: One can pre-

calculate and store all necessary 3j-symbols, or one can calculate them
directly whenever they are needed in the calculation. Which option is faster
depends on how often a single 3j-symbol is used in the calculation, as a
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6.2. Efficient calculations of 3nj-symbols for spin foam amplitudes

rule of thumb one should use the pre-calculation if every symbol is needed
on average more than once in the calculations.

For an efficient storage scheme one has to take into account the symmetries
of the 3j-symbol to avoid calculating and storing the same symbol twice.
The 3j-symbol is e.g., invariant up to a sign under permutations of the rows(

jπ(1) jπ(2) jπ(3)
mπ(1) mπ(1) mπ(3)

)
= sgn[π]j1+j2+j3 ·

(
j1 j2 j3
m1 m2 m3

)
,

where π is a permutation. Furthermore it is invariant under the change of
the sign of the lower row up to a sign(

j1 j2 j3
−m1 −m2 −m3

)
= (−1)j1+j2+j3 ·

(
j1 j2 j3
m1 m2 m3

)
.

Note that due to selection rules of the angular momentum coupling always
m1+m2+m3 = 0, otherwise the 3j-symbol is 0. These three facts can be used
for storing only symbols with j1 ≥ j2 ≥ j3, m1 ≥ 0 and m3 = −m1 −m2.
Several calculation schemes for 3j-symbols were tested for their speed

for the range of desired quantum numbers. It turns out that using the
representation of the 3j-symbols in terms of binomial coefficients [181] is
the fastest method for calculating the 3j-symbols. Therefore it is necessary
that the binomial coefficients can be calculated efficiently. One can use
tabulated binomial coefficients as in the GNU Scientific Library (GSL) [181],
which stores and uses all binomial coefficients for n ≤ 25, larger coefficients
have to be calculated using the definition. Another possibility is to use a
recursion formula [414] for the binomial coefficients, which allows to calculate
3j-symbols at high quantum numbers much faster than the standard GSL-
function (for jmax = 250 there is a speedup of approximately one magnitude).
Tests calculating a huge number (≈ 1010) of 3j-symbols and comparing

the calculation time of the direct calculation with a look-up table showed
that the initialization time

tinit[s] ≈ (2.45± 0.42) · j6.49±0.05
max (6.12)

for calculating the look-up table scales with a power law, but that the
look-up time per symbol is slightly smaller than the direct calculation time
(compare Fig. 6.5). This means that the look-up method is more efficient for
small maximal angular momenta jmax or for a large number of calculated
3j-symbols. In our example calculations for jmax ≤ 20 the look-up method
is always faster if one calculates more than 1010 3j-symbols. Since we are
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Figure 6.5: Calculation time of Wigner-3j symbols.
(a) Initialization time (in seconds) of the necessary 3j-symbols in a storage scheme
in terms of the maximal angular momentum jmax. The initialization time scales
approximately with a power law ∝ j6.49±0.05

max . (b) Comparison for the calculation
time per symbol for using a storage scheme and the direct calculation using GSL in
terms of the maximal angular momentum jmax. Both methods show approximately
a linear increase with jmax and a large offset.

interested mainly in the limit of small quantum numbers, we use the look-up
method for the 3j-symbols. Note that for the calculations we explicitly
used only those 3j-symbols that fulfill certain selection rules (e.g., that the
sum m1 +m2 +m3 vanishes, and that the triangle inequality for the j’s is
fulfilled). If one would use random numbers for all entries, the calculation
time would decrease drastically, because the match of the selection rules
can be checked fast.

For calculations of the EPRL vertex amplitude Av,γ according to Eq. (6.5)
the relevant Wigner symbols are the 15j-symbol and the 9j-symbol, where
the latter is needed for the calculation of the fusion coefficients (6.7). There
are two relevant methods for calculation the 9j-symbol: On the one hand
one can express the 9j-symbol in terms of sums of 6j-symbols and hence in
terms of sums of 3j-symbols. The other possibility is to use a formulation
of the 9j-symbol in terms of binomial coefficients [414]. In both cases the
underlying basic objects, the binomial coefficient and the 3j-symbol, can
be calculated in advance and be stored in a look-up table. For the limit of
low angular momenta our calculations show that the second method, using
binomial coefficients, is more efficient than the usage of the 3j-symbols.

For the 15j-symbol one has to use the calculation method in terms of lower
order Wigner symbols, because no direct calculation in term of binomial
coefficients is known. In Fig. 6.6 the calculation time of random 15j-symbols
is displayed in terms of the number of calculated symbols. As expected one

414



6.2. Efficient calculations of 3nj-symbols for spin foam amplitudes

Figure 6.6: Calculation time
of Wigner-15j symbols.
Time (in hours) for the calcula-
tion of random 15j symbols in
terms of the number of calculated
symbols. The colors encode differ-
ent maximal values of the angular
momenta used in the symbols. In-
set: Calculation time per symbol
(in seconds) in terms of the maxi-
mal angular momentum used.
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finds a linear behavior, where the slope determines the calculation time per
symbol. This calculation time per symbol scales as

t ∝ j5.05±0.05
max (6.13)

in terms of the maximal angular momentum used, which shows that direct
calculations are really only feasible for small quantum numbers.

6.2.4 Small angular momentum vertex amplitudes in the
EPRL-model

The numerical tests of the previous section allowed us to identify efficient
calculation schemes for 15j and 9j-symbols, which are the building blocks of
the vertex amplitude (6.5) of the EPRL model. In this section we apply these
results to actually calculate vertex amplitudes of certain spin configurations,
and finally consider convergence in the renormalization step of the EPRL
model.
We first consider the amplitude of an EPRL vertex, where all angular

momenta are equal to kab = 4 and where all quantum numbers of the
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Figure 6.8: Partition function of coarsening step.
Partition function Z of the EPRL-model for a refinement step (summing over all
interior degrees of freedom), in terms of the maximal quantum number j used for
the interior degrees of freedom. (a) Convergent behavior for Immirzi parameter
γ 6= 1. (b) Divergent behavior for Immirzi parameter γ = 1.

intertwiners are equal, in terms of these intertwiner quantum numbers
for different values of the Barbero-Immirzi parameter γ. The results of
our calculations are shown in Fig. 6.7. For all γ the amplitude Aγ has its
maximal value if ic = kab, and the absolute value of the amplitude grows for
all values of the intertwiner spin with increasing Barbero-Immirzi parameter.
In the underlying bachelor’s thesis [145] several other spin configurations
were considered.

The last step is to calculate the amplitude of the renormalization steps
and ask for their convergence. We consider here only the simplest case
where all external spin degrees of freedom are set to 0, and we sum over
the internal spins or degrees of freedom and divide the resulting amplitude
by the amplitude Av,γ(~0;~0) = 1 of the single vertex. The results of our
calculations are shown in Fig. 6.8a for Immirzi parameter γ 6= 1 and in
Fig. 6.8b for γ = 1. In both cases the total amplitude Aγ is plotted in
terms of the maximal values of the interior spins, which are a necessary
cutoff due to limited computation time. In all considered cases where γ 6= 1
the total amplitude converges already for small cutoffs, whereas for γ = 1
no convergence can be seen in the considered interval, and the partition
function is quantitatively much larger than for the other γ at equal cutoffs
(by six orders of magnitude). This is in agreement with Ref. [155] and can
be understood intuitively by considering the vertex amplitude (6.7), for
γ = 1 all spins k−ab are degenerated and equal to 0, which probably leads
to a break down of the model. Results for other external spins and the
necessary calculation time for the partition functions can be found in [145].
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Our research about spin foam amplitudes is surely only one step towards
numerically calculating spin foam amplitudes for small quantum numbers,
but it is promising to extend the research into this direction. First one has
to optimize the calculation of the single vertex amplitudes Av,γ as defined in
Eq. (6.5). Therefor some importance sampling method can be suited, where
one calculates only the summands in Eq. (6.5) which contribute most to the
amplitude Av,γ . Alternatively one has to examine some heuristics about the
contribution of the single summands to the actual amplitude to be able to
neglect unimportant summands. With this improved calculation technique
one can then try to calculate perturbative expansions (similar to Feynman
diagrams) by considering more and more complicated spin foams mediating
between two boundary spin networks. The considered coarsening step would
be something like a first order correction to the spin foam displayed in
Fig. 6.4. Furthermore it can be promising to use the considered coarsening
step to calculate renormalization group flows in order to find the continuum
limit of spin foam models, but note that it is highly non-trivial to even find
a set of Pachner moves that transform a 4-triangulation into the simplest
triangulation of the given manifold, perhaps even impossible (consider the
general remarks about ergodicity of triangulations in Sec. 4).
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6.3 Software developed within this thesis

In this short section we give an overview of the software that was developed
for this thesis and that was used for doing the numerical simulations that
lead to the data presented. This section should not be an exhaustive
technical documentation of the usage of the software, but rather a short
overview about the concepts that were used and how they relate to the
properties of the underlying physical structures. For the technical details
we refer to the documentation of the respective software.

The section will consist of the description of the following two parts:

• mocasinns: Generic template library for Markov chain Monte Carlo
simulations on arbitrary, user-defined systems

• mocatrind: Library for representing different types of triangulations
on the computer, to be used together with the mocasinns template
library

Two other smaller packages that were developed during this thesis are
resampling10, which is a python scripts that can be used for doing Jackknife
and Bootstrap resampling for arbitrary data sets, and gnuplot_utils11,
which provides a compilation of scripts for using with gnuplot.

6.3.1 The generic MCMC library mocasinns

To use the various Monte Carlo algorithms that were introduced in Sec. 2.2
within several applications, in principle there needs to be one program
for every combination of a system and an algorithm. This approach is of
course unsuitable, because it leads to code duplication for both the code
modeling the system and the Monte Carlo algorithms. Changes in the
system properties must be managed and provided to all different programs.
Additionally each user interested in the properties of a certain system must
write the code for the Monte Carlo simulation on its own, being perhaps
only an expert in the system he wants to study numerically, and not an
expert in Monte Carlo simulations. He wastes his time writing code that
actually exists, but is hidden in and interwoven with code describing other
systems.
A common solution to such problems is using an available program or

library. There are several projects for doing Markov chain Monte Carlo

10https://github.com/bkrueger/resampling
11https://github.com/bkrueger/gnuplot_utilities
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(MCMC) simulations on different systems: The ALPS (Algorithms and
Libraries for Physics Simulations) library [68] contains code for classical
Metropolis simulation of Ising, Heisenberg, XY and Potts spin systems as
well as several implementations of Quantum Monte Carlo algorithms. The
GSL (GNU scientific library) [181] contains algorithms for Monte-Carlo inte-
gration of multidimensional functions and cannot be used for usual problems
in statistical physics. The SMCTC (Sequential Monte Carlo Template Class)
library [231] is a template library applicable for sequential Monte Carlo that
is used mainly in particle tracking and signal processing, there are also the
projects PyMC [324] and BUGS/WinBUGS [284] that are special packages for
Bayesian data analysis. All considered libraries or programs are designed
only for simulating only one or at best a few similar systems.
It is not possible to write a standard pre-compiled library for doing

Markov chain Monte Carlo (MCMC) simulations on arbitrary systems,
because the MCMC code and the system code must interact at various
places. The generic template library mocasinns we will present in this
section addresses the described problems for MCMC simulations. We made
the observation that a lot of physical systems can be described in terms
of a common interface, and that most MCMC simulations just need the
data provided by this interface. By writing a generic library that demands
just this simple common interface, but provides a rich choice of simulation
algorithms, analysis tools and data management, we give the user a one-fits-
all solution for applying modern MCMC algorithms on his problem without
the need to write Monte Carlo code on its own..
The mocasinns library is also designed for an an easy expandability, it

is possible for the user to write own MCMC algorithms, random number
generators or utility classes and use them within the mocasinns framework.
So mocasinns can also be used as a test and benchmark for new algorithms.
The mocasinns library has very little dependencies, the only foreign library
that is needed is the well-known and commonly used boost library (and the
unit-testing framework CPPUnit, which is only used for testing mocasinns
and not needed by the user). The whole code is clean and well-documented
and can be used as a reference implementation of the presented MCMC
algorithms.

Examples for every algorithm and utility class are provided as well as an
extensive tutorial to make the learning process easy. The code is documented
using the Doxygen documentation tool to create an online version of the
manual. Nevertheless should users of the library at least be partially familiar
with the concept of template programming in C++.
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Common features of systems treated with Markov chain Monte
Carlo algorithms

In this section we extract similarities of systems which can be treated
numerically using Markov chain Monte Carlo algorithms. Based on this
similarities we develop the interface of two classes representing states of
these systems and steps between the states for use in mocasinns. Therefor
we consider three different examples for physical systems that can be treated
with Monte Carlo simulations

1. Ising-like spin systems with nearest neighbor interaction:

2. Canonical simulations of particles interacting according to a Lennard-
Jones potential

3. Grand-canonical simulations of hard spheres in a confinement

We consider additionally the traveling salesman problem, where a shortest
path can be found by a simulated annealing procedure, to show that the
introduced notions are not limited to physics. Now the question arises:
What are the common features of this systems?

States and steps between states The considered systems all exhibit a
notion of state, which is natural since we are mainly interested in problems
of statistical physics. In the Ising system a state is the set of the directions
of all spins. For the Lennard-Jones fluid and the grand-canonical hard
spheres the state is the tuple of the coordinates of the single particles or
spheres. For the traveling salesman problem a state is a permutation of the
cities which gives the order of the visits. We will denote a single state as ω
and the set of all states as Ω.

Since we consider Markov chain Monte Carlo algorithms, for each system
there is the notation of a step that connects two different system states.
These steps must be ergodic, i.e. that every state can be reached from
every other state by a finite number of steps. In the example of the Ising
lattice a step is changing the direction of a single spin (spin flip), in the
Lennard-Jones case a step is a small move of the coordinates of one single
particle, for the grand-canonical hard spheres a step is given by the insertion
or the removal of a certain hard sphere, and for the traveling salesman
problem a step is an interchange of two cities in the visiting sequence. We
will denote a step that leads from state ω1 to ω2 as ω1 → ω2.
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Energy (difference) of states and steps Each system defines some-
thing like a (generalized) energy and a (generalized) inverse temperature
that will be used for calculating average values

1. For the Ising-like spin-systems the energy is given by:

E = −J
∑
〈i,j〉

σiσj

where 〈i, j〉 indicates the summation over pairs of next neighbor spins
σi and σj , and where J is the coupling constant. For the standard
Ising system one chooses σ = ±1.

2. For the Lennard-Jones fluid the energy is given by

E =
∑
i<j

φ (|~xi − ~xj |) φ(x) = 4ε
[(

σ

x

)6
−
(
σ

x

)12
]

where φ(x) is the Lennard-Jones potential with parameters σ and ε
that depends on the distance |~xi − ~xj | of the particles i and j.

3. For the grand-canonical hard sphere system the actual energy of the
system is either 0 (if all spheres are separate) or ∞ (if there are
overlapping spheres), so it makes no sense to use the actual energy
as energy for the Monte Carlo simulations. Instead one can choose
the number N of particles as the energy, the generalized inverse
temperature is here the chemical potential µ.

4. For the traveling salesman problem the energy is the total length of
the path, which is the sum of the distances between cities that are
neighbors in the visiting sequence.

Since a step changes the state of the systems, it changes its energy, too.
So one can associate with each step a change in the energy with we will
denote by ∆E. For performance reasons it is desirable that ∆E can be
calculated locally, so that the energy of the system does not need to be
recalculated. Suppose in the Ising-like spin system a step ω1 → ω2 consists
of a change in the spin i from σi to σ′i. The energy difference induced by
this flip is then given by

∆E(ω1 → ω2) = E(ω2)− E(ω1) = J
(
σi − σ′i

) ∑
j∈NN(i)

σj
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The change of the energy in a Lennard-Jones fluid induced by a step moving
a particle ~xi → ~xi + ∆~xi can be calculated as

∆E =
∑
j 6=i

[φ(|~xi + ∆~xi − ~xj |)− φ(|~xi − ~xj |)]

For the grand-canonical hard sphere system the calculation of the energy
difference is simple. Since we interpret the total number of spheres as energy,
the change is ∆N = ±1 depending on whether the step inserts or deletes a
sphere. For the traveling salesman the change in the travel distance can be
calculated by only considering the distances between the cities interchanged
in the steps and their precursors and successors.

Step selection probability There are two further common properties
of Monte Carlo steps that do not appear in every system setup. In Markov
chain Monte Carlo simulations one usually splits the probability P (ω1 → ω2)
for doing a step ω1 → ω2 into the probability S(ω1 → ω2) for selecting this
step and the probability A(ω1 → ω2) for accepting the step, so that the
detailed balance condition becomes:

P (ω1 → ω2)
P (ω2 → ω1) = S(ω1 → ω2) ·A(ω1 → ω2)

S(ω2 → ω1) ·A(ω2 → ω1) = PMC(ω1, ω2)

where PMC(ω1, ω2) is a probability that depends on the two states ω1 and
ω2 and that is given by the Monte Carlo algorithm used. One then has to
choose the acceptance probability such that the detailed balance condition
is fulfilled:

A(ω1 → ω2)
A(ω2 → ω1) = PMC(ω1, ω2)

(
S(ω1 → ω2)
S(ω2 → ω1)

)−1

where the right hand side is a common choice for the acceptance probability
to fulfill the detailed balance condition.
For the Ising system the selection probability for each step is S(ω1 →

ω2) = 1/N , where N is the total number of spins, so the ratio of the selection
probabilities is always 1. For other systems this is not necessarily the case.
The selection probability for the grandcanonical spheres is S(N → N + 1) =
V/(N + 1) for the insertion of a sphere and S(N + 1→ N) = 1/2(N + 1)
for the removal of a sphere [1].

Executability of steps There are also systems where not every proposed
step leads to a valid state. Consider, e.g., the system of grand-canonical
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hard spheres with radius r. The algorithm can propose an insertion of a
sphere at coordinates ~x, so that |~xi − ~x| < r for the coordinates ~xi of an
already present sphere, but an actual insertion would lead to overlapping
hard spheres, which is an invalid state. Not proposing this steps is difficult,
because for getting a simple selection probability one has to sample uniformly
the volume where a sphere can be inserted. So there should be the possibility
for the user to provide a function to test whether a step is executable, which
is in most cases easier to decide than to correct for this issue in the step
selection. Since for a lot of systems every state is executable, the user should
not be forced to provide such a function.

Serialization of the configuration Especially for long running simu-
lations so-called checkpointing is convenient. This means that in regular
intervals the status of the simulation is permanently stored to be able to
continue the simulation if it stops expected or unexpected. Additionally,
it is convenient to react directly on the signal input of the user or the
operating system and store the current simulation state if the simulation
ought to stop. The complete status of a simulation consists of both the
current values of the simulation parameters and the current state of the
simulated systems. So it should be possible for a user-defined system to
store the actual state, but only as an optional feature.

Complete list of all steps For almost all Markov chain Monte Carlo
simulations a rejection-free version can be defined to avoid situations where
the system is in a certain, preferred state for a lot of steps. In the rejection-
free versions one needs the acceptance probabilities of all possible steps to
calculate the average time the system is trapped in a state and to decide
which step will be executed after this average time. As a consequence, in
order to do rejection-free simulations within mocasinns the user defined
configuration needs a possibility to propose not one random, but all possible
steps.

Requirements for user-defined systems and steps Based on the
common properties of systems used in Monte Carlo simulations, we demand
that a class representing the current state of a system to expose the following
interface for using it in mocasinns:

• EnergyType energy(): Calculates the current energy of the system
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• StepType propose_step(RNG* rnd): Creates a step originating from
the actual state of the system into another state. Gets a random
number generator as parameter to create random and not deterministic
steps.

• std::vector<StepType> all_steps() (optional): Returns list with
all steps that are possible from the current state of the system. This
functions needs to be implemented if rejection-free algorithms should
be used.

• vector<StepType> all_steps() (optional): Returns all possible
steps originating from the actual state of the system. This function is
only needed if using rejection-free versions of the algorithms.

• void serialize() (optional): Method for serializing the system using
boost serialization.

The class representing a step between two states of the system should expose
the following interface

• EnergyType delta_E(): Function that calculates the energy differ-
ence induced by the step.

• void execute(): Executes the step and changes the current state of
the system.

• double selection_probability_factor() (optional): Calculates
the ratio of the selection probabilities

S(ω1 → ω2)/S(ω2 → ω1)

• bool is_executable() (optional): Decides whether the step ω1 → ω2
leads to a valid state ω2.

Design of the library

Based on the observation of the previous section, we concluded that for
writing a template library that can be used for MCMC simulations on
arbitrary systems, this library may only interact with the system trough the
few well-defined functions. We also examined the structure of the various
types of MCMC simulations and found that each can be mapped on one of
the following procedures for doing steps. For standard MCMC simulations
one step can be described as
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1. Being at state ωi, propose a certain step ωi → ωj and test whether
the step is executable. If the step is not executable, handle the step
a rejected step (e.g., increment the histograms in a Wang-Landau
simulation) and propose another step.

2. If the step is executable, calculate the ratio of selection probabilities
Sij , with

Sij := S(ωi → ωj)
S(ωj → ωi)

3. Calculate the ratio of acceptance probabilities Pij , which is given by
the ratio P (ωj)/P (ωi) of the sampled probability distributions at the
respective states

4. Accept the step with probability

Aij = min
(

1, Pij
Sij

)
.

Depending on the acceptance, handle the step as an accepted or
rejected step.

For rejection free MCMC simulation, one step can be described as

1. Being at state ωi, calculate the ratio of selection probabilities Sij and
the ratio of sampled probability distributions Pij for each (executable)
step ωi → ωj originating from the state ωi.

2. Calculate the accumulated acceptance probability

Ai :=
∑
j

ωi→ωjexecutable

min
(

1, Pij
Sij

)
.

3. Calculate a random number p between 0 and Ai, and execute the step
ωi → ωk, where

∑
j<k

ωi→ωjexecutable

min
(

1, Pij
Sij

)
≤ p <

∑
j<k+1

ωi→ωjexecutable

min
(

1, Pij
Sij

)

4. Handle the step as if one would have stayed A−1
i times in the state i

and then stepped to state k.
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This means we can use a Simulation class that defines these two proce-
dures for doing steps (and certain other helping features that are common to
all simulations, e.g., the management of the random number generator), and
to provide several algorithm classes that use these methods of simulations
for doing steps. The algorithms then have to provide methods for calculat-
ing the ratio of the sampled probability distribution, and the methods for
handling accepted and rejected steps. For example, the class for Metropolis
simulations does only need to store the temperature and the times when to
do measurements. In contrast, the class for Wang-Landau simulations has
to store the density of states, the incidence histogram and the procedure
how to decrease the modification factor.
Theses algorithm classes inherit from the class Simulation in order to

provide the common functionality of all simulations, so to be able to access
the methods of the different algorithms from the Simulation class one has
to use the CRTP (curiously recurring template pattern). This implies that
the Simulation class has the template signature

Simulation<Configuration, Step, RNG, Derived>,

where Configuration and Step are the user-provided classes that represent
a state of a system and the elementary steps between this states, and RNG
is one of the random number generators provided by mocasinns. The
template parameter Derived corresponds then to the actual algorithm. As
an example, the class for doing Metropolis simulations then has the template
signature

Metropolis<Configuration, Step, RNG>

: Simulation<Configuration, Step, RNG, Metropolis<...> >,

and the class for Wang-Landau simulations has the template signature

WangLandau<Configuration, Step, EnergyType, Histogram, RNG>

: Simulation<Configuration, Step, RNG, WangLandau<...> >,

where the template parameters Energy and Histogram are needed for the
additional stored histograms (e.g., to realize different binning procedures).

Some further design aspects

In this section we list some of the design patterns that are used in the
mocasinns library.
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Providing parameters for the different algorithms Each of the im-
plemented Monte-Carlo algorithms needs a different set of parameters.
These parameters are gathered in a class Parameters that is a subclass of
the respective algorithm class and that contains the parameters as public
members. In the default constructor of this class reasonable values of the
parameters are predefined. The meaning of the single parameter members
is explained in the documentation of the class.

Exchange of information between algorithms and user code There
are a lot of situations where a possible interaction between the template
library and the user defined code is suitable to take place. E.g., one could
desire to write a short output to the terminal at every measurement of a
Metropolis Monte Carlo simulation. Additionally, the library code should
be able to react on signals sent by the operating systems and for example
save the actual simulation status if the simulation is terminated.
For those interactions between the template library and the user code

mocasinns uses the concept of signals from the boost signal library [195].
There are two kinds of signals used: Signals that are called by the simulation
if certain checkpoints are reached, and signals that are called if a signal from
the operating system was caught (these are the POSIX signals SIGTERM,
SIGURS1 and SIGUSR2). For each of this signals the user can provide one
or several functions that are executed if the signal is called. If the signal
SIGTERM is recorded, the simulation terminates after executing the code
linked to the handler. It is recommended to store all necessary data to
continue the simulation later on. The two signals SIGUSR1 and SIGUSR2
can be used for example to output some information of the simulation on
demand (e.g. simulation progress or actual value of some parameters or
observables).

Checking the compliance of user provided classes As a generic
template library that uses user-provided classes, mocasinns relies on the
them providing the correct interface. Template libraries are known to show
cryptic compiler errors if the user provided template parameters do not
fulfill the requirements for correct interface. To get human readable error
messages for incorrect interfaces, the boost concept check library [368] is
used for checking the user defined types. These concept checks are done at
compile time so that the performance of the program is not influenced.
Beside the errors in the user code that can be detected at compile time

(e.g., wrong return types, missing functions) there are logical requirements
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that the user code has to fulfill. For example the result of delta_E() for a
step must match the difference between the energies of the system after and
before the step. These logical requirements can be tested using the class
Mocasinns::ConfigurationTest that contains several test functions.

Checkpointing, storing intermediate and final results To be able
to store the current state of the simulation (in case of planned or system
induced breaks of the algorithm) the library uses the concepts of boost
serialization [336]. So the current state of the library can be stored,
e.g., reacting to a POSIX signal as described in 6.3.1 and reimplemented
later on.

If the user defined configuration class is serializable, too (see 6.3.1 for the
optional member functions), the serialization of the algorithm classes also
includes the serialization of the actual configuration, so the simulation can
be continued almost without further user input.

Optional function in user-provided code As stated before there are
functions that can be provided by the user code, but are not required by the
mocasinns library. These functions cannot be used in the algorithms of the
library directly, because this would lead to a compilation error if there are
no such functions in the user provided classes. So mocasinns has to inspect
the user provided classes on whether they contain the functions and use a
default value if this is not the case. The inspection of the classes is done with
the boost type traits introspection library boost::tti [135], and wrapper
functions returning a default value or the value of the function are defined
using the SFINAE (substitution failure is not an error, [401]) construct
enable_if [229] based on the results of boost::tti. Since the inspection
of the classes is done at compile time, the runtime of the algorithms is not
affected by this construction.
For the serialization this construction is not possible, since the boost

serialization functionality can be provided as a free function outside of
the class or as a private function, which would both not be recognized by
boost::tti. Additionally the serialization function must be a template
member function to deal with the different possible output formats (e.g., bi-
nary and text output), but boost::tti does not support the detection of
template member functions. So if the user wants to enable the serialization
functionality he has to define a static member function is_serializable().
Note that the return value of this function can determine whether to serialize
the configuration space, but the existence of this function must imply the
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existence of the serialization functionality, otherwise a compilation error
will occur.

6.3.2 Triangulations on the computer with mocatrind

To use the generic library mocasinns with triangulation, another software
library for doing MCMC simulations on triangulation implementing the
necessary interface was developed within this thesis. This library is denoted
as mocatrind (Monte-Carlo triangulations in n dimensions), it tries to
extract the common properties of the different types of triangulations and
their flips considered in this thesis (embedded triangulations, topological
triangulations, causal triangulations) into two common triangulation and
flip classes to remove code duplication and increase the maintainability
of the code. The functionality which is special to the certain types of
triangulations and flips is included in certain classes that inherit from the
two base classes and that later are used in the simulations.

There are already some existing libraries that can be used for working on
triangulations. A widely used library is CGAL (Computational Geometry
Alogrithms Library, [114]), which can describe triangulations of point sets in
arbitrary dimensions and provides a large set of algorithms for constructing
triangulations of given point sets and calculating some related properties
(Voronoi diagrams or convex hulls). This library is designed mainly for use
in computational geometry, so there is no built-in support for topological
triangulations, furthermore there is no concept of flips within this library.
Another library that can be used for approximately the same purposes as
CGAL is GTS (GNU Triangulated Surface library, [331]), but it is designed
only for two-dimensional surfaces. Due to the shortcomings of these two
libraries with respect to the necessary structures and algorithms for doing
Monte Carlo simulations, they cannot be used for our purposes, and we had
to develop an own triangulation library.

All the code is optimized and profiled for doing fast MCMC simulations,
this means that fast computation time is preferred to small memory con-
sumption. For example, we store for every one of the vertices the simplices
that it is contained in, although this could in principle be determined by
inspecting the set of all simplices and leads to the same information stored
twice, which then also has to be updated twice if the adjacency changes.
But having this information in place leads to a remarkable increase in
computation time if creating and executing flips.

We give here a short overview, which functionality is common for all trian-
gulations and flips, and what has to be included into specialized subclasses.
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Common and non-common functionality for flips In the introduc-
tory sections about embedded and topological triangulations we saw that
each flip in a triangulation is associated with a certain simplex and can be
selected by choosing this simplex, this is also true for causal triangulations.
The vertices of this simplex that induces the flip basically set the negative
circuit vertices. So it is possible to store the simplex that is defining the
flip in the common flip class.
Furthermore, every considered flip can be described by a set of positive,

negative and zero circuit vertices. For embedded triangulations those
were introduced in Def. 3.15, for topological triangulations it was proven
in Thm. 4.22 that the Pachner moves can be formulated in positive and
negative circuit vertices, and also the steps for causal triangulations can
be described in this way (trivially for full-dimensional flips, and also for
flips in the single spatial slices if one includes the adjacent vertices of the
neighboring time slices defined by the maximal simplices of the flip as zero
circuit vertices). So the base class of the flips can include the containers for
the positive, negative and zero circuit vertices.
Additionally, it can contain containers for the simplices that will be

removed and inserted by the respective flip, also the method for calculating
these from the circuit vertices is the same for all types of considered flips
and is basically given by Eq. (3.8).

A last functionality that can be implemented in the common base class is
for undoing the present step (which is needed for calculating the exact ratio
of selection probabilities for topological and causal triangulations, where
every step of the triangulation is executed test-wise, and one has to check
the results for isomorphy, and undo the steps afterwards). This function
can be implemented by simply executing a step where the positive and the
negative circuit vertices are interchanged.
There is also some functionality that differs for the considered types of

flips. The first important point is that determining whether a given flip is
executable, differs for the different considered types of triangulations. For
topological triangulations one has to check that none of the simplices that
should be included by a flip is already included in the triangulation, for
causal triangulations one additionally must check that the causal structure
of the triangulation is not violated by the flip. In contrast to this, for
embedded triangulations one has to check that only convex structures are
flipped.

The second important difference is the calculation of the positive, negative
and zero circuit vertices. For topological flips, the negative vertices are the
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vertices of the simplex that induces the flip, and the positive vertices are
all other vertices of the maximal simplices that contain the flip inducing
simplex. The same principle can be applied for causal triangulations, but
one has to discriminate between full-dimensional flips and flips in one spatial
slice. In the latter case one to find additionally the zero circuit vertices.

The last major difference between the three flip classes is the calculation
of the ratio of selection probabilities. While for embedded triangulations the
ratio can be calculated soly in terms of the change of the number of simplices
introduced by flip, for topological and causal triangulations isomorphism
checks have to be performed to calculate the exact ratio.

Common and non-common functionality for triangulations For
triangulations one can implement the storage of the underlying set of
vertices and the set of simplices within the common base class. In fact there
are different classes for the underlying vertices for each triangulation (for
causal triangulations, a vertex stores its time coordinate, and for embedded
triangulations, a vertex stores all its coordinates), this can be solved by using
the type of the vertex as template parameter. Furthermore, the code for
proposing and applying a certain step to the triangulation can be common
to all triangulations, because in the former case it consists of randomly
selecting one of the simplices of the triangulation that is associated with the
flips, and in the latter case the simplices that have to be deleted or inserted
are provided by the respective flips.
The construction of triangulations that are used as initial points of the

simulations has to be done in the different triangulation classes, e.g., by the
boundary of a (d+ 1)-simplex for topological triangulations or by the small
triangulations presented in Sec. 5.3.3 for causal triangulations.

Including flexibility for energy and isomorphism calculations While
for causal dynamical triangulations the energy or the action of a triangula-
tion has a physical meaning, for the approximative counting of triangulations
one can choose an arbitrary energy function. The runtime or even the con-
vergence of the counting algorithm can differ by magnitudes depending on
the chosen energy function, so one would like to have the freedom to test
different energy functions. For the design of the library it should be possible
to use all triangulations with different energy functions. In mocatrind this
is realized using the design pattern of a concept class, which means that
every triangulation class takes an additional class as template parameter
that implements the calculation of the energy of the triangulation. Simulta-
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neously every flip class takes a template parameter to calculate the energy
difference that is induced by a flip. Using concepts it is possible to use
different energy functions without changing the code for the triangulation
and flip classes.

The same design pattern is used for enabling the user to switch between
different calculation methods for the isomorphy of topological and causal
triangulations for calculating the exact ratio of selection probabilities.
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Simulating Triangulations:
Graphs, Manifolds and 
(Quantum) Spacetime

Triangulations, which can intuitively be described as a tessellation of space into simplicial 
building blocks, are structures that arise in various different branches of physics: They 
can be used for describing complicated and curved objects in a discretized way, e.g., in 
foams, gels or porous media, or for discretizing curved boundaries for fluid simulations 
or dissipative systems. Interpreting triangulations as (maximal planar) graphs makes it 
possible to use them in graph theory or statistical physics, e.g., as small-world networks, 
as networks of spins or in biological physics as actin networks. Since one can find an 
analogue of the Einstein-Hilbert action on triangulations, they can even be used for  
formulating theories of quantum gravity. Triangulations have also important applications 
in mathematics, especially in discrete topology. 
Despite their wide occurrence in different branches of physics and mathematics, there 
are still some fundamental open questions about triangulations in general. It is a prior 
unknown how many triangulations there are for a given set of points or a given manifold, 
or even whether there are exponentially many triangulations or more, a question that 
relates to a well-defined behavior of certain quantum geometry models. Another major 
unknown question is whether elementary steps transforming triangulations into each 
other, which are used in computer simulations, are ergodic. Using triangulations as  
model for spacetime, it is not clear whether there is a meaningful continuum limit that  
can be identified with the usual and well-tested theory of general relativity.
Within this thesis some of these fundamental questions about triangulations are  
answered by the use of Markov chain Monte Carlo simulations, which are a probabilistic 
method for calculating statistical expectation values, or more generally a tool for  
calculating high-dimensional integrals. Additionally, some details about the Wang-
Landau algorithm, which is the primary used numerical method in this thesis, are  
examined in detail. FAU Studies Mathematics & Physics  9
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